
Moving Objects and Their Equations of Motion

Floris Geerts

Helsinki Institute for Information Technology
Basic Research Unit, Department of Computer Science

University of Helsinki, Finland
floris.geerts@cs.helsinki.fi

Abstract. Moving objects are currently represented in databases by
means of an explicit representation of their trajectory. However from a
physical point of view, or more specifically according to Newton’s sec-
ond law of motion, a moving object is fully described by its equation of
motion. We introduce a new data model for moving objects in which a
trajectory is represented by a differential equation. A similar approach
is taken in computer animation where this is known as physically based
modeling. We give a query language for our data model and use tech-
niques from physically based modeling to evaluate queries in this lan-
guage.

1 Introduction

Q: What’s a moving object?
A: An equation of motion.

Moving objects pose many challenges for data management systems. These
challenges include the modeling and representation of moving objects, query
language design, indexing techniques and query optimization. In this paper we
focus on the modeling of moving objects and the design of query languages.

Existing models involve temporal logic, abstract data types[7, 9] and linear
constraints [15, 21, 6]. In all these models the trajectories of the moving objects
are explicitly stored in the database. Here, we take an alternative approach in
which the sometimes complicated trajectories are stored in the form of prefer-
ably simpler equations of motions. This is somehow analogous to the constraint
database approach [11, 12, 19] in which an infinite collection of points is stored
in the form of geometric equations and inequalities.

Equations of motions are a natural way of describing moving objects. Many
important motions have been described by equations since Newton published his
Laws of Physics in 1687 [17]. The physics and mathematics of the equations of
motion are by now well understood for large classes of moving objects like rigid
bodies, deformable bodies, and so on [8, 2]. In this paper we will only consider
moving point objects.

The approach of working with equations instead of trajectories is very similar
to what is known as physically based modeling in computer graphics [4]. There,

42

moving graphical objects are defined in terms of their equations of motions
and when needed, the trajectories are computed using numerical integration
techniques.

Our data model requires a new query language and evaluation method. For-
tunately, the generalized distance based query language proposed by Mokthar
et al. [15] can be adapted to our setting. Using techniques from physically based
modeling we show how these queries can be evaluated on moving object database
in which only equations of motions are represented.

It is surprising that the approach proposed in this paper has not been con-
sidered before in the database community. As described in the recent survey of
Agarwal et al. [1], the area of physically based modeling might have many more
techniques which can be useful for the development of moving object databases
and vice versa. They also point out other interesting cross-disciplinary aspects
related to moving objects. However, in this paper we only explore physically
based modeling from a database point of view and regard the exploration of
other connections as future work.

Organization of the paper: In Section 2 we briefly describe concepts related to
the physics of motion. The data model for moving objects is defined in Section 3.
We then describe the physical validity of moving object databases in Section 4.
The query language is defined in Section 5 and its evaluation is described in
Section 6. We conclude the paper in Section 7.

2 Physics and Simulation

We start with a brief summary of concepts needed to describe the physics of
motion. For a detailed description we refer to standard physics textbooks [8, 2]
and the excellent SIGGRAPH tutorial of Baraff and Witkin [4]. In this paper we
only consider point particles. Extensions to e.g. rigid body motions only require
more physics and formulas and would deviate us too much from the aim of this
paper.

Let x(t) = (x1(t), . . . , xn(t)) denote the location of point particle in Rn at
time t. The velocity of the particle at time t is then given by v(t) = ẋ(t) = d

dtx(t).
By Newton’s Second Law, the motion is now fully described once we know the
force F (t) acting on the particle (this force can be gravity, wind, spring forces,
etc). Indeed, the motion is described by the unique solution of the (differential)
equation of motion

F (t) = m
d2

dt2
x(t), x(t0) = x0,v(t0) = v0 (1)

in which m denotes the mass of particle and x(t0) = x0 and v(t0) = v0 are
initial conditions.

Example 1. Consider a point particle moving only along the x-axis according to
the equation of motion −ω2x(t) = d2

dt2 x(t) where ω ∈ R. Solving this equation
results in x(t) = A sin(ωt + ϕ), where A and ϕ are real constants determined by
the initial conditions. This motion is known as the harmonic oscillator. ut

43

In the above example, the equation of motion can be solved analytically.
However, this is not always the case and one often has to rely on numerical
integration techniques to obtain some information about the solution [10]. Com-
monly used methods include Euler’s method and higher-order (adaptive) Runge-
Kutta methods. Most methods take first-order differential equations as input,
meaning that only partial derivatives of the first order may occur in the equa-
tion. However, this forms no restriction since higher-order differential equations
can always be transformed into first-order ones by adding variables: E.g., the
second-order equation (1) is equivalent to the first-order equation

d

dt
X(t) =

d

dt

(
x(t)
v(t)

)
=

(
v(t)

F (t)/m

)
. (2)

When equation (2) together with an initial condition and an initial and final
point in time t0 and t1 is fed to these integration methods, the output is a
continuous piecewise linear curve [t0, t1] → R2n which approximates the real
solution to the differential equations. The real solution of a differential equation
is also called an integral curve and is uniquely determined by the equation and
the initial conditions. Moreover, by Picard’s existence theorem this integral curve
always exists under some mild condition on the formulas defining the equations
(the so-called Lipschitz condition). We will assume that these conditions are
always satisfied.

3 A Model for Moving Objects

In this section we introduce a data model for moving objects. Unlike earlier
models for moving objects that use ADTs [7, 9] or linear constraints [15, 21, 6],
we do not store the complete trajectories of the moving objects, but store the
equations of motion to which the trajectories are the solution.

We will represent geometric objects by means of linear constraints. A linear
constraint over variables x1, . . . , xn has the following general form:

∑n
i=1 aixiθao,

where a0, a1, . . . , an are integer numbers and θ is an order predicate (=, <,≤,
>,≥). Constraints are interpreted over the real numbers. We use a vector x =
(x1, . . . , xn) to denote a point in space. On top of the ordinary variables we also
have the time variable t.

The position of a moving point can be modeled by a function of time, rep-
resented by the real line R, to the n-dimensional space Rn. A function from R
to Rn is linear if it has the form x = at + b where a, b are vectors in Rn; A
function is piecewise linear if it consists of a finite number of linear pieces, i.e.,
if it has the form

x =

a1t + b1 if t
(1)
0 ≤ t ≤ t

(1)
1

...
...

akt + bk if t
(k)
0 ≤ t ≤ t

(k)
1 ,

where t
(i)
1 ≤ t

(i+1)
0 for all i = 1, . . . , k.

44

Definition 1. A trajectory is a piecewise linear function from R to Rn. Let T
be the set of all trajectories. ut

We also introduce the derivative variables ẋ1, . . . , ẋn. Although we will con-
sider them as an ordinary variable, the semantics of a derivative variable ẋ is
the derivative of x (as a function of time) with respect to the time variable. A
differential constraint over the variables x1, . . . , xn, ẋ1, . . . , ẋn has the following
general form:

ẋi = fi(x1, . . . , xn, t), i = 1, . . . , n

where fi is a multi-variate polynomial with integer coefficients in the variables
x1, . . . , xn and t.

Example 2. A differential constraint corresponding to the harmonic oscillator of
Example 1 is

ẋ1 = f1(x1, x2, t) = x2

ẋ2 = f2(x1, x2, t) = −ω2x1.

ut
As mentioned in Section 2, a differential constraint does not completely specify
an integral curve. Also initial constraints on variables xi and t are needed. We
only consider initial constraints of the form

I(c1, . . . , cn, t0) ≡
n∧

i=1

xi = ci,

where the cis and t0 are real numbers. Hence, an initial constraint specifies a
point in Rn+1.

Example 3. Consider the differential constraint given in Example 2. We know
already from Example 1 that every integral curve is of the form (x1(t), x2(t))
where x1(t) = A sin(ωt + ϕ) and x2(t) = ẋ1(t). Let c1, c2 ∈ R and consider the
initial constraint I(c1, c2, 0). The integral curve corresponding to this initial con-

straint is then uniquely defined by taking A =
√

(c2
ω)2 − c2

1 and ϕ = arcsin(c1
ω).
ut

Definition 2. An n-dimensional equation of motion consists of a finite number
of triples (I(i), DE(i), τ (i)), where for each i = 1, . . . , k,

– I(i) is an initial constraint. I.e., I(i) = I(i)
(
c
(i)
1 , . . . , c

(i)
n , t

(i)
0

)
, where t

(i)
0 <

τ (i) 6 t
(i+1)
0 ;

– DE(i) is a differential constraint. I.e., DE(i) is equal to ẋj = f
(i)
j (t, x1, . . . , xn),

for j = 1, . . . , n; and
– τ (i) is the final time for which the equation of motion DE(i) is valid.

We denote the set of all n-dimensional equations of motion by E . ut

45

An equation of motion consisting of k initial and differential constraints,
corresponds naturally to k integral curves which describe the motion of point
during disjoint or adjacent intervals in time.

Example 4. Let DE be the differential constraint given in Example 2. Consider
the equation of motion consisting of

{(I(c1, c2, 0), DE, 1), (I(d1, d2, 1), DE, 2), (I(e1, e2, 3), DE,∞)}.

This equation of motion then corresponds to the description of a moving point
using the integral curves in (x, ẋ)-space:

t : [0, 2] ∪ [3,∞) →

(A1 sin(ωt + ϕ1), A1ω cos(ωt + ϕ1)) if 0 ≤ t ≤ 1
(A2 sin(ωt + ϕ2), A2ω cos(ωt + ϕ2)) if 1 ≤ t ≤ 2
(A3 sin(ωt + ϕ3), A3ω cos(ωt + ϕ3)) if 3 ≤ t,

where the constants Ai and ϕi are determined by the initial constraints as shown
in Example 3. We have depicted an instantiation of this example in Figure 1. ut

1 2 3 4 5
t

-3

-2

-1

1

2

3

x

Fig. 1. The integral curves corresponding to the equation of motion given in Example 4
(Only the (x, t)-coordinates are shown).

The definition of equation of motion does not rule out discontinuities in the
transition between different integral curves. E.g., in Figure 1 the integral curve
disappears between t = 2 and t = 3. In some applications it might be desirable
that integral curves smoothly glue together at transition points. We remark that
Definition 2 can easily be restricted to this setting.

We now define a mapping PL from the set of equations of motions E to the
set of trajectories T . With each e ∈ E we associate the piecewise linear trajectory
PL(e) ∈ T obtained by applying a numerical integration method. This mapping
is clearly dependent on the choice of numerical integration technique. In this
section we will use Euler’s method [18]. This might not be the best method
currently available [10], but suffices for explaining the ideas in this section. We

46

define the mapping PL in more detail now. Consider first the case that the
equation of motion consists of a single initial and differential constraint.

Applied to an initial and a differential constraint I and DE, Euler’s method
takes a fixed small step size h, sets x(t0) = c, as demanded by the initial con-
straint and then defines

x(ti+1) = x(ti) + f(x(ti), ti)h,

where ti = t0+ih for i = 1, 2, . . . and f = (f1, . . . , fn) are the functions occurring
in the differential constraint DE.

One then obtains a trajectory in T by linearly interpolating between consec-
utive points. More specifically, if τ is the final time for the differential constraint
to be valid, then let K be the maximum integer such that t0 + Kh < τ and we
define the trajectory PL((I, DE, τ)) as

t : (t0, τ) →

x(t0) + f(x(t0), t0)t if t0 ≤ t ≤ t1
...

...
x(tK) + f(x(tK), tK)t if tK ≤ t ≤ τ ,

(3)

where again ti = t0 + ih for i = 0, 1, . . . , K.
In general, when an equation of motion consists of several triples (I, Eq, τ),

the mapping PL is the union of the mappings PL on the individual triples.
We would like to have that if the integral curve is already a trajectory, then

the PL mapping will return the same trajectory as well.

Example 5. Consider a point moving along the x-direction between initial time
t0 = 0 and final time t2 = 1 such that

x(t) =

{
2t if 0 ≤ t ≤ 1

2

1− 2t if 1
2 ≤ t ≤ 1.

(4)

Let I(1) ≡ x = 0 ∧ t = 0 and I(2) ≡ x = 1 ∧ t = 1
2 . Furthermore, consider the

differential constraints

DE(1) ≡ ẋ = 2, DE(2) ≡ ẋ = −2.

Let e be the equation of motion consisting of the initial constraints I(1) and I(2),
together with the corresponding differential constraints DE(1) and DE(2), and
final time points τ (1) = 1

2 and τ (2) = 1. The trajectory PL(e) is the union of
PL(I(i), DE(i), τ (i)), i = 1, 2 each of which defined by (3). Euler’s method on e
will now return the same trajectory as represented by (4). ut

It is easy to prove that the observation made in the last example holds in
general.

Proposition 1. Let γ : [t0, t1] → Rn be a piecewise linear curve. Then there
exists an equation of motion Eq ∈ En such that PL(Eq) = γ. ut

47

0.4 0.6 0.8 10 0.2

0.25

0.2

0.15

0.1

0.05

0

Fig. 2. Integral curve (parabola) of the moving object in Example 6 and corresponding
trajectory (linear curve) obtained using a rather large stepsize h = 0.2. (Only the (x, y)-
coordinates are shown.)

As mentioned above, Euler’s method is not the most desirable integration
method since it does not provide guarantees on the accuracy. This is common to
most step-wise classical numerical integration techniques [20]. In contrast, inter-
val methods produce guaranteed error bounds [16]. They use interval arithmetic
to calculate each approximation step, explicitly keeping the error bounds within
safe interval bounds. We leave it to future work to integrate interval methods in
our framework.

We now have all the ingredients for defining a moving object database. Let
O denote an infinite set of object identifiers.

Definition 3. A n-dimensional moving object database is a triple (O, Eq, τ)
where O is a finite subset of O, Eq is a mapping from O to E , and τ is a
time instance such that each interval in Eq(o) for every object o ∈ O ends ear-
lier than or at time τ . ut

Proposition 1 says that this definition of moving object databases generalizes
earlier definitions in which trajectories are explicitly represented by piecewise lin-
ear functions. [15, 21]. However, the equation of motion in Proposition 1 requires
in general the same number of initial and differential constraints as the number
of linear segments of the trajectory and our data model is therefore not necessar-
ily more compact. This changes however when the integral curves are not linear
anymore. In these cases a single initial and differential constraint can represent
a trajectory consisting of many linear segments.

Example 6. Let e be the equation of motion consisting of an initial constraint
x = 0 ∧ y = 0 ∧ v̇ = 1 ∧ ẇ = 1 ∧ t = 0, together with the differential constraint

ẋ = v, ẏ = w, v̇ = 0, ẇ = −g,

and a final point in time τ = 1. A simple computation shows that the solution
of this equation of motion is

t 7→ (t,−gt2 + t, 1,−2gt + 1),

48

which restricted to the (x, y)-plane results in a parabola. By definition PL will
map this equation of motion to a linear approximation of the parabola. We have
depicted this situation in Figure 2. We used a large stepsize in Euler’s method
in order to distinguish the integral curve from its approximating trajectory. ut

We remark that our definition of differential constraints often demands the
introduction of new variables. It might be therefore desirable to make explicit
in which dimension of the integral curve one actually is interested in (e.g., three
spatial dimensions and time). This can be easily added to the definition of equa-
tions of motion.

4 Physical Correctness

Updates for moving objects are of particular importance due to their dynamic
character. We therefore need to be able to update moving object databases and
the following pair of updates adapted from [15] clearly suffices.

Definition 4. Let τ be a time point, o ∈ O, e ∈ En. An update on a moving
object database (O, Eq, τ) is one of the following:

– Create a new object: new(o, τ ′, e) results in (O∪{o}, Eq′, max{τ, τ ′}) where
Eq is identical to Eq except for Eq(o) = e.

– Terminate an existing object: terminate(o, τ ′) results in (O, Eq′, τ) where Eq′

is identical to Eq except for Eq′(o) = Eq(o) ∧ t ≤ τ ′. ut
In addition to the usual demands for updates, the physical meaning of the

equations of motions also demands the presence of update operators on the
moving object databases. Indeed, consider two moving objects o1 and o2 whose
integral curves intersect at time tc. We say that o1 and o2 are in contact at time
tc. At this contact time tc the initial and differential constraints should change
according to physical laws in order to represent a physical reality. We call a
moving object database physically consistent if at times of contact the equations
of motions have been updated correctly. We will not give explicitly the formulas
needed for the updates but refer instead to the tutorial of Baraff for derivation
and explanation of the updates [4].

One distinguishes between two types of contact. When o1 and o2 are in
contact at time tc and they have a velocity towards each other, we speak of a
colliding contact. Colliding contacts require an instantaneous change in velocity
of the objects. This implies that at time tc the differential constraint still holds
but the initial constraint needs to be updated.

When o1 and o2 are in contact at time tc and o2 is resting or cannot move,
e.g. in case o2 is a wall, then we speak of a resting contact. In this case, one
needs to compute a contact force and has to change the differential constraint
accordingly in the equation of motion of o1 for t ≥ tc.

Note that we assumed that the contact times tc are known. Collision de-
tection algorithms provide a way of computing (or approximating) these inter-
section points. It has been extensively studied in computational geometry and

49

robotics [13] and currently fast and robust algorithms exists. However, most of
these algorithms are practical for a small number of moving objects. Also it is
difficult when moving objects are geometric objects other than points and are
deformable. We refer to the survey on modeling of motion for the current state
of research [1].

5 Query Language

Now that we have defined the data model, it is time to look for a query language.
We first give the kind of queries which we would like to ask and answer. A very
natural example of a moving database is an interplanetary database containing
moving planets, galaxies, space shuttles, satellites and so forth. We are now
interested in the following kind of queries.

Q1 Locate all planets in the earth’s North hemisphere at 2pm.
Q2 Find all comets entering our solar system today.
Q3 List all pairs of satellites flying in opposite direction.
Q4 List all moons of planets in our solar system which are visible at least 10

minutes today.
Q5 Give all pairs of planets and asteroids which are in collision course.

In order to ask and answer these queries we will use the query languages
FO(f) based on a generalized distance f as defined by Mokthar et al. [15].

Let Γ denote the set of all continuous functions from R to Rn.

Definition 5. A generalized distance is a mapping from the set Γ of contin-
uous curves to continuous functions from R to R. Let a (O, Eq, τ) be a mov-
ing database and f a generalized distance. For each o ∈ O we set fo = f(γ),
where γ is the integral curve corresponding to Eq(o). Moreover, we define
f̂o = f(PL(Eq(o))). ut
So, a generalized distance describes some property of curves which continuously
changes in time.

The language FO(f) consists of a many-sorted first-order logic with real num-
bers, time instants, and objects. The language uses a single time variable t and
many objects variables. We do not allow real variables; these are embedded in
the generalized functions.

– time terms are polynomials over the time variable t with integer coefficients.
– real terms include real variables, and f(y, t) where y is an object variable and

t is a time term.

Atomic formulas are formed by equality and order predicates over terms of the
same sort. Formulas are then constructed by propositional connectives and uni-
versal/existential quantifiers over object variables.

Definition 6. A query is a quadruple (y, t, I, ϕ) where y is an object variable,
t a time variable, I a time interval and ϕ a formula with only y and t free. ut

50

Let D = (O, Eq, τ0) be a moving object database. Then for each time τ , we
define

Q[D]τ = {(o) | o ∈ O ∧ ϕ(o, τ)}.
The answer to Q can then be of an existential nature, Q∃(D) = {(o) | ∃t(t ∈
I ∧ o ∈ Q[D]t)}, or universal, Q∀(D) = {(o) | ∀t(t ∈ I → o ∈ Q[D]t)}. It is clear
that both Q∃ and Q∀ can be obtained from Qτ . It is easy to see that queries
Q1, . . . , Q5 can all be expressed in FO(f).

6 Evaluating the Queries

The evaluation procedure of FO(f) queries in our database model is an adap-
tation of the procedure given by Mokthar et al. [15]. Let Q = (y, t, Iϕ) be a
query and D a moving object database. Mokhtar et al. showed that in order to
evaluate Q[D]τ it is sufficient to know at each time t ∈ I the precedence relation
≤t defined by

Definition 7. Let D = (O, Eq, τ ′) be a moving object database, τ a time in-
stant, o, o′ ∈ O. The object o precedes o′ at time τ , denoted by o ≤τ o′, if
fo(τ) ≤ fo′(τ). ut

If the moving objects are represented by trajectories, then the precedence
relation can be easily obtained as shown in [15].

In our data model, we have a larger class of trajectories consisting of the in-
tegral curves of the equations of motion. Since we do not have the integral curves
at our disposal we will replace them for the time period I by the trajectories
obtained by applying the PL map defined in Section 3.

Definition 8. Let D = (O, Eq, τ ′) be a moving object database, τ a time in-
stant, o, o′ ∈ O. The object o approximately precedes o′ at time τ , denoted by
o ¹τ o′, if f̂o(τ) ≤ f̂o′(τ). ut

Instead of answering Q based on the precedence relation ≤τ we will answer it
based on the approximate precedence relation ¹τ . In order to guarantee a good
approximation we only have to be sure that the intersection points of the curves

γ : t ∈ I → fo(t), o ∈ O

are accurately approximated by the intersection points of

γ : t ∈ I → f̂o(t), o ∈ O,

since these determine possible changes in the precedence relations.
If we simply take the PL map defined in Section 3 based on Euler’s method

then this will not be the case since this method has fixed time step size h and will
therefore make wrong conclusion concerning the intersection of the above curves.
Using standard approaches from physically based modeling, we can however
change step size in the neighborhood of intersection points of the above curves.

51

Two common approaches exists. In retroactive detection [3] one checks after
each integration step for intersection points. If an intersection is detected, one
traces back the exact moment of intersection using e.g., bisection methods or
regular falsa, and the integration starts again from the intersection moment. On
the other hand, conservative advancement methods [5] creep up to intersection
methods, taking smaller steps as it gets closer. For our purposes it does not really
matter which method is used. It only matters when there are a vast number of
moving objects in the database. In this case one can rely on the Timewarp
algorithm [14].

The above methods are assumed to be part of the PL mapping so that the
approximate precedence relation captures the exact precedence relations as good
as possible. Using this approximate precedence relation, a query in FO(f) can
be evaluated as described by Mokthar et al. [15].

7 Conclusions

We proposed a new data model for moving object based on equations of motions
and showed that the query language proposed by Mokthar et al. [15] can be
used also in our setting. The evaluation of queries is however different since
trajectories are not stored in the database but are generated in real-time when a
query is asked. These trajectories can be generated with an adjustable degree of
accuracy depending on the database instance. Using techniques from physically
based modeling we’re able to guarantee a successful answer to these queries.
Many aspects still need to be investigated, including

– The complexity of the computation of the approximate precedence relation,
and more general the complexity of the query evaluation described in Sec-
tion 6.

– The generalization of the moving point objects to general moving objects
using results from [4]. This involves a more complex definition of differential
constraints and update operators. A challenge is to extend the generalized
distance-base query language FO(f) so that it can query the spatial extent
of the moving object as well.

– Data integration of our data model. It is important that the proposed data
model integrates well with other spatio-temporal models.

– The automatic derivation of simple equations of motion from observed tra-
jectories.

Acknowledgement

The author would like to thank Taneli Mielikäinen for his encouraging remarks.

References

1. P. K. Agarwal, L.J. Guibas, H. Edelsbrunner, J. Erickson, M. Isard, S. Har-Peled,
J. Hershberger, C. Jensen, L. Kavraki, P. Koehl, M. Lin, D. Manocha, D. Metaxas,

52

B. Mirtich, D. Mount, S. Muthukrishnan, D. Pai, E. Sacks, J. Snoeyink, S. Suri,
and O. Wolefson. Algorithmic issues in modeling motion. ACM Comput. Surv.,
34(4):550–572, 2002.

2. V. I. Arnold, A. Weinstein, and K. Vogtmann. Mathematical Methods of Classical
Mechanics, volume 60 of Graduate Texts in Mathematics. Springer-Verlag, 1997.

3. D. Baraff. Curved surfaces and coherence for non-penetrating rigid body simula-
tion. Computer Graphics, 24(4):19–28, 1990.

4. D. Baraff and A. Witkin. Physically Based Modelling. Pixar Animation studios,
2001. SIGGRAPH 2001 Course Notes.

5. J. Basch, L.J. Guibas, and J. Hershberger. Data structures for mobile data. Journal
of Algorithms, 31(3):1–28, 1999.

6. J. Chomicki and P. Revesz. Constraint-based interoperability of spatiotemporal
databases. Geoinformatica, 3(3):211–2423, 1999.

7. M. Erwig, R.H. Güting, M. Schneider, and M. Vazirgiannis. Spatio-temporal data
types: An approach to modeling and querying moving objects in databases. Geoin-
formatica, 3(3):269–296, 1999.

8. R.P. Feynman, R.B. Leighton, and M Sands. The Feynman Lectures on Physics.
Addison-Wesley, 1989.

9. R. H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider,
and M. Vazirgiannis. A foundation for representing and querying moving objects.
ACM Trans. Database Syst., 25(1):1–42, 2000.

10. A. Iserles, editor. A First Course in the Numerical Analysis of Differential Equa-
tions. Cambridge University Press, 1996.

11. P. C. Kanellakis, G. M. Kuper, and P.Z. Revesz. Constraint query languages.
Journal of Computing and Systems Sciences, 51(1):26–52, 1995.

12. G.M. Kuper, J. Paredaens, and L. Libkin, editors. Constraint Databases. Springer-
Verlag, 2000.

13. M. Lin and S. Gottschalk. Collision detection between geometric models. In
Proceedings of the IMA Conference on Mathematics of Surfaces, 1998.

14. B. Mirtich. Timewarp rigid body simulation. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages 193–200, 2000.

15. H. Mokthar, J. Su, and O. Ibarra. On moving object queries. In Proceedings of
the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 188–198. ACM Press, 2002.

16. N.S. Nedialkov. Computing Rigorous Bounds on the Solution of an Initial Value
Problem for an Ordinary Differential Equation. PhD thesis, Computer Science
Dept., University of Toronto, 1999.

17. I. Newton. Philosophiae Naturalis Principia Mathematica. 1687.
18. W.H. Press, Flannery B.P., Teukolsky S.A., and Vetterling W.T. Numerical Recipes

in C : The Art of Scientific Computing. Cambridge University Press, 1992.
19. P. Revesz. Introduction to Constraint Databases. Springer-Verlag, 2001.
20. L.F. Shampine. Numerical Solution of Ordinary Differential Equations. Chapman

& Hall, 1994.
21. J. Su, H. Xu, and O.H. Ibarra. Moving objects: Logical relationships and queries.

In Proceedings of the 7th International Symposium on Advances in Spatial and
Temporal Databases, volume 2121 of Lecture Notes in Computer Science, pages
3–19. Springer, 2001.

