
Linear Approximation of Semi-Algebraic Spatial

Databases Using Transitive Closure Logic, in

Arbitrary Dimension

Floris Geerts

University of Limburg, Belgium
floris.geerts@luc.ac.be

Abstract. We consider n-dimensional semi-algebraic spatial databases.
We compute in first-order logic extended with a transitive closure op-
erator, a linear spatial database which characterizes the semi-algebraic
spatial database up to a homeomorphism. In this way, we generalize our
earlier results to semi-algebraic spatial databases in arbitrary dimensions,
our earlier results being true for only two dimensions.

Consequently, we can prove that first-order logic with a transitive closure
operator extended with stop conditions, can express all Boolean topolog-
ical queries on semi-algebraic spatial databases of arbitrary dimension.

1 Introduction

Conceptually, spatial databases are possibly infinite sets of points in the n-
dimensional Euclidean space Rn. The framework of constraint databases, intro-
duced in 1990 by Kanellakis, Kuper and Revesz [14, 17], provides an elegant and
powerful model for spatial databases. One distinguishes between semi-algebraic
spatial databases, which store semi-algebraic sets, and linear spatial databases,
which store semi-linear sets.

First-order logic FO over these databases yields a query language with rather
poor expressive power. Its inability to define queries relying on recursion, sug-
gests the extension of these query languages with a recursion mechanism. In this
paper we consider the extension of first-order logic with transitive closure op-
erators. Other attempts to introduce recursion mechanisms to first-order logics
can be found in [9] and [15, 16]. A less traditional extension of FO which can
express some recursive queries is the Path Logic [3]. This logic is able to express
recursive queries like the query which ask whether a database is connected, or
whether two points are path connected, but the exact expressive power of this
logic is not known.

First-order logic extended with a transitive closure operator, denoted by
FO+TC, shares with most programming languages the disadvantage that the
evaluation of its formulas is not guaranteed to terminate. However, whenever
the evaluation of a formula terminates, it evaluates to an output within the
constraint model.

It is known that FO+TC with some kind of stopping condition is compu-
tationally complete on linear spatial databases where only rational coefficients
are involved [8]. Indeed, this logic, denoted by FO+TCS, can easily seen to be
complete on finite databases. The completeness of this logic on all linear spatial
databases, is then obtained using a finite representation of these databases given
by Vandeurzen et al. [20]. Since both the encoding and decoding between a linear
spatial database and this finite representation are expressible in FO+TCS, we
may conclude the completeness of this logic on linear spatial databases.

The use of this finite representation to obtain expressibility results for linear
spatial database is ubiquitous [4, 9, 15, 16, 21]. We show that we can construct
in FO+TC, a linear spatial database (and hence also a finite representation)
which is homeomorphic to a given semi-algebraic spatial database input. We call
this the linearization of a semi-algebraic spatial database. We prove that this
construction terminates on all spatial database inputs. This was only known in
the plane [8], and the generalization to arbitrary dimensions is far from trivial
and uses results of differential topology [12], of Shiota [19] and of Rannou [18].

A direct consequence is that FO+TCS is computationally complete for Bool-
ean topological queries on semi-algebraic spatial database. This is rather remark-
able because a transitive closure, used as a recursion mechanism, is weaker than,
e.g., a while-loop.

As alternative approach for expressing all topological properties of semi-
algebraic spatial databases, one could add a generalized quantifier for each of
these properties to FO. The query language obtained in this way is closed, i.e.,
every query evaluates to an output within the constraint model [3]. However,
from a programming language point of view, it is more desirable to extend FO
with a single programming feature (like a transitive closure operator), then to
extend FO with uncountably many new features (since there are uncountably
many topological properties).

The paper is organized as follows. In Sect. 2, we introduce the definitions
of spatial databases, queries, and define the transitive closure logics. Section 3
shows that first-order logic is able to extract a large amount of topological infor-
mation from a spatial database. This information is then put into use in Sect. 4
where we construct the linearization of a semi-algebraic spatial database. The
completeness of the transitive closure logic for Boolean topological queries, is
then obtained in Sect. 5. We conclude the paper with some remarks in Sect. 6

2 Preliminaries

A semi-algebraic set in Rn is a set of points that can be defined as a Boolean
combination (union, intersection and complement) of sets of the form

{(x1, . . . , xn) | P (x1, . . . , xn) σ 0},

where P (x1, . . . , xn) is a multi-variate polynomial in the variables x1, . . . , xn

with algebraic coefficients and σ ∈ {>,≤}. A database schema S is a finite set
of relation names, each with a given arity. A semi-algebraic spatial database over

S assigns to each S ∈ S a semi-algebraic set SD in Rk, where k is the arity
of S. If only linear polynomials are involved, one speaks about semi-linear sets
and linear spatial databases. A k-ary query over S is a function mapping each
database over S to a semi-algebraic set in Rk.

As query language we use first-order logic (FO) over the vocabulary (+, ·, 0, 1,
<) expanded with the relation names in S. A formula ϕ(x1, . . . , xk) expresses a
k-ary query defined by

ϕ(D) := {(x1, . . . , xk) | 〈R, D〉 |= ϕ(x1, . . . , xk)},

for any database D. Note that ϕ(D) is always semi-algebraic because all relations
in D are; indeed, by Tarski’s theorem, relations that are first-order definable on
the real ordered field are precisely the semi-algebraic sets.

As example of a query expressed in FO is the following:

(∃ε > 0)(∀x′

1) · · · (∀x′

n)(‖x − x′‖ < ε → S(x′

1, . . . , x
′

n)),

where x = (x1, . . . , xn), and x′ = (x′

1, . . . , x
′

n). This query maps the set S to
its interior. However, not every query is first-order expressible: the query which
asks whether a spatial database is connected is not expressible in FO. This result
and other results related to spatial databases have recently been collected in a
single volume [17, Chapters 3 and 4].

We now define two extensions of first-order logic FO, both able to compute
the transitive closure of a spatial database. We already introduced these logics
in the context of planar spatial databases [8], but their definition did not rely on
the planarity condition. These logics are not appealing from a query language
point of view, since one can easily define queries with non-semi-algebraic output,
hence leaving the constraint database framework. This is why we look at these
recursive extensions from a programming language point of view. As in almost
every programming language, programs can be written that don’t halt, but it is
the programmer’s task to write terminating programs.

It is for this reason that we will define our logics as subclasses of programs
of FO+While, which is FO extended with the standard programming features
of assignment statements, sequential compositions, and while-loops [13]. More
specifically, a program in FO+While over a schema S, is a sequence of as-
signment statements and while-loops. A sufficient supply of relation variables is
assumed, which are interpreted as new relation names not present in the given
schema S.

An assignment statement is an expression of the form

X := {x | ϕ(x)},

where X is a relation variable of arity equal to the length of the vector x of
variables, and ϕ is a formula in FO extended with relation variables introduced
in previously occurring assignment statements.

A while-loop is an expression of the form

While ϕ Do P Od.

where ϕ is as above, but without free variables, and P is in turn an FO+While

program, which is called the body of the loop.

The semantics of the program applied to an input spatial database D is the
operational, step-by-step execution. The effect of an assignment statement is
to evaluate the query on the right-hand side on the input spatial database D
augmented with the values of the previously assigned relation variables, and to
assign the result of this evaluation to a relation variable on the left-hand side.
The effect of a while-loop is to execute the body as long as ϕ evaluates to true.

It is a consequence of the closure of the logic FO, that every program ex-
presses a computable query in FO, which however may be only partially defined
because of non-terminating loops.

We now state the definitions of the programming languages FO+TC and
FO+TCS.

Let R be a relation variable of even arity 2k. The following program TC:

X := R; Y := ∅; (Y has arity 2k)
While Y 6= X Do

Y := X ;
X := X ∪ {(x1, . . . , xk, y1, . . . , yk) | ∃z1 . . . ∃zk(X(x1, . . . , xk, z1, . . . , zk)

∧ X(z1, . . . , zk, y1, . . . , yk)}
Od.

computes the transitive closure of the relation R. We shall use the notation
TC(R) for the relation name to which we assign the result of executing the
program TC on the relation R in case the while-loop halts, and let TC(R) be
undefined otherwise.

Definition 1. The transitive closure logic FO+TC is the class of FO+While-
programs in which only programs of the above form are allowed on relation names
in the schema S extended with relation names introduced in previously occurring
assignment statements.

Remark that inside the transitive closure no free variables are allowed! This
makes FO+TC a rather weak logic, but it is sufficient for our purposes.

As an example, let S = (S) and let D be a linear database over S. Define
the 2n-ary relation Path,

Path(D) = {(r, s) | (∃λ)(0 ≤ λ ≤ 1 ∧ (∀t)(t = λ · r + (1 − λ) · s → SD(t))},

where s, t ∈ Rn. It is easy to prove that the program TC terminates on ev-
ery linear database D. Moreover, a pair of points p and q is in the relation
TC(Path(D)) if and only if they belong to the same connected component of
D. Hence the connectivity of a linear database is expressible in FO+TC.

We now introduce an extension of FO+TC which allows some general FO-
formula without free variables σ in the condition in the while-loop. More specific,

consider the following program TCS:

X := R; Y := ∅; (Y has arity 2k)
While Y 6= X ∧ ¬σ(X) Do

Y := X ;
X := X ∪ {(x1, . . . , xk, y1, . . . , yk) | ∃z1 . . . ∃zk(X(x1, . . . , xk, z1, . . . , zk)

∧ X(z1, . . . , zk, y1, . . . , yk)}
Od.

The condition σ is called the stop condition. This program computes either the
transitive closure of the relation R, in case the condition σ is never satisfied, or
it computes the first p-stages of the transitive closure of the relation of R, where
p is the minimal number of cycles of the while-loop such that the condition σ is
satisfied. We shall denote by TCS(R) the relation name to which we assign the
result of executing the program TCS on the relation R, in case the while-loop
halts, and let TCS(R) be undefined, otherwise. The relation name X is reserved
for the current stage in the computation inside a while-loop.

Definition 2. The transitive closure logic with stop condition FO+TCS is the
class of FO+While-programs in which only programs of the above form are al-
lowed on relation names in the schema S extended with relation names introduced
in previously occurring assignment statements.

Note again that no free variables are allowed inside the transitive closure. It
is then also surprising that this logic is already computationally complete for
Boolean topological queries. As an example, let R := {(x, y) | y = 2x} whose
transitive closure TC(R) is not a semi-algebraic set. Take as stop condition the
formula σ(X) := X(1, 8). The while-loop then terminates after three cycles, and
the result is a semi-linear set consisting of three lines through the origin.

3 Local Topological Characterization

A well-known property of semi-algebraic sets, is that locally around each point,
a semi-algebraic set is homeomorphic to a cone. Let A be a semi-algebraic set in
Rn. A cone radius of A in a point p, is a radius around p in which this behavior
shows. A first question one can ask, is whether a cone radius query is expressible
in FO. This query must return for a semi-algebraic set A, a set of pairs (r, p)
giving for every point p a cone radius r of A in p. A second question one can
ask is whether there exists a uniform cone radius of a semi-algebraic set A. By
a uniform cone radius, we mean a real number which is a cone radius of A in
every point of A. We will answer these questions in the following sections.

3.1 Expressibility of the Cone Radius in FO

Let A ⊆ Rn be a semi-algebraic set and p ∈ Rn. We define the cone with base A
and top p as the union of all closed line segments between p and points in A. We

denote this set by Cone(A, p). For a point p ∈ Rn and ε > 0, denote the closed
ball centered at p with radius ε by Bn(p, ε), and denote its boundary sphere by
Sn−1(p, ε). We denote the closure of a set A by clo(A), and the interior of A
by int(A). The following theorem formalizes the property of semi-algebraic set
mentioned above. The boundary of A, clo(A) − A, will be denoted by ∂A.

Theorem 1 ([1, 5]). Let A ⊆ Rn be a semi-algebraic set and p a point of A.
Then there is a real number ε > 0 such that the intersection A ∩ Bn(p, ε) is
homeomorphic to the set Cone(A ∩ Sn−1(p, ε), p).

A naive way of checking in first-order logic whether a real number r is a
cone radius of A in p, is just testing if the sets Cone(A ∩ Sn−1(p, ε), p) and
A∩Bn(p, ε) are homeomorphic. However, it is known that the query which tests
whether two semi-algebraic sets in Rn (with n > 1) are homeomorphic, is not
in FO [2, 10, 11].

We showed rather ad hoc, that a cone radius query is first-order express-
ible for planar spatial databases [7]. The following result extends this to n-
dimensional semi-algebraic spatial databases.

Theorem 2. Let A be a semi-algebraic set in Rn. There exists a cone radius
query

ϕradius : A 7→ {(r, p) | r is a cone radius of A in p},
which is expressible in FO.

Proof (sketch). We first sketch the prove in case A is a closed semi-algebraic set
which has a tangent space in every of its points, and then sketch how the general
case can be treated.
Case 1. A is closed and A has a tangent space in every of its points.
Let p ∈ Rn and let fp : A → R : x 7→ ‖x−p‖2, where ‖ ·‖ denote the Euclidean
distance. The tangent space of A in x, denoted by TxA, is the secant limits set

TxA :=
⋂

η>0

clo({λ(u − v) ∈ Rn | λ ∈ R ∧ u, v ∈ A ∩ Bn(x, η)}),

and hence the query ϕtangent : A 7→ (x, TxA) is expressible in FO (see [18] for
more details). The mapping f : A → R induces a linear mapping, called the
differential between tangent spaces, dfp : TxA → R which maps (as it can be
easily verified) a tangent vector v ∈ TxA to the scalar product 2v · (x−p) ∈ R.

We now use Thom’s First Isotopy Lemma [19, Theorem II.6.2], which says
(adapted to our setting) that if (i) in every point of A the tangent space exists
(which is the case by assumption), (ii) the mapping fp : A → R is continuous
and has continuous derivatives (this is the case), (iii) the set f−1

p
([c, d]) is a

compact set for any closed interval [c, d] of R (this is true since A is closed), and
(iv)

fp|(A ∩ int(Bn(p, b) − {p})) −→ (0, b) ⊆ R (1)

has no critical points (this will shortly be explained), then there exists a home-
omorphism

h′ : (A ∩ Sn−1(p, c)) × (0, c] → A ∩ Bn(p, c) − {p}, (2)

p

Fig. 1. Illustration of the cone radius query of Theorem 2.

where c ∈ (0, b). Moreover, there exists such a homeomorphism h′ for any
c ∈ (0, b). Since the cylindrical set at the left in (2) is homeomorphic to the
cone set Cone(A ∩ Sn−1(p, c), p) − {p} in a straightforward way, we obtain a
homeomorphism h between

h : A ∩ Bn(p, c) − {p} → Cone(A ∩ Sn−1(p, c), p) − {p}.

This homeomorphism can easily be extended to A∩Bn(p, c) by defining h(p) =
p. In this way, we have shown that any c ∈ (0, b) is in fact a cone radius of A in
the point p. To show that there exists a cone radius query which is expressible
in FO, we need to show that for each point p, an interval (0, b) is expressible in
FO, satisfying condition (1), the other conditions being trivially satisfied. The
critical points of fp|A are defined as the points x in A such that the differential
dfp|A is not surjective. From this we can deduce that x is a critical point of fp|A
if and only if 2v · (x−p) = 0 for all tangent vectors v ∈ TxA. In other words, x

is a critical point of fp|A if and only if TxA is orthogonal to the vector x − p.
This can clearly be expressed in FO. Define the set of critical values of fp|A as
the image by fp of the critical points. It is a consequence of Sard’s Theorem [1,
Theorem 2.5.11] that this is a finite set. We therefore, define ϕradius as

ϕradius : A 7→ {(r′, p) | ∀ critical values r of fp ⇒ r′ < r}.

This concludes the proof for the case that A is closed and in all points of A
the tangent space exists. We have illustrated the construction in the proof in
Figure 1. In this figure, we have drawn a spatial database centered around the
point p, and also identified points q whose tangent lines are orthogonal to the
vector p− q. We have drawn dotted circles through these points. Note that the
topology of the intersection of a circle with center at the point p, and the spatial
database, is unchanged between two consecutive dotted circles, as is predicted
by Thom’s Isotopy Lemma.
Case 2. A is an arbitrary semi-algebraic set in Rn.

We then consider a Whitney stratification (decomposition into a finite number of
sets, called strata) of the closure of A, such that A is the union of connected com-
ponents of these strata. The strata are semi-algebraic sets satisfying Whitney’s
condition and in each point of a stratum the tangent space exists [18]. We then
find an interval (0, b) such that condition (iv) is satisfied simultaneously for all
strata. Thom’s First Isotopy Lemma for sets admitting a Whitney stratification
(like semi-algebraic sets), guarantees again the correctness of this procedure. To
show the expressibility in FO, it is sufficient to prove that a Whitney stratifi-
cation is expressible in first-order logic. This can be shown using results from
Rannou [18] by not expecting the strata to be connected and not expecting the
so-called frontier condition on the stratification. ⊓⊔

3.2 Uniform Cone Radius Decomposition

Although every point of a semi-algebraic set has a cone radius which is strictly
greater than zero (Theorem 1), we are now interested in finding a uniform
cone radius of a semi-algebraic set. We define the uniform cone radius of semi-
algebraic set A ⊆ Rn as a real number εA > 0 such that εA is a cone radius
of A in all its points. As shall be clear from the next Section, this radius of-
fers the right information for constructing a linearization of A, i.e., a linear set
homeomorphic to A.

A first observation is that the uniform cone radius of a semi-algebraic set, or
even a semi-linear set not always exists. Consider for example two lines in R3

which intersect in a point p. It is clear that the cone radius of points approaching
the point p converge to zero. We define the ε-neighborhood of a semi-algebraic
set A ⊂ Rn as

Aε := {x ∈ Rn | (∃y) (y ∈ A ∧ ‖x − y‖ < ε)} .

Theorem 3. Let A be a semi-algebraic set in Rn. Then there exists a finite
decomposition into semi-algebraic sets clo(A) = Ad ∪ Ad−1 · · ·Aℓ, satisfying
dim(Aℓ) < · · · < dim(Ad−1) < dim(Ad) = dim(A), and such that for any tuple
ε = (ε1, . . . , εn) of positive real numbers, the sets

Ai −
i−1⋃

j=ℓ

A
εj

j , for i = ℓ, . . . , d, (3)

all have a uniform cone radius if they are not empty.

Proof (sketch). We first define a semi-algebraic mapping γ : clo(A) → R which
associates to each point p of A a cone radius of A in p, and to each point of
clo(A)−A a cone radius of Rn −A in p. In view of Theorem 2, this mapping is
FO+Poly-definable. Define the set

Γ (A) := {p ∈ clo(A) | γ|A is not continuous in p}.

It can be shown that the dimension of the semi-algebraic set Γ (A), is strictly
less than the dimension of A.

We shall denote the closure in clo(A) of the set Γ (A), by Σ(A). Furthermore,
let Σd(A) := clo(A), Σd−1(A) := Σ(A), and let Σk(A) := Σ(Σk+1(A)), for
k = ℓ, ℓ + 1, . . . , d, where ℓ is minimal integer such that Σℓ(A) 6= ∅.

Define for k = ℓ, ℓ+1, . . . , d, the semi-algebraic sets Ak := Σk+1(A)−Σk(A).
In this way we obtain a decomposition of clo(A). Now, Aℓ is the set for which
the set Σ(Aℓ) is empty, and Aℓ is closed. Hence, γ(Aℓ) is closed because γ|A is
continuous, and we define the uniform cone radius of Aℓ as

εℓ := min{γ(p) | p ∈ Aℓ}.

We now prove the theorem for Ai+1 − ⋃i
j=ℓ A

εj

j . Let η = min{εℓ, . . . , εi},
then we have,

Σi(A)η ⊆
i⋃

j=ℓ

A
εj

j .

Similarly as for Aℓ, Σi+1(A) − Σi(A)η is closed and the restriction of γ to
(Σi+1(A) − Σi(A)η) is continuous. Hence, the following minimum exists

εi+1 := min{γ(p) | p ∈ Ai+1 −
i⋃

j=ℓ

A
εj

j }

and is a uniform cone radius of Ai+1 −
⋃i

j=ℓ A
εj

j . ⊓⊔

Define the queries ϕuniform,k : A 7→ ∅ if k > dim(A), and ϕuniform,k : A 7→
Ak ∩A if k 6 dim(A). Note that for k < ℓ, the result of the query ϕuniform,k will
be the empty set. The next corollary follows immediately from the construction
in the proof of Theorem 3 and the fact that the query ϕdim : A 7→ dim(A) is
expressible in FO (see [18]).

Corollary 1. Let A be a semi-algebraic set in Rn, then the queries ϕuniform,k,
for k = 1, . . . , n, are all expressible in FO.

4 Linearization of a Semi-Algebraic Set

The aim of this section is to construct a semi-linear set Â ⊂ Rn which is homeo-
morphic to a given semi-algebraic set A ⊂ Rn. We call the set Â the linearization
of A. We may assume that A is a bounded semi-algebraic set (if A is unbounded,
we first apply the homeomorphism x 7→ x/(1 + ‖x‖))

Let A be a semi-algebraic set in Rn, and let p be a point in A. Let εp be
a cone radius of A in p. Consider an n-dimensional box B, defined as [a1, a1 +
δ]× · · ·× [an, an + δ] ⊂ Rn, such that p is in the interior of the box B, and such
that the diagonal of B (which equals

√
nδ), is smaller than εp. We know from

Theorem 1, that with respect to the topology of A, inside a ball Ball of radius
εp around p, the semi-algebraic set A can be replaced with Cone(A ∩ ∂Ball , p).
We can prove an equivalent of Theorem 1, where n-dimensional boxes replace

the n-dimensional balls. Due to space limitations, we omit the details. Hence,
with respect to the topology of A, inside B, the semi-algebraic set A can be
replaced with Cone(A∩ ∂B, p). The whole idea of the algorithm is based on the
observation that a cone is semi-linear if its base set is semi-linear.

Therefore, in order to linearize the set B ∩ A, we could first try to linearize
the set ∂B ∩A on the boundary of the box in such a way that it remains on the
boundary of the box, and then construct the cone.

This suggests the following algorithm which takes as input a semi-algebraic
set A, and outputs a linearization Â of A.Let Pk with k = 0, . . . , n, denote
finite relations consisting of pairs (B, p), where B is a k-dimensional box and
p ∈ int(B).

Linearize(A, n):
– If n = 0, this means that A is a finite set. We then add (p, p) to P0 for each

p ∈ A.

– Cover A with n-dimensional boxes {B(i)
n | i ∈ In} for some finite index set

In, such that for each i ∈ In, there exists a point p
B

(i)
n

in the interior of B
(i)
n ,

whose cone radius exceeds the diagonal of this box. For each i ∈ In, we add

all pairs (B
(i)
n , p

B
(i)
n

) to the relation Pn.

– If n > 0, then apply Linearize(A ∩ B′, n − 1), where B′ is an (n − 1)-

dimensional box on the boundary of some box B
(i)
n . Here, we interpret A∩B′

as a semi-algebraic set in Rn−1. This can easily be achieved since the (n−1)-
dimensional boxes are parallel to one of the coordinate planes Hi := {x ∈
Rn | xi = 0}.

– Inductively, the algorithm constructed a linear set Ân−1 on the boundaries
of each n-dimensional box B in Pn such that ∂B ∩ A is homeomorphic to
∂B ∩ Ân−1. We now construct the cone with top pB and base ∂B ∩ Ân−1

for each pair (B, pB) ∈ Pn. By definition of the points pB this gives a set
homeomorphic to A ∩ B. When the cones are constructed for all boxes in
Pn, we have obtained a linear set Ân which is homeomorphic to the input
set A.

We now explain two steps of the algorithm Linearize in more detail.

4.1 Construction of the Box Covering

We define the n-dimensional standard grid of size δ as the set of n-dimensional
boxes of the form [k1δ, (k1 + 1)δ]× · · · [knδ, (kn + 1)δ], where k1, k2, . . . , kn ∈ Z.
We define a box covering of size δ of a semi-algebraic set A, denoted by Aδ, as
a those boxes in the standard grid of size δ, which intersect the closure of A.
By the Dichotomy Theorem [4], it is easy to show that the query which maps a
semi-algebraic set to its box covering of size δ is not expressible in FO+Poly.

Lemma 1. The query ϕcover : A 7→ Aδ which maps a spatial database to its the
box covering of size δ, is expressible in FO+TC.

Proof (sketch). One represents boxes of size δ by means of 2n-tuples (a1, a1 +
δ, . . . , an, an + δ) of real numbers ai ∈ R. Let B be the set of all such tuples, and
define an 4n-ary adjacency relation Adj on this set. We have that Adj(B1, B2)
for two tuples B1 and B2 of B if the intersection of the boxes they represent is
the union of lower (less than n) dimensional pieces of these boxes. As above, we
may assume that A is bounded. We define the bounding box of A, as the set
[−M, M]n such that 1/2-neighborhood A1/2 is strictly included in [−M, M]n.
The computation of the transitive closure TC{Adj(B1, B2) | Bi ∩ [−M, M]n 6=
∅} then terminates, and the box covering Aδ of size δ are those boxes in this
transitive closure which are in relation with the (0, δ, . . . , 0, δ) and intersect the
closure of A. ⊓⊔

Suppose that a uniform cone radius of A exists. Let ε such radius, and let
Aδ be the box covering of A of size δ, where δ2 < (ε2/n). We require for this
covering that for each n-dimensional box B ∈ Aδ we have that int(B) ∩ A 6= ∅,
so we can select a point pB in this interior whose cone radius is larger than the
diagonal δ of B.

Of course, this property is not automatically satisfied. Some of the boxes in
Aδ may intersect A only in its boundary. To avoid this, we bring the covering
Aδ in general position [12]. Formally, we require that Aδ and A are transversal
in Rn, or in symbols, that Aδ ⋔ A. The formal definition of transversality only
makes sense when all points in Aδ and A have a tangent spaces. So we shall
consider a decomposition of Aδ and A into sets such that the tangent space
exists in every point of these sets. The construction of these decompositions is
similar (but easier) to the decomposition in Theorem 2 and can also be performed
in FO. So, let A = {A0, . . . , An}, and Aδ = {Aδ,0, . . . , Aδ,n} the decompositions
of A and Aδ. Then Aδ is called transversal to A in Rn, if Aδ,i is transversal to
Aj in Rn for any i and j. This means that in every point x in the intersection
Aδ ∩ A, the following holds for any i and j,

TxAδ,i ⊕ TxAj = Rn. (4)

To get an idea of what this transversality condition means, we suppose that
n = 3, that Aδ consist of a single box B and that the dimension of A equals
two. Moreover, we assume that the tangent space exists in every point of A.
We decompose the box B into its interior Aδ,3, its 6 two-dimensional faces Aδ,2,
its 12 one-dimensional edges Aδ,1, and its 8 vertices Aδ,0. From condition 4 and
the fact that dim(A) = 2, it follows that A cannot intersect in one of vertices in
Aδ,0. Figure 2 shows one examples of a transversal (left) and two non-transversal
intersections (right) of A with the edges and faces of B. It is easy to show that if
a box B intersects A transversally, then int(B)∩A 6= ∅, so the question is how to
force the transversality of A and boxes in Aδ. Fortunately, almost all coverings
are already fine. More specifically, we can prove the following lemma

Lemma 2. Let A be a semi-algebraic set in Rn, and let B a n-dimensional box.
Let b be a positive real number. Define the set of vectors

Tb(B) := {v ∈ Rn | ‖v‖ < b ∧ B + v ⋔ A},

transversal

transversal not transversal

not transversal

Fig. 2. Illustration of the notion of transversality.

where B + v = {x | x − v ∈ B} is a translation of B. Then Tb is dense in the
set of vectors of norm smaller than b.

Consider the covering Aδ and let d be the minimal distance from A to the
boundary of Aδ. From the above lemma, we then can always select a transla-
tion τ ∈ Td/2(B) such that B + τ ⋔ A, with B ∈ Aδ. Since Aδ consists of a
finite number of boxes, the set

⋂
i Td/2(Bi) is also dense in the set of vectors of

norm less than d/2. We can select a vector v in this intersection in FO. Indeed,
transversality and hence also the set Tb for any b > 0 are expressible in FO.
Since this translation is strictly smaller than d, A + τ is still a covering of A,
and we have found a covering which has the desired properties.

Suppose that A has no uniform cone radius. Then we apply Theorem 3 and
we get the decomposition A = Aℓ ∪ . . . ∪ Ad. We start with a box covering Aℓ

δ

of Aℓ, because this set has a uniform cone radius. Suppose that we already have
constructed a box covering Ak−1

δ of the set Aℓ ∪ . . . ∪ Ak−1. We then consider
the set A′ = Ak − (Aℓ ∪ . . . ∪ Ak−1)

dk−1 , where dk−1 is a positive real number
satisfying certain conditions.

This numbers ensure that after translating the covering Ak−1
δ with a small

translation, no new pieces of Ak get uncovered. So it is sufficient to cover the set
A′. This is possible because by Theorem 3 this set has a uniform cone radius.
We take the intersection Aδ,∩ of the coverings (A′)δ and Ak−1

δ , and define

Ak
δ = Ak−1

δ ∪ ((A′)δ − Aδ,∩).

We then show an equivalent of Lemma 2 which takes into account the multi-
ple sets Aℓ, . . . , Ad. In this way, we obtain a covering Aδ which satisfies our
requirements.

To conclude, we construct a relation R = {(B, p) | B ∈ Aδ ∧p ∈ A∩ int(B)}.
Note that for every box B ∈ Aδ there exists at least a single point p in its
interior. So, we can select a unique representative pB in the interior of B. We
define the relation Pn containing the pairs (B, pB) for each B ∈ Aδ. Of course,
the points pB will be the tops of the cones, when linearizing the set A.

4.2 Inductive Application of the Algorithm

Consider for the moment a single n-dimensional box B of the covering Aδ. We
regard the intersection ∂B∩A as the union of 2n (n−1)-dimensional sets parallel
to one of n-coordinate planes Hi. We identify these sets with Rn−1 by means of
an orthogonal projection. The box covering construction can then be applied to
this set in Rn−1. Finally we can then bring it back, using the inverse projection,
to the boundary of the box.

Let us focus on a single hyperplane H which is identified with Rn−1. We
want to cover the intersection of ∂B ∩ A ∩ H with (n − 1)-dimensional boxes.
In the last section, we saw that we sometimes needed to translate the covering
a bit in order to satisfy our requirements. Moreover, we want the covering to be
compatible with the (n − 1)-dimensional boxes, induced by the intersection of
the covering Aδ with the hyperplane H . In this way, we will be able to construct
a homeomorphism between A and the linearization Â in a patchwork-like way.
However, some of the boundaries of the (n − 1)-dimensional boxes will come

Fig. 3. Illustration of the algorithm Linearize.

from this intersection, while others are from the new covering in the hyperplane
H . While we may translate this last covering, we need to keep the intersection
induced by Aδ fixed. Otherwise, we would have to construct a parameterized
box covering, which is not possible in FO+TC since no free variables are allowed
inside a transitive closure. Thanks to the following property, the boxes induced
by this intersection are already in general position.

Proposition 1. Let Aδ be an n-dimensional box covering which intersects a
semi-algebraic set A in Rn transversally. Let H be an (n − 1)-hyperplane in
which (n−1)-dimensional boxes B′

1, . . . , B
′

k on the boundaries of boxes of Aδ lie.
Then the set of boxes B′

1, . . . , B
′

k intersects the set A ∩ H transversally in H.

So, we only need to bring the new box covering in general position.We then may
apply the same construction to all boundaries of all boxes in Aδ. In this way we
obtain a relation Pn−1 consisting of pairs (B, pB) where B is box in one of the
n − 1-dimensional coverings.

In Figure 3 we illustrated the idea of the algorithm on a simple three-
dimensional example. The set inside the box is linearized, after linearizing the
figure on the left face of the cube and then constructing the cone, as showed in
the figure.

4.3 Expressing the Construction in Transitive Closure logic

From Lemma 1 we know that the query ϕcover is expressible in FO+TC. Corol-
lary 1 shows that the queries ϕuniform,k are all expressible in FO. From the
construction above, it is clear that a translation vector of Lemma 2 can be se-
lected in FO. This shows that the basic ingredients of the algorithm Linearize,
are expressible in FO+TC. Since the dimension of the real space Rn is fixed,
we only get a recursion depth of n in the algorithm, and this can be written as
a single FO formula. In short,

Theorem 4. It is possible in FO+TC, to construct a semi-linear set Â which
is homeomorphic to the original semi-algebraic set A.

5 Completeness Result

We now refine the geometric construction such that the n+1 relations Pn, . . . ,P0

consists of rational values only.

Theorem 5. Rational linearizations of spatial databases are expressible in the
transitive closure logic FO+TC.

Proof. We can obtain this result easily by modifying the proof of Theorem 4
such that boxes are used which have corner points with rational coordinates.
The selection of the top of the cones in these boxes then consists of selecting the
center of the box, which has rational coordinates also. ⊓⊔

We now recall the definition of a complete query language. A logic L is called
complete for a class of databases if for each computable query Q on this class of
databases, there exists a formula ϕQ ∈ L, such that for each database D in this
class,

Q(D) := {x | 〈D, x〉 |= ϕQ(x)}.
Nothing is said however on the evaluation of these formulas ϕQ. A logic L is said
to be computationally complete if it is complete and if the query Q is defined on
a database D, then the evaluation of ϕQ(D) must be finite.

For arbitrary spatial databases we show that FO+TCS is computationally
complete for Boolean topological queries. A query Q is said to be topological, if
for any two spatial databases A and B for which there exists a homeomorphism
h of Rn such that h(A) = B, then Q(A) = Q(B) holds.

We will need the following result

Theorem 6 ([8]). FO+TCS is computationally complete on linear spatial da-
tabases involving only rational coefficients.

A direct consequence is then:

Theorem 7. All computable Boolean topological queries on spatial databases
can be expressed in FO+TCS in an effective way.

Proof. by Theorem 5, there exists an FO+TC formula Qapprox that defines, for

any given spatial database A, a linear spatial database Â such that there exists
a homeomorphism h from Rn to Rn such that h(A) = Â.

Let Q be a Boolean topological computable query. Since Q is computable,
it is in particular computable on linear spatial databases involving only rational
coefficients, and therefore, by Theorem 6 expressible on these databases by an
FO+TCS formula ϕQ. It is clear that

Q(A) := True iff ϕQ(Qapprox(A)) := True,

which concludes the proof. ⊓⊔

6 Concluding Remarks

We showed that it is possible in first-order logic extended with a transitive closure
operator to construct from a semi-algebraic spatial database, a homeomorphic
linear spatial database. The existence of a finite representation of linear spatial
database, makes it possible to obtain expressiveness results. It is an interesting
question whether there exists natural extensions of FO, which can compute a
finite representation of semi-algebraic spatial databases, without the deviation
to the linear case.

References

1. R. Benedetti and J.J. Risler. Real Algebraic and Semi-algebraic Sets. Hermann,
Paris, 1990.

2. M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational expressive power of
constraint query languages. Journal of the ACM, 45(1):1–34, 1998.

3. M. Benedikt, M. Grohe, L. Libkin, and L. Segoufin. Reachability and connectivity
queries in constraint databases. In Proceedings of the 19th ACM Symposium on

Principles of Database Systems, pages 104–115. ACM Press, 2000.
4. M. Benedikt and L. Libkin. Safe constraint queries. SIAM Journal of Computing,

29(5):1652–1682, 2000.
5. J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry, volume 36 of

Ergebenisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1998.
6. A. Chandra and D. Harel. Computable queries for relational data bases. Journal

of Computer and System Sciences, 21(2):156–178, 1980.
7. F. Geerts and B. Kuijpers. Expressing topological connectivity of spatial databases.

In Research Issues in Structured and Semistructured Database Programming. Pro-

ceedings of the 8th International Workshop on Database Programming Languages,
volume 1949 of Lecture Notes in Computer Science, pages 224–238. Springer-
Verlag, 1999.

8. F. Geerts and B. Kuijpers. Linear approximation of planar spatial databases using
transitive-closure logic. In Proceedings of the 19th ACM Symposium on Principles

of Database Systems, pages 126–135. ACM Press, 2000.
9. S. Grumbach and G. Kuper. Tractable recursion over geometric data. In G. Smolka,

editor, Proceedings of the 3rd Conference on Principles and Practice of Constraint

Programming, volume 1330 of Lecture Notes in Computer Science, pages 450–462.
Springer-Verlag, 1997.

10. S. Grumbach and J. Su. Finitely representable databases. Journal of Computer

and System Sciences, 55(2):273–298, 1997.
11. S. Grumbach and J. Su. Queries with arithmetical constraints. Theoretical Com-

puter Science, 173(1):151–181, 1997.
12. V. Guillemin and A. Pollack. Differential topology. Prentice-Hall, 1974.
13. M. Gyssens, J. Van den Bussche, and D. Van Gucht. Complete geometrical query

languages. Journal of Computer and System Sciences, 58(1):483–511, 1999.
14. P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Jour-

nal of Computer and System Science, 51(1):26–52, 1995.
15. S. Kreutzer. Fixed-point query languages for linear constraint databases. In Pro-

ceedings of the 19th ACM Symposium on Principles of Database Systems, pages
116–125. ACM Press, 2000.

16. S. Kreutzer. Query languages for constraint databases: First-order logic, fixed-
points, and convex hulls. In J. Van den Bussche and V. Vianu, editors, Proceedings

of the 9th International Conference on Database Theory, volume 1973 of Lecture

Notes in Computer Science, pages 248–262. Springer-Verlag, 2001.
17. G.M. Kuper, J. Paredaens, and L. Libkin, editors. Constraint Databases. Springer-

Verlag, 1999.
18. E. Rannou. The complexity of stratification computation. Discrete and Computa-

tional Geometry, 19:47–79, 1998.
19. M. Shiota. Geometry of Subanalytic and Semialgebraic Sets. Birkhäuser, 1997.
20. L. Vandeurzen, M. Gyssens, and D. Van Gucht. An expressive language for linear

spatial database queries. In Proceedings of the 17th ACM Symposium on Principles

of Database Systems, pages 109–118. ACM Press, 1998.
21. L. Vandeurzen, M. Gyssens, and D. Van Gucht. On query languages for linear

queries definable with polynomial constraints. In E. F. Freuder, editor, Proceedings

of the 2nd Conference on Principles and Practice of Constraint Programming, vol-
ume 1118 of Lecture Notes in Computer Science, pages 468–481, Springer-Verlag,
1996.

