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ABSTRACT 
 

In this paper the selection of control variates for 
simulation experiments with multiple response variables is 
discussed. The aim is to reduce the variance of all response 
variables as much as possible. Therefore, response variables 
are weighted according to their coefficient of variation. A 
criterion is developed to determine the number of control 
variates and select the most appropriate ones. When the 
number of replications is small due to computational costs, 
outliers may seriously effect the estimation of coefficients 
for the control variates. Robust regression, based on the 
least median of squares criterion, is used to detect outliers.  

 
1. INTRODUCTION 

 
Using simulation, excessive run lengths or replications 

may be necessary to yield estimators with acceptable 
precision. A variety of variance reduction techniques 
(VRTs) have been developed to improve the efficiency of 
simulations. Efficiency is measured by the variance of the 
response variables from a simulation.  Variance reduction 
techniques attempt to reduce the variance of an output 
random variable and thus obtain greater precision for the 
same amount of simulation time, or to achieve a desired 
precision with less simulation time (Law and Kelton 2000). 

 
A comprehensive overview of five promising types of 

VRTs can be found in Law and Kelton (2000, Ch. 11). 
Investigations have been made to combine and integrate 
variance reduction strategies by Avramidis and Wilson 
(1996) and Tew (1995). Crawford and Gallwey (2000) 
study the effect of introducing  a warm-up period on the use 
of VRTs. This paper focuses on one specific VRT, namely 
Control Variates (CV). 
 
2. CONTROL VARIATES 

 
The method of control variates attempts to take 

advantage of correlation between certain random variables 
to obtain a variance reduction. In the single variate case, a 
control variate C is a random variable whose expectation 
E(C) = �c is known and which is correlated with a random 
response variable Y. A constant b, which has the same sign 
as the correlation between Y and C, is used to scale the 
deviation  between C and �c. The variance of Y is 
minimized for the optimal value � of b 
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The minimum variance of Y is given by: 
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where �YC is the correlation between Y and C. The stronger 
the correlation between Y and C, the greater the variance of 
Y is reduced. Lavenberg, Moeller and Welch (1982) call 
the quantity (1- �²YC) the minimum variance ratio. It is the 
factor by which the variance of Y could be reduced if the 
optimum coefficient � were known. In practice � needs to 
be estimated. This is done by replacing Cov(Y,C) and 
Var(Y) by their sample estimators, which is identical to 
calculating the least-squares estimate of the slope 
coefficient in the linear regression of Y on C. 

 
Emsermann and Simon (2002) discuss the situation 

where the mean of a proposed control variate is unknown. 
The authors develop a method to estimate the mean of these 
quasi control variates so that they can still be used to 
improve the efficiency of a simulation. 

 
Multiple control variates may be used. In this case C, �c, 

b and � represent vectors and �YC is replaced by RYC, which 
is the multiple correlation coefficient between Y and C. 
Estimates of � are obtained by performing a multiple linear 
regression of Y on C. Unfortunately, the estimation of the 
coefficients � causes a loss in variance reduction. 
Lavenberg et al. (1982) define the loss factor, the amount 
by which the variance is increased due to the use of 
estimated coefficients, as follows: 
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with Q the number of control variates and K the number of 
independent replications. This expression holds under the 
assumption that Y and C are normally distributed and K > 
Q+2. 
 

In this paper the method of control variates is applied to 
multiresponse simulation models with a limited number of 
replications. Y represents a vector of n response variables 
Yi (i=1, ..., n). The theory of CV assumes a normal 
distribution for both the response variables and control 
variates. However, this assumption may be violated when 
only a limited number of replications can be performed due 
to computational costs. Nelson (1990) evaluates a number 
of remedies for violations of the normality assumption, 
including jack-knifing, splitting, batching and 
bootstrapping. This study concentrates on the selection of 
control variates in case of a limited number of replications 
and proposes to use least median of squares (LMS) 
estimates instead of ordinary least squares (OLS) estimates. 
 
2.1 Selection of Control Variates 
 

According to Law and Kelton (2000) a good control 
variate should be strongly correlated with a response 
variable Yi, in order to give a lot of information on Yi and 
to make a good adjustment to it. Porta Nova and Wilson 
(1993) discuss the selection of control variates with the 
objective of estimating multiresponse metamodels. The 
authors examine specific covariance structures under the 
normality assumption. 

 
Our aim is to determine a criterion to select a limited 

number of control variates for multiple response variables. 
Since we are confronted with a limited number of 
replications, the number of control variates should 
obviously be kept low. Rubinstein and Marcus (1985) 
ascertain that good variance reduction is achieved when the 
number of control variates is relatively small.  
 

The objective is to reduce the variance of all response 
variables as much as possible. Therefore, more effort should 
be directed towards response variables with a higher 
variance relative to their average value. The relative 
variance of a response variable Yi  can be measured by its 
coefficient of variation (VarCoeff): 
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For each available control variate the minimum variance 
ratio (1- �²YC) relative to each response variable can be 
estimated from the data. The minimum variance ratios are 
then weighted according to the coefficient of variation of 
each response variable. The weights wi are defined as: 
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These weights can also be estimated from the simulation 
output. Then for each control variate the following criterion 
can be calculated: 
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This results in an initial ranking of the control variates.   
 

Next, we investigate the effect of using multiple control 
variates in the situation of a limited number of replications. 
In this case the loss factor also has to be taken into account. 
The expression (3) of Lavenberg et al. (1982) is used as an 
approximation because the normality assumption may not 
hold with a limited number of replications. The number and 
selection of control variates is based on the following 
criterion: 
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Results are compared with the initial ranking of the control 
variates. Recommendations are made about the number of 
control variates.  
 
2.2 Robust Regression 
 

When the number of replications is low, Janssens, 
Deceuninck and Van Breedam (1995) suggest to use a 
robust regression method for estimating the coefficients �. 
They propose to use the least median of squares (LMS) 
regression, developed by Rousseeuw (1984), instead of the 
least sum of squares criterion used in OLS regression.  
Classical least squares regression consists of minimizing the 
sum of squared residuals. The LMS method replaces the 
sum by the median of the squared residuals ri². Its objective 
function can be written as: 
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Because the median is used, this technique is more robust to 
outliers. Outliers can have a significant effect on the 
estimated coefficients when OLS regression is performed on 
a small number of observations. Looking at the OLS 
residuals is not sufficient for detecting outliers. The OLS fit 
often conceals bad data points. LMS can be used to detect 
outlying observations. The LMS method first fits a 
regression to the majority of the data and then discovers 
outliers as those points which possess large residuals from 
the robust regression. A disadvantage of the LMS method is 
its lack of efficiency. Therefore, LMS is used to purify the 
simulation sample from outliers. Finally, a re-weighted OLS 
regression is performed, in which outliers receive a zero 
weight. 

 



 

 
Rousseeuw and Leroy (1987) describe PROGRESS 

(Program for RObust reGRESSion), an algorithm for 
implementing LMS regression. This program is used to 
estimate the coefficients �, that measure the influence of 
control variates on response variables. First, the coefficients 
� are estimated by OLS-regression of Y on C. If all slope 
coefficients are significantly different from zero, Y(�) is 
calculated. The average and variance of Y(�) are used to 
construct confidence intervals. If not all coefficients � are 
significant, the LMS-method searches for outliers. Detected 
outliers are removed and OLS-regression is again applied. 
Y(�) is calculated, but now the median instead of the 
average of Y(�) is used to construct confidence intervals. It 
is not required to eliminate the outliers in the determination 
of confidence intervals for the response variables Y. 
Outliers are only discarded during the estimation of the 
coefficients �. 

 
Finally the results of using a single or multiple control 

variates in combination with OLS and LMS are compared, 
based on the net variance ratio. The net variance ratio is 
defined as the ratio of the variance of Y before and after 
variance reduction. 
 
3. EXPERIMENTAL MODELS 
 

The method described in section 2 is tested on several 
simulation models. A job shop system with priorities is 
studied in section 3.1. The method is applied to a 
production-inventory system with an unreliable production 
facility in section 3.2. 

 
3.1 Job Shop System 
 

The job shop under consideration consists of a single 
person who needs to pack regular jobs and rush jobs. The 
interarrival time of regular jobs follows an exponential 
distribution with an average of 3 minutes. Rush jobs also 
arrive according to an exponential distribution, with an 
average interarrival time of 10 minutes. Rush jobs have a 
higher priority than regular jobs and are therefore handled 
first. The time required to pack a job is exponentially 
distributed with an average of 5 minutes, irrespective of the 
job type. The job shop system is simulated during 480 
minutes. Seven simulation runs are performed. The 
observed response variables are number of regular jobs 
packed (RV1), number of rush jobs packed (RV2), system 
time of regular jobs (RV3) and system time of rush jobs 
(RV4). Potential control variates to reduce the variance of 
the response variables are interarrival time of regular jobs 
(CV1), interarrival time of rush jobs (CV2) and service time 
of the packer (CV3). Due to the limited number of 
replications, the number of control variates used in variance 
reduction is restricted to two. 

 
We first investigate which variable is most appropriate 

if only one control variate is used to reduce the variance of 
the four response variables. Table 1 shows the correlation 
matrix between response variables and control variates. 
 

Table 1: Correlation Matrix 
 

CV1 CV2 CV3
RV1 -0.486 0.123 -0.859
RV2 0.079 -0.988 -0.476
RV3 0.025 0.437 0.313
RV4 -0.120 0.768 0.360  

 
The control variates are evaluated according to the 
following criterion. 
 

� −−⋅−
i

CYi KKwMin
i

)3/()2()1( 2ρ          (9) 

 
Results are reported in table 2. 
 

Table 2: Selection of a single Control Variate (Q=1) 
 

Control Variate Criterion Value
CV2 0.8461
CV3 1.0373
CV1 1.3922  

 
The control variates in table 2 are ranked in increasing 

order of the criterion value. The interarrival time of rush 
jobs (CV2) is indicated as the best choice of control variate. 
Robust regression is applied to estimate the coefficients �. 
The method enables us to obtain better estimates of the 
weights for the control variate by eliminating potential 
outliers. The variance of the response variables before and 
after variance reduction are given in table 3. The net 
variance ratio is calculated as column 3 divided by column 
2. The last column of the table mentions the weights given 
to each response variable. 
 

Table 3: Results of Variance Reduction with a single 
Control Variate (Q=1) 

 
Variance 
without 
CV

Variance 
with CV

Net 
Variance 
Ratio w i

RV1 93.62 93.62 1.0000 0.2750
RV2 33.48 0.79 0.0235 0.1703
RV3 440.53 440.53 1.0000 0.1547
RV4 16.56 6.80 0.4103 0.4000  

 
The net variance ratio gives the factor by which the variance 
of a response variable is reduced. The system time of rush 
jobs (RV4) has been given the largest weight. Table 3 
shows that its variance has been reduced by 59%. 
Interarrival time of rush jobs (CV2) is also a very good 
control variate for the number of rush jobs serviced (RV2). 
Its variance has notably decreased. It does not appear to be 
a good control variate for the number of regular jobs packed 
(RV1) or the system time of regular jobs (RV3). The  
coefficients � are not different from zero on a 5% level of 
significance, even after robust regression. A global net 
variance ratio can be calculated by multiplying the net 
variance ratio and the weight of each response variable and 
summing the results. The use of a single control variate 
gives a global net variance ratio of 0.5978. 



 

 
Next, the potential advantage of using an additional 

control variate is investigated. Table 4 gives the multiple 
correlation coefficients between the response variables and 
all combinations of control variates. 
 

Table 4: Multiple Correlation Coefficients of two Control 
Variates (Q=2) 

 
CV1 & CV2 CV1 & CV3 CV2 & CV3

RV1 0.492 0.885 0.985
RV2 0.988 0.539 0.994
RV3 0.442 0.324 0.465
RV4 0.769 0.441 0.772  

 
A pair of variates is selected based on the criterion: 
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The results in table 5 are ranked in increasing order. The 
best combination of control variates is the interarrival time 
of rush jobs (CV2) and the service time of the packer 
(CV3). These are also the top two ranked control variates in 
the selection of a single control variate. 
 

Table 5: Selection of two Control Variates (Q=2) 
 

Control Variates Criterion Value
CV2 & CV3 0.8792
CV1 & CV2 1.5012
CV1 & CV3 1.9233  

 
Table 6 reports on the variance of the response variables 
before and after variance reduction with the use of two 
control variates. 
 

Table 6: Results of Variance Reduction with two Control 
Variates (Q=2) 

 
Variance 
without 
CV

Variance 
with CV

Net 
Variance 
Ratio w i

RV1 93.62 2.75 0.0294 0.2750
RV2 33.48 0.53 0.0157 0.1703
RV3 440.53 440.53 1.0000 0.1547
RV4 16.56 6.80 0.4103 0.4000  

 
A comparison of the results of table 3 with table 6 shows 
that most gain is obtained in the variance of the first 
response variable. The additional control variate ‘service 
time’ is capable of reducing the variance of the  number of 
regular jobs packed by 97%. The gain in variance reduction 
of other response variables is limited. The global net 
variance ratio when applying variance reduction with two 
control variates equals 0.3295. So most variance reduction 
is realised when applying a single control variate (40%). An 
additional gain of 27% results from using a second control 
variate. 
 
 

3.2 Production-Inventory system 
 

Posner and Berg (1989) incorporate unreliability factors 
into the analysis of production-inventory systems. The 
authors allow for breakdowns of machines and resulting 
repair actions. We simulate a model consisting of a single 
production machine with a constant production rate of one 
unit per minute. The machine operates as long as the 
accumulated inventory is below a predetermined threshold 
and is idle otherwise. The operating time until failure is 
exponentially distributed with an average of 9 minutes. 
Repair time of a failed machine follows an exponential 
distribution with an average of 3 minutes. Customer 
demands are described as a compound Poisson process. 
Demands arrive according to a Poisson process at a rate of 
0.3 customers per minute. Demand quantities are 
exponentially distributed with an average of 3 units. A 
demand that cannot be fully satisfied from the existing 
inventory takes the remaining units and the rest of the 
demand is lost.  

 
The observed response variables are service level 

(RV1), machine utilization (RV2) and lost sales (RV3). 
Service level is defined as the ratio of the number of 
customers fully serviced on the total number of customers. 
Machine utilization represents the percentage of time the 
machine is operating. Lost sales measures the total number 
of units short during one replication. Potential control 
variates are interarrival time of customers (CV1), demand 
quantity (CV2), interarrival time of breakdowns (CV3) and 
repair time (CV4). Seven replications of each 720 minutes 
are performed. 
 
First, the use of a single control variate is analyzed. Table 7 
shows the correlation matrix between response variables 
and control variates. 
 

Table 7: Correlation Matrix 
 

CV1 CV2 CV3 CV4
RV1 0.103 -0.724 -0.087 -0.188
RV2 -0.542 -0.085 -0.227 -0.336
RV3 -0.460 0.490 -0.203 -0.231

 
Criterion (9) is used to rank the control variates. In table 8 
the quantity demanded by customers (CV2) appears to be 
the best control variate.  
 

Table 8: Selection of a single Control Variate (Q=1) 
 

Control Variate Criterion Value
CV2 1.1420
CV1 1.1863
CV4 1.4170
CV3 1.4390  

 
Coefficients � are estimated by making use of robust 
regression. Results of the variance reduction with demand 
quantity (CV2) as a single control variate are given in table 
9. 
 



 

Table 9: Results of Variance Reduction with a single 
Control Variate (Q=1) 

 
Variance 
without 
CV

Variance 
with CV

Net 
Variance 
Ratio w i

RV1 0.0010 0.0010 1.0000 0.0297
RV2 0.0012 0.0012 1.0000 0.0425
RV3 1182.46 931.03 0.7874 0.9278  

 
The initial variation of the third response variable ‘lost 
sales’ is much larger then for the other two response 
variables. Therefore, lost sales receives the largest weight in 
the last column of table 9. Consequently, the selection of a 
control variate focuses on reducing the variance in lost 
sales. Demand quantity is selected because it has the highest 
correlation with lost sales. After robust regression the 
coefficients � for the first two response variables are not 
significant and their variance is not reduced. This results in 
a global net variance ratio of  0.8027. 
 

Next, the potential benefit of applying two control 
variates is investigated. An overview of all possible 
combinations of control variates and the associated multiple 
correlation coefficients is given in table 10. 
 
Table 10: Multiple Correlation Coefficients of two Control 

Variates (Q=2) 
 

CV1 & 
CV2

CV1 & 
CV3

CV1 & 
CV4

CV2 & 
CV3

CV2 & 
CV4

CV3 & 
CV4

RV1 0.733 0.237 0.531 0.724 0.727 0.242
RV2 0.546 0.574 0.589 0.235 0.338 0.359
RV3 0.679 0.483 0.550 0.555 0.653 0.231  

 
Table 11 shows the ranking of these combinations of 
control variates according to criterion (10). The best 
combination of control variates consists of demand quantity 
(CV2) and interarrival time of customers (CV1). These 
control variates are also ranked first in the analysis of a 
single control variate in table 8. 
 

Table 11: Selection of two Control Variates (Q=2) 
 

Control Variates Criterion Value
CV1 & CV2 1.6308
CV2 & CV4 1.7514
CV1 & CV4 2.0887
CV2 & CV3 2.0889
CV1 & CV3 2.3037
CV3 & CV4 2.8298  

 
Variances of the response variables before and after 
variance reduction with two control variates are reported in 
table 12.  
 
Variance of lost sales (RV3) is reduced by the same amount 
after controlling for demand quantity. The additional 
control variate ‘interarrival time of customers’ reduces only 
the variance of machine utilization (RV2). 
 

Table 12: Results of Variance Reduction with Two Control 
Variates (Q=2) 

 
Variance 
without 
CV

Variance 
with CV

Net 
Variance 
Ratio w i

RV1 0.0010 0.0010 1.0000 0.0297
RV2 0.0012 0.0009 0.7799 0.0425
RV3 1182.46 920.57 0.7785 0.9278  

 
The combination of demand quantity and interarrival time 
of customers does not lead to significant coefficients � for 
reducing the variance of the service level offered to 
customers (RV1). Finally a global net variance ratio of 
0.7852 is obtained. In conclusion, a variance reduction of 
20% is realised after applying a single control variate 
‘demand quantity’. An additional reduction of only 2% can 
be acquired by using the two control variates ‘demand 
quantity’ and ‘interarrival time of customers’. 
 
4. CONCLUSIONS 
 

In this paper the selection of control variates in a 
multiresponse simulation with a small number of 
replications is investigated. This can be done by giving a 
weight to the response variables according to their 
coefficient of variation. In this way more effort is directed 
towards response variables with a higher relative variance. 
An initial ranking of control variates is attained by summing 
their weighted minimum variance ratios. When deciding 
how many control variates to use, the loss factor also has to 
be taken into account. The loss factor measures the loss in 
variance reduction due to the estimation of the coefficients 
�.  

 
In practice this comprehensible selection method proves 

to be effective and computationally efficient. In the analysis 
of experimental models the best combination of two control 
variates are the first two mentioned in the initial ranking. 
Most variance reduction is achieved after applying a single 
control variate. The use of a second control variate 
sometimes only leads to a restricted gain in variance 
reduction. This confirms the advise of limiting the number 
of control variates, especially with a small number of 
replications. 

 
Robust regression is applied to eliminate the influence 

of outliers and achieve more significant estimates of the 
coefficients �. When the number of replications is small, 
outliers can seriously distort the estimation of the optimal 
weights for the control variates. The least median of squares 
method proves to be highly effective for detecting outliers. 
A re-weighted OLS regression is performed, in which 
outliers receive a zero weight. 

 
Further research can be done into testing the method on 

different simulation systems with other characteristics. A 
better approximation of the loss factor when the normality 
assumption does not hold, can be examined. 
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