An Expressive Language for Linear Spatial Database Queries

(extended abstract)

Luc Vandeurzen®
University of Limburg
lvdeurze@luc.ac.be

Abstract

We exhibit a coordinate-based language, called PFOL, which
is sound for the linear queries computable in first-order logic
over the reals and extends the latter’s restriction to linear
arithmetic. To evaluate its expressive power, we first con-
sider PFOL-fin, the PFOL queries that compute finite out-
puts upon finite inputs. In order to study this fragment of
PFOL, we also define a syntactical language, called SPFOL,
which is safe with respect to queries from finite inputs to
finite outputs. We show that SPFOL has the same expres-
sive power as SafeEuQl [15], whence all ruler-and-compass
constructions in the plane on finite sets of points can be
expressed in SPFOL. This result gives a geometrical justifi-
cation of SPFOL, and highlights the richness of PFOL-fin.
Then, we define finite representations for arbitrary semi-
linear sets and show that there are PFOL programs for both
the encoding and the decoding. This result is used (7) to
identify a broad, natural class of linear queries expressible
in PFOL, highlighting the richness of general PFOL, and
(i¢) to establish a general theorem about lifting query lan-
guages on finite databases to query languages on arbitrary
linear databases. This theorem is applied to a recent result
of Benedikt and Libkin [5] from finite to arbitrary semi-
linear sets, yielding the existence of a natural, syntactically
definable fragment of FO + poly sound and complete for all
FO + poly-expressible linear queries.

1 Introduction

Following the seminal work by Kanellakis, Kuper, and
Revesz [13] on constraint query languages with polynomial
constraints, various researchers have introduced geometric
database models and query languages within this frame-
work [12, 16]. We adopt the formalism of [16], which we
shall call the polynomial spatial database model, in which
both geometric objects and queries are expressed using poly-

*Dept. WNI, University of Limburg, Universitaire Campus, B-3590
Diepenbeek, Belgium. Contact author is Luc Vandeurzen.

TComputer Science Dept., Indiana University, Bloomington, IN
47405-4101, USA.

Marc Gyssens*
University of Limburg
gyssens@charlie.luc.ac.be

Dirk Van Gucht!
Indiana University
vgucht@cs.indiana.edu

nomial inequalities. Geometric objects described by poly-
nomial inequalities are called semi-algebraic sets, and the
query language using polynomial inequalities is referred to
as FO + poly.

Several authors [1, 2, 7, 11, 10, 12, 13, 18, 19] discussed
linear spatial database models which can be seen as linear
restrictions of the polynomial database model. These lin-
ear models suffice for the majority of applications encoun-
tered in GIS, geometric modeling, and spatial and temporal
databases [14, 17]. Geometric objects described by linear
inequalities are called semi-linear sets, and the restriction
of FO + poly using only linear inequalities is referred to as
FO + linear.

Unfortunately, not all linear queries (i.e., mappings be-
tween spatial databases describable in the linear model) ex-
pressible in FO + poly can be described in FO + linear [2].
The present authors showed that, in fact, a whole class of
rather straightforward linear queries, among which comput-
ing convex hull and deciding colinearity, are not expressible
in FO + linear [19]. Several attempts have been made to
enrich the expressive power of FO + linear, but this turns
out to be a difficult task. Afrati et al. [2] and the present au-
thors [18] showed that naive extensions of FO + linear easily
cease to remain sound with respect to the linear queries, and
yield a language equivalent in expressive power to FO+poly.
Sound ways to extend FO + linear have been proposed (e.g.,
[8, 19]), but the geometric significance of these extensions is
not always clear.

This objection also holds for FO + linear itself, which is a
second reason why FO + linear is not such a desirable linear
query language: unlike for FO + poly, no geometric charac-
terization of FO +linear is known. This observation has lead
some authors to consider point-based linear languages [15].

In this paper, we try to obtain a geometrically mean-
ingful, but still coordinate-based, extension of FO + linear.
We relax the condition that FO + linear formulae may only
contain linear inequalities by introducing a second sort of
variables, the so-called product variables. These product
variables must be quantified and are allowed to range over
a finite set of numbers only. In formulae, product variables
may occur in multiplications with other product variables
or with ordinary real variables. The language thus obtained
will be called PFOL.

To justify that PFOL is geometrically meaningful, we
first consider PFOL-fin, the PFOL queries that compute fi-
nite outputs upon finite inputs. Since PFOL-fin is semanti-
cally defined, we also propose a syntactical language, called
SPFOL, which is safe with respect to queries from finite in-
puts to finite outputs. We show that SPFOL has the same

expressive power as SafeEuQl [15], a language which cap-
tures the notion of ruler-and-compass constructions on fi-
nite sets of points in the plane. This result not only gives a
geometrical justification of SPFOL, but also highlights the
richness of PFOL-fin.

To lift our results to more general linear queries, we pro-
pose a technique to encode an arbitrary semi-linear set into
a finite database, called its finite representation, as well as
a decoding technique to restore the original semi-linear sets.
We show that both encoding and decoding can be expressed
in PFOL. This result yields a “lifting theorem” which guar-
antees that a sensible query language on arbitrary semi-
linear databases can be obtained by defining a sensible query
language from finite inputs to finite outputs, and letting this
language operate on finite representations.

The results described in the previous paragraph are used
in two ways in this paper.

First, we argue that natural linear queries are (1) FO +
poly-expressible and (i¢) satisfy the condition that the finite
representation of the output can somehow be “constructed”
from the finite representation of the input. We formalize
this intuition by defining a linear query to be constructible
if the corresponding query between the finite representations
is FO + poly-expressible, and if a finite superset of the active
domain of the finite representation of the output can be com-
puted from the finite representation of the input in SPFOL
(or, equivalently, in SafeEuQl). To some extent, the second
condition for constructibility can be seen as an extension of
the notion of domain preservation in the relational model
to the linear spatial database model. The constructible lin-
ear queries are a vast class of FO + poly-expressible linear
queries; in particular, they include all Boolean queries, as
well as, for example, the convex-hull query. We show that
all constructible queries can be expressed in PFOL.

Second, we apply the “lifting theorem” to recent results
of Benedikt and Libkin [5], which the authors kindly commu-
nicated to us. Benedikt and Libkin exhibit a syntactically
definable fragment of FO + poly which is sound and com-
plete for the FO + poly-expressible queries from finite inputs
to finite outputs, which they claim to be natural. From this,
it follows there exists a query language which is sound and
complete for the FO + poly-expressible linear queries, and
which is perhaps more natural than the one proposed in [9].
It should be noted that the latter languages was proposed
precisely to encourage the search for more natural query
languages which are sound and complete for the FO + poly-
expressible linear queries.

We conclude by pointing out some directions for future
research.

2 Preliminaries

2.1 The polynomial and linear spatial database models

We first review the polynomial model [13, 16]. The polyno-
mial model is described using the first-order language of the
ordered field of the real numbers (R, <, +, x,0,1), i.e., the
language (<,+, x,0,1). Every real formula ¢(z1,...,25)
with free real variables among #1,...,z, defines a geomet-
rical figure {(z1,...,2n) | ¢(21,...,2n)} in n-dimensional
Euclidean space R"™. Point-sets defined in this way are called
semi-algebraic sets.

A spatial database scheme S is a finite set of relation
names. Each relation name R has a fixed arity associated
to it, corresponding with the dimension of the Euclidean
space containing the semi-algebraic sets that will be the in-

stantiation of R.' A database scheme has type [ni,...,nz]
if the scheme consists of relation names, say Ri,..., Rg, re-
spectively of arity ni,...,ng.

A syntactic spatial database instance is a mapping 7 as-
signing to each relation name R of a database scheme S a
syntactic spatial relation Z(R) of the same type. A syntac-
tic spatial relation of arity n is a real formula ¢(z1,...,2n),
with n free variables. The semantics of a syntactic database
instance Z over a database scheme § is the mapping [as-
signing to each relation name R in § the semantic spatial
relation I(Z(R)), which is the semi-algebraic set defined by
the syntactic spatial relation Z(R).

In the polynomial model, we consider a query of signa-
ture [ni,...,nx] = [n] to be a mapping from instances of a
spatial database scheme of type [n1,...,nx] to instances of
a spatial database scheme of type [n] that can be regarded
in a consistent way both at the syntactic and semantic level,
and is computable at the syntactic level.

In this context, we define FO + poly as the query lan-
guage obtained by adding to the language of real formulae
atomic formulae of the form R(z1,...,zy), with z1,..., 2,
real variables and R a relation name of arity n. A query
of signature [ni,...,nx] — [n] is definable in FO + poly if
there exists an FO + poly formula ¢ with n free real vari-
ables such that, for every input database instance of signa-
ture [ny, ..., nx], {(z1,...,2n) | @(21,...,2n)} evaluates to
the corresponding output database, which is of type [n].

From the polynomial model, a linear spatial database
model can be obtained by only considering real formulae
containing linear polynomials. The corresponding restric-
tions of semi-algebraic sets, spatial databases, queries, and
the language FO + poly are called semi-linear sets, linear
spatial databases, linear queries, and FO + linear, respec-
tively. We allow the coefficients of the linear polynomials
involved to be arbitrary real algebraic numbers (the max-
imalistic approach in [9]). In this way, all semi-algebraic
polytopes® are semi-linear.

Queries of signature [n1, ..., n;] — [0] are called Boolean
queries, because the sets {()} and {} can be seen as encoding
the truth values true and false, respectively. Since both
these sets are semi-linear, every Boolean query induces a
linear query, when restricted to linear inputs.

We conclude this overview by mentioning that linear
topological queries, such as taking the closure, the interior,
or the boundary, are expressible in FO + linear [18].

Where necessary, or where useful for the purpose of ab-
breviation, we use vector notation to denote points. Equal-
ities or inequalities between vectors must be interpreted
coordinate-wise.

2.2 Structural properties of semi-linear sets

We also need some notions and results introduced and dis-
cussed in earlier work of the present authors with Dumor-
tier [9], which we recall here in a more informal style.

Given a semi-linear set S of R"™, we say that a point
pof S is a regular point if there exists a sufficiently small
neighborhood V of 7 such that SNV and the affine support
of SNV coincide within V. If, moreover, SNV has the same
dimension as S, then p is called a regular point of mazimal
dimension of S.

n general, spatial databases can also contain a non-spatial part.
In this paper, we are not concerned with this non-spatial part, and,
therefore, do not include it to simplify the presentation.

2A polytope is the convex closure of a finite set of points.

Example 2.1 Consider the semi-linear set

S={(z,4,2) |[(0<2<3A0LYy<3A0<2<3) Vv
B<s<5Ay=1A2=0)V
(xr=5A"ny=5A2z=0)}

in three-dimensional space, shown in Figure 1, which con-
sists of a closed filled cube with a closed line segment at-
tached to it at the point (3,1,0) and an isolated point.

Figure 1: The semi-linear set of Example 2.1.

The regular points of S are the points of the open cube,
the points of the open line segment, and the isolated point.
The regular points of maximal dimension of S are only the
points of the open cube. a

We recall that the set of the regular points of maximal
dimension Reg(S) of a semi-linear set .S is again semi-linear,
and that the corresponding linear query can be expressed in
FO + linear.

From a semi-linear set S, several special point-sets can
be computed, as follows. If .S is not a discrete set of points,
we compute Reg(S). Then, we consider S — Reg(S), the
complement of Reg(S) with respect to S, and S — Reg(S),
the complement of Reg(S) with respect to S, the topologi-
cal closure of S. Notice that both sets, which can be com-
puted in FO + linear, have strictly lower dimension than S.
We repeat the produce on both sets independently. In this
way, we obtain zero-, one-, two-, three-,... up to at most n-
dimensional point-sets. We are particularly interested in the
zero-dimensional point-sets, which are called special points.

By construction, the linear query computing the set of
special points of a semi-linear set is expressible in FO +
linear.

Example 2.2 Consider again the semi-linear set S of Ex-
ample 2.1, displayed in Figure 1. Then S — Reg(S) and
S— Reg(S) coincide and consist of the faces of the cube, the
closed line segment attached to it, and the isolated point,
which constitute a two-dimensional semi-linear set, say 7.
We see that Reg(T) consists of the open faces of the cube.
Again, T — Reg(T) and T — Reg(T) coincide. They consist of
the edges of the cube, the closed line segment attached to it,
and the isolated point, which constitute a one-dimensional
semi-linear set, say U. We see that Reg(U) consists of the
open edges of the cube, and the open line segment attached
toit. Once more, U— Reg(T') and U — Reg(T') coincide. They
consist of the corner points of the cube, the end points of
the line segment attached to it, and the isolated point, which
constitutes a discrete set of points. This set of 11 points is
the set of special points of 5. a

It must be noted that, in general, the special points of a
semi-linear set S need not belong to S (although, of course,
they always belong to the topological closure S of S). Also,
the sets S — Reg(S) and S — Reg(S) do not always coincide,
as was the case in Example 2.2. In general, both sets must
be considered to ensure that no special points are missed.

To highlight the significance of the special points, we
need to make the following observation. It has been
shown [9] that, if the affine supports of all the special point-
sets of a semi-linear set, including the special points them-
selves, are described as intersections of (n — 1)-dimensional
hyperplanes®, then S is a finite union of cells of the partition
of n-dimensional space induced by all these hyperplanes.

In the case of a bounded semi-linear set S, all these spe-
cial point-sets (whence their affine supports) are supported
by special points. Hence, if we restrict the partition meant
in the previous paragraph to the affine support of S, say A,
we can obtain this partition by considering hyperplanes of
the affine space A which are supported by special points.
We illustrate this on an example.

Example 2.3 Consider the semi-linear set

S={(z,y) |Br—y>2Ay>1Az+2y<10) A
“(z<3AYy>22A22>2y) A
~(1<y<3Anz=3)}

in the plane, shown in Figure 2, which consists of an open
triangle, out of which a closed triangle and a closed line
segment have been cut.

Figure 2: The semi-linear set of Example 2.3.

It can easily be seen that there are 7 special points,
namely the corner points of the two triangles involved, and
the missing point on the base of the outer triangle. Without
elaborating, we mention that there are 8 one-dimensional
special point-sets, namely the open line segments in which
the special points divide the boundary of S. The affine sup-
port of S is the plane itself, so hyperplanes are lines. Hence,
to obtain the partition meant above, we must certainly con-
sider the 7 lines supporting the 8 special line segments. Since
these lines can also be used to determine the special points,
they suffice. Figure 3 shows these 7 lines (the dots indicating
the boundary of S). Coordinate axes are hidden for clarity.

These lines, together with the open half-planes they de-
fine, induce a partition of the entire plain, consisting of 12
points, 31 open line segments or half-lines, and 20 open re-
gions. In Figure 3, these regions have been identified by
numbers. Notice that S is indeed the finite union of cells
of this partition, namely the open regions 13, 14, 15, 17,
18, and 19, all of which are filled polygons, and the open
intervals separating them. a

SMathematically, n-dimensional space itself can be obtained as the
intersection of the empty family of (n — 1)-dimensional hyperplanes.

4
3
15
17 2
ﬂ{ 14
7 %9 13 \1
10 11 12

7
9

Figure 3: The lines needed to describe the affine supports
of the special point-sets of the semi-linear set Example 2.3,

shown in Figure 2. The numbers indicate the open regions
in the induced partition.

An unbounded semi-linear set S in n-dimensional space
is still a finite union of cells of the partition of n-dimensional
space induced by any finite collection of (n — 1)-dimensional
hyperplanes for which all special point-sets of S can be de-
scribed as an intersection of some of those hyperplanes. Un-
fortunately, such a collection of hyperplanes can in general
no longer be obtained from the special points of S alone.

Example 2.4 Consider the semi-linear set S = {(z,y) |
0 < y < 2z} in the two-dimensional plane, shown as the
closed angular sector in Figure 4 (coordinate axes are hidden
for clarity).

Figure 4: The semi-linear set of Example 2.4.

The one-dimensional special point-sets of S are the two
open half-lines on the boundary of S. The only special point
of S is the angular point, which is marked in Figure 4. The
partition induced by the affine supports of the two open
half-lines (these lines form the required set of hyperplanes
in the plane) consists of 4 open angular sectors (one of which
is S), 4 open half lines, and the angular point. Obviously,
the 4 lines defining this partition cannot be obtained from
the angular point alone. a

To solve the problem sketched above, the concept of
bounding box was introduced in [9]. A bounding box of a
semi-linear set S in n-dimensional space is an open hyper-
cube C (for practical purpose usually centered around the
origin 0 of R"™), of which the length of the edges is a real
algebraic number, such that each special point-set of S has
a non-empty intersection with C'. In particular, a bounding
box of a semi-linear set contains all its special points. In the
full version of [9], we exhibit an FO-linear-expressible linear
query which returns a bounding box for a given semi-linear
set. Given a semi-linear set .S, this query first computes

the special points of each of the 2" intersections of S with
one of the hyperquadrants of R™, and then finds an open
hypercube centered around the origin of the coordinate sys-
tem containing all these points. Once a bounding box C' is
found for a semi-linear set S of R", the desired partition can
be obtained from the special points of S N C, as this latter
semi-linear set is bounded.

Example 2.5 Consider again the semi-linear set S of Ex-
ample 2.4, displayed in Figure 4. Figure 5 shows a bounding

box C for S.

—

Figure 5: A bounding box for the semi-linear set of Exam-
ple 2.4, shown in Figure 2.4.

Notice that S N C is a triangle, and that the special
points of S N C are the corner points of this triangle, which
are marked in Figure 5. Notice that the two lines defin-
ing the partition of the two-dimensional plane described in
Example 2.4 are supported by the special points of SNC'. O

3 The languages PFOL, PFOL-fin, and SPFOL

First, we present PFOL, the query language around which
this paper revolves. The main idea behind the introduction
of this language is to augment FO + linear with a limited
amount of multiplicative power, as is needed, for instance, to
express colinearity or to compute convex hull or distances,
without sacrificing the soundness of the language with re-
spect to the class of linear queries. We show that PFOL is in-
deed sound with respect to the class of FO+poly-expressible
linear queries, and illustrate its expressive power with some
examples.

Second, in order get to get a better understanding of the
properties of PFOL, we consider two restricted versions of
PFOL in which queries return finite outputs upon finite in-
puts. We define PFOL-fin to consist of the PFOL queries
that compute finite outputs upon finite inputs. Since PFOL-
fin is semantically defined, we also propose a syntactical lan-
guage, called SPFOL, which is safe with respect to queries
from finite inputs to finite outputs.

3.1 The language PFOL

In order to define PFOL queries, we first need to define
FO + linear + P(Dy,..., D) formulae, where Dy,..., Dy
are so-called domain symbols denoting finite sets. For this
purpose, we assume two sorts of variables, called real vari-
ables and product variables. We shall use x,y, z, . . ., possibly
subscripted, to denote real variables, and p, q, r, ..., possibly
subscripted, to denote product variables. Finally, we shall
use the symbol ¢, possibly subscripted, to denote a variable
that can either be a real variable or a product variable.

Definition 3.1 Let Di,..., Dy be domain symbols. An
FO + linear + P(Dy, ..., Dy) formula is built using the con-
nectives = and A and the quantifiers (3x), with = a real vari-
able, and (dp € D;), with p a product variable and 1 < ¢ < k,
from the following atomic formulae:

o R(t1,...,tn), with R a predicate symbol of type [n]

and t1,...,t, real variables or product variables;
. Z:.;l a;t; 8 a with ai,...,a,, and a real algebraic
numbers, £1,...,t, real variables or product variables,

and 6 E {:7 #7 <7 §7 >7 2}7

e 11 = pto, with ¢; and t; real variables or product vari-
ables and p a product variable; and

o t = ,/p with t a real variable or a product variable and
p a product variable.

Furthermore, in an FO + linear + P(Dy, ..., Dy) formula,
each product variable must be bound by an appropriate
quantifier.

In the context of sets of real numbers as interpretations
for Di,..., Dy and a linear spatial database containing in-
terpretations for the relevant predicate symbols, the seman-
tics of an FO+linear+P(Dy, ..., Di) formula is the obvious

one. O

Notice that, for k = 0, the above definition reduces to
the definition of an FO 4+ linear formula.
We now state an important soundness property of an

FO + linear 4+ P(Dy, ..., D) formula.

Proposition 3.2 Let D1,..., Dy be domain symbols and let
o(z1,...,2,) be an FO + linear + P(Dy,..., Dy) formula
with free variables x1,...,xn. If D1,..., Dy are interpreted
as finite sets of real algebraic numbers, then {(z1,..., %) |
o(x1,...,%n)} is interpreted as a semi-linear set.

Proof. Let, for + = 1,...,k, the interpretation of IJ); be
the finite set of real algebraic numbers {c;1,...,cim,}. We
consecutively eliminate product variables in ¢ by replacing
formulae of the form (Ip € D;)yp by ¥(ci1 /p)V.. . VY(Cim, [p)
(or false, if D; is interpreted as the empty set). Hence, if
P, is the result of all the substitutions, then {(z1,...,25) |
o(z1,...,2n)} = {(z1,...,20) | P(z1,...,2n)}. Since the
latter set is expressed as the result of an FO + linear query
on a linear spatial database, it is semi-linear. a

Using Definition 3.1, we now define the language PFOL.
Definition 3.3 A PFOL program is of the form

Dy« pi(x);...; Dr + or(x);
{(z1,...,2n) | o(z1,...,20)},

with Dq,..., Dy domain symbols, for ¢ = 1,...,k, ¢; an
FO + linear + P(Dy,...,D;_1) formula, and ¢(z1,...,%x)
an FO + linear 4+ P(Dy, ..., D) formula.

The semantics of a PFOL program is as follows. First,
D1, ..., Dy are consecutively interpreted as finite sets of real
algebraic numbers. In this process, D); is interpreted as the
set {z | @i(x)} if this set is finite, and as the empty set
otherwise.*® Next, the set {(#1,...,2n) | @(1,...,2,)} is
interpreted in the obvious way. a

From Proposition 3.2, the following is immediate.

Theorem 3.4 The language PFOL is sound with respect to
the FO + poly-expressible linear queries.

4For a semi-linear set S, finiteness is equivalent to discreteness [6],
which can be decided in FO + linear by the formula (V&)(38)(& #
TAS@) = -@NSHA(E=NAF-F<FT<E+ D).

By Proposition 3.2, the set {z | ¢;(z)} is semi-linear. If, in addi-
tion, it is finite, it must therefore consist of real algebraic numbers.

In other words, the limited multiplicative power that has
been added to FO + linear did not destroy the soundness
of the language with respect to linearity. To illustrate the
gain in expressive power entailed by this limited addition of
multiplicative power, we give examples of PFOL programs
for queries known to be inexpressible in FO + linear [19].

In order to write down PFOL programs concisely, we first
remark that the syntax of an FO + linear + P(Dy, ..., Dx)
formula may be relaxed without increasing the expressive
power of PFOL. In particular, on can allow atomic formulae
of the form

ZP,‘(pl,...,pm)t,' 0 a,
=1

with Pi,..., P, polynomials with real algebraic coefficients
over m variables, p1, ..., pm product variables, ¢1, ..., ¢, real
variables or product variables, and a a real algebraic num-
ber. Similarly, we may allow atomic formulae of the form

t=+/P(p1,---,pm),

with ¢ a real variable or a product variable, P a polynomial
with real algebraic coefficients, and p1, ..., pm product vari-
ables. Finally, we can also allow disjunction and subformula
of the form (Vp € D) as abbreviation of =(3p € D)—e.

In the following examples, the binary predicate symbol
R represents a semi-linear set in the two-dimensional plane.

Example 3.5 The PFOL program

D1+ (Fy)(R(z,y) vV R(y, ©));
{01 (vpe Di)(p#p) Vv

(Vre € Di)(Vry € Di)(R(ra,ry) =

(FAN(re = paA+ gz —quA A vy = py A+ gy —quN))}

decides whether the points stored in R are colinear, if R is
finite, and returns false otherwise. a

Example 3.6 The PFOL program

Dy« (Hy)(R(CL‘, y) N4 R(y7 CL‘))7

R(ps,py) A R(gz,qy) A R(re,ry) A
M>0AXA>0AND>O0A
MAX+A=1A2=pA +gzro+rzAs A
Y =pyA +ayde +ryda)}

computes the convex hull of the points stored in R, if R is
finite, and the empty set otherwise.

The modification of the above PFOL program obtained
by removing the conditions A1 > 0, A2 > 0, and A3 > 0O
computes the affine support of the points stored in R, if R
is finite, and the empty set otherwise. a

Example 3.7 The PFOL program

Dy« (3y)(R(x,y) V R(y, v));
{(x) | 3ps € D1)(3py € D1)(3qx € D1)(3qy € D1)
(R(Pr7py) A R(Qm Qy) A

T = \/(pm —q2)? 4+ (py — 4y)?)}

computes the set of all distances between pairs of points
stored in R, if R is finite, and the empty set otherwise. O

One can also write PFOL programs deciding whether
the points of an arbitrary semi-linear set of R™ are colin-
ear, or computing the convex hull or the affine support of
such a set. However, we shall not exhibit such programs,
as their existence—as well as the way in which they can
be obtained—will follow from Theorem 6.4 and its proof,
further on in this paper.

3.2 The language PFOL-fin

Definition 3.8 A PFOL-fin program is a PFOL program
which returns finite outputs upon finite inputs. a

Example 3.9 The PFOL programs in Examples 3.5 and 3.7
are examples of PFOL-fin programs. a

3.3 The language SPFOL

Clearly, the language PFOIL-fin is defined semantically.
Therefore, we define syntactically a version of PFOL, called
SPFOL, which is “safe” with respect to finite databases.

Definition 3.10 Let Di,..., Dy be domain symbols. An
atomic partial safe FO + linear + P(D1, ..., D) formula is
one of the following:

e frue;
o adom(t), with ¢ a real variable or a product variable;

o R(t1,...,tn), with R a predicate symbol of type [n]
and t1,...,t, real variables or product variables;

o Qi(p1,-..,pm)xz = Q2(p1,.-.,pm), With p1,...,pm
product variables, x a real variable, and ¢; and Q-
expressions built from the product variables p1,..., pm
and the rational numbers, using addition, multiplica-
tion, and square rooting; or

o Q(p1,-..,pm) 6 0, with p1,...,pm product variables
and @ an expression built from the product variables
Pi,...,pm and the rational numbers, using addition,
multiplication, and square rooting.

A partial safe FO +linear + P(Dy, . ..
the following:

, D) formula is one of

e an atomic partial safe FO + linear + P(D;, ..., D)
formula;

o o(z1,...,Tn,p1,-- Pm) V (21, ., Tn, D1, Pm),
with ¢ and ¢ partial safe FO +linear + P(D1, ..., Dx)

formulae with the same free variables;

L @(m17"'7xn7p17"'7pm) A Zz}(ylw'wy?ﬂqlw"7ql)7
with ¢ and ¢ partial safe FO +linear + P(D1, ..., Dx)

formulae;

L4 @(m17"'7xn7p17"'7pm) A _'w(y17"'7y7"7q17"'7ql)7
with ¢ and ¢ partial safe FO +linear + P (D1, ..., Dx)
formulae, {y1,...,y-} C{z1,...,zn}, and {q1,...,q}
C {p1,...,pm};or

o (pi € Dy)o(z1,...,2n,p1,-..,Pm), with ¢ a partial
safe FO + linear + P(D1, ..., D) formula, 1 < i < m,
and 1 < 5 <k.

A safe FO + linear + P(Dy,..., D) formula is a partial
safe FO + linear + P(D1,..., Dx) formula in which each
product variable is bound by an existential quantifier. In
the context of sets of real numbers as interpretations for
Dy,..., Dy and a linear spatial database containing inter-

pretations for the relevant predicate symbols, the semantics
of a safe FO +linear + P(Dy, ..., D) formula is the obvious
one, provided adom is interpreted as the active domain of
the input database.

The syntax and semantics of an SPFOL program are the
same as the syntax and semantics of an arbitrary PFOL
program, except that only safe formulae are allowed. a

Example 3.11 The PFOL program in Example 3.7 is ac-
tually an SPFOL program, provided I} is defined using the
active-domain atom. a

The observations in Example 3.11 generalize as follows:

Proposition 3.12 1. Linear queries expressible in SP-
FOL are also expressible in PFOL.

2. SPFOL queries return finite outputs upon finite inputs.

The first statement is obvious, whereas the second state-
ment can be proved by structural induction, but is also a
corollary to Theorem 4.3 in the following section.

It remains an open question whether all PFOL-fin queries
can be expressed in SPFOL. However, it can be deduced
from a result of Benedikt and Libkin [3, 4] that all Boolean
PFOL-fin queries can be expressed in SPFOL. The reader is
invited to translate the PFOL program in Example 3.5 into
an SPFOL program.

4 Expressiveness of SPFOL

Although SPFOL is a coordinate-based language, we claim
that it 1s nevertheless geometrically meaningful. To sub-
stantiate this claim, we prove that SPFOL has the same
expressive power as SafeEuQl [15] for queries in the two-
dimensional plane. Indeed, SafeEuQl has been devised to
capture precisely the ruler-and-compass constructions on
finite sets of points in the two-dimension plane which re-
turn finite sets of points. We take the liberty of redefining
SafeFEuQ] here, so that the definition may better accommo-
date proofs by structural induction.

We assume the existence of constants 0, &, and &,
which represent the origin of the canonical coordinate sys-
tem and both unit coordinate vectors. Variables, denoted as
7,4, T, ..., and possibly subscripted, represent points rather
than coordinates. Predicates, denoted as R(ﬁl, ..., Pm), and
possibly subscripted, represent relations consisting of m-ary
tuples of points.

Definition 4.1 The SafeEuQIl formulae are the smallest col-
lection of formulae closed under the following rules:

e true is a safe formula;

o R(Py,...,Pm) is a safe formula;
o if p(P1,...,Pm) is a safe formula, and if {¢1,...,7s} C
{P1,...,Pm}, and if 7 is an arbitrary variable, then
7@(ﬁ17'~~7ﬁm)/\7z’:67
- @(ﬁ17"'7ﬁm)/\f":é’17
- @(ﬁh"wﬁm)/\f’:éé,
7@(—»17...7—»7”)/\7:»: _;17

1

-

— (P, .., Pm) Aspec-pred(7,q1, ...,),

where spec-pred stands for one of the special pred:-
cates considered in [15], are safe formulae;

o if o(p1,...,Pm) and ¥(P1,...,Pm) are safe formulae,
then @(F1,...,Pm) VY (P, ...,Pm) is a safe formula;

o if o(P1,...,Pm) and (g1, ..., k) are safe formulae,
then ©(B1,...,Pm) AY(q1,...,dx) is a safe formula;

o if (P1,...,Pm) and (&1, ..., k) are safe formulae for
which {q_’h ey qk} g {ﬁh . 7ﬁm}7 then @(ﬁh cee 7ﬁm)/\
—(q1,...,Gm) is a safe formula; and

o if (P1,...,Pm) is asafe formula, and 1 <1 < m, then
(3B5)¢(P1, ..., Pm) is a safe formula.

The semantics of a SafeEuQl formulae is the obvious one,
provided the special predicates are interpreted as in [15].
A SafeEuQl query is of the form

{(ﬁh e 7ﬁm) | @(ﬁh e 75771)}7

and has the usual semantics. 0O

Example 4.2 To illustrate Definition 4.1, we give an ex-
ample of a SafeEuQl query involving the special predicate
l-1-crossing(7, g1, . ..,d:),° which evaluates to true if ¥ is
the intersection point of the lines defined by & and ¢, re-
spectively, @& and 5.”

Let R be a finite set of points in the two-dimensional
plane. The SafeEuQl query

{@) 1 3P 3EP (I (IS (R(B) A R(G) A R(F) A R(S) A
l-1-crossing(Z, 5, ¢, 7, §)

is a SafeEuQl query computing the intersection points of all
pairs of different non-parallel lines supported by points of

R. m|

For a comparison between SPFOL with SafeEuQl to make
sense, we must realize that SPFOL works with variables rep-
resenting real numbers, whereas SafeEuQl works with vari-
ables representing points in the two-dimensional plane. We
shall, therefore, only consider SPFOL programs in which all
relation predicates involved, as well as the output, have even
arity. This assumption allows us to interpret consecutive
variables in a relational predicate, or in the output format,
as coordinates of a point in the two-dimensional plane. Tak-
ing this observation into account, we now come to the main
result of this section:

Theorem 4.3 The languages SPFOL and SafeFu@l are

equivalent in expressive power.

Proof. (Sketch.) From SafeEuQl to SPFOL: First, we ob-
serve that for each free point variable in a SafeEuQl formula,
only a finite number of points can be substituted to satisfy
the formula. Hence, all point variables in a SafeEuQl query
can be translated into pairs of product variables, provided
that, upon completing the translation of the SafeEuQl for-
mula into an SPFOL program, conjuncts of the form = = p,
with # a real variable and p a product variable, are added to
produce the output. The actual translation goes by struc-
tural induction, in which both the domains needed to quan-
tify product variables and the subformulae under consider-
ation are translated simultaneously. The basis of the in-
duction is the active domain for the computation of the do-
mains, and the obvious translation of relation predicates for
the formulae.

6Dummy variables have been omitted.

It g1 equals gy, or @3 equals 4, then the predicate evaluates to
false.

From SPFOL to SafeFEu@l: To simplify the translation,
we can again bring free variables to the outer level of the
formulae involved by adding conjuncts of the form = = p,
with x a real variable and p a product variable. The trans-
lation requires a double, nested structural induction: at
the outer level, the induction goes on the structure of the
SPFOL program, and, at the inner level, the induction goes
on the structure of the constituting safe formulae. To do
the translation, we observe that, in the SafeEuQl query to
be constructed, the point variables that occur in input re-
lational predicates correspond to pairs of product variables
in the input relational predicates of the given SPFOL pro-
gram. However, it is much easier to represent a product
variable p by a point variable § corresponding to the point
(p,0). This transition is possible in SafeEuQl, as the points
P = (p,0) and § = (q,0) can be constructed from the point
7 = (p,q) with ruler and compass. This technique can be
used to compute the representation of the active domain
from the input relations. To obtain the output point vari-
ables of the SafeEuQl program, which correspond to pairs
of output variables of the SPFOL program, the reverse con-
struction is required, which can also be done with ruler and
compass. For the actual translation, we observe that there
are ruler-and-compass constructions for addition, subtrac-
tion, multiplication, division, and square rooting. To make
sure that, during the computation, point variables are ap-
propriately bound to input relations through successive con-
structions, we can add, for each range-restricted existential
quantifier, a conjunct stating that the quantified variable
belongs to the domain under consideration. a

5 Finite representations of arbitrary semi-linear sets

A way to lift query languages defined on finite databases
to query languages defined on more general databases is by
exhibiting a finite representation for the latter, together with
encoding and decoding algorithms. This idea has also been
considered by Kuijpers et al. [15], in the context of SafeEuQ],
and by Benedikt and Libkin, on a more abstract level.

In this paper, we exhibit a finite representation for arbi-
trary linear databases, together with encoding and decod-
ing algorithms that are expressible in PFOL. The techniques
used are derived from the properties of semi-linear sets de-
scribed in Section 2.2. Rather than defining the notion of
finite representation first, we define it as the result of the
encoding algorithm. For clarity, we first consider the case
where the linear database consists of bounded semi-linear
sets, and then say which modifications are required if un-
bounded semi-linear sets occur. We also discuss the ramifi-
cations of our result.

5.1 The bounded case

Let S be a bounded semi-linear set of R™. We describe the
encoding. First, we compute the set of special points T' of
S, which can be done in FO +linear [9]. Next, we determine
the affine support of T, which can be done in PFOL (Exam-
ple 3.6). We also determine the dimension of this affine sup-
port, say k < n, which can be done in FO+linear [19]. Then,
consider all possible sequences pPi1,...,P1k, .., Pkl, -, Pkk
of k* points of T. Let, for i = 1,...,k, A; be the affine
support of pi1,...,pik. Let U consists of all points § for
which N*_, A; = {p}. Clearly, T C U, and U can be com-
puted from T"in PFOL. (Where necessary, product variables
can be introduced which range over the set of coordinates
of points in T.)

Example 5.1 We recall that, if S is the two-dimensional
semi-linear set shown in Figure 2, then the set T' of the spe-
cial points of S consists of the three corner points of the
outer triangle, the three corner points of the inner triangle,
and the special point on the base of the outer triangle, 7
points in total. All 6 lines shown in Figure 3 connect points
of T' S, so the 12 points they generate (including the 7 points
of T) all belong to U. The set U, however, contains many
more points. For instance, two additional points are ob-
tained by intersecting the line connecting the tops of both
triangles with the two horizontal lines in Figure 3. a

Next, we compute finite relations Ri,..., Rnpy1, where,
for + = 1,...,n + 1, R; has arity ¢ X n. The relation R;
consists of all points of U contained in S; the relation Rz
consists of all pairs of different points of U such that the open
interval between those points is contained in .S; the relation
Rs consists of all triples of non-colinear points of U such that
the open triangle of which these points are the corners is con-
tained in S; .. .; in general, the relation R; consists of all -
tuples of non-co-(:—1)-dimensional points of U such that the
open® convex hull of these points is contained in S. Notice
that, necessarily, Ri42,..., Rnt1 are empty. Since product
variables can be used to represent the points of the finite
relation U, and since the convex hull of a finite set of points
can be computed in PFOL (Example 3.6), we conclude that
the entire query of type [n] — [n,2n,...,(n + 1)n] which,
given a semi-linear set S as input, returns the linear spatial
database consisting of the finite relations Ri,..., Rn41 as
output, can be computed in PFOL. The output database is
the finite representation of S.

We consider the following property to be the key prop-
erty of a finite representation:

Proposition 5.2 Let S be a bounded semi-linear set and let
Ri,..., Rny1 be a finite representation of S. Then

s=U
i=1 (

where CH(p1, . ..

CH(p, ..., p5i),

P1,--,Pi) ER;
. D) 18 the the open convez hull of 1, ..., P

Proof. (Sketch.) The inclusion from right to left is triv-
ial; therefore, we concentrate on the other inclusion. From
Section 2.2, we know that S is a finite union of cells of
the partition of the affine support A of S induced by the
(k — 1)-dimensional hyperplanes supported by the points of
T. By construction, the cells of this partition have their
corner points in UU. Since S is bounded, S is a finite union
of bounded cells, and since these are convex, they can be
triangulated using their corner points only. Thus, each cell
contained in S, whence S itself, is fully contained in the
left-hand side of the above equality. a

Decoding the finite representation of a bounded semi-
linear set can be done in PFOL in the obvious way, suggested
by the formula in the statement of Proposition 5.2.

5.2 The general case

Let S be a semi-linear set of R™ which may be unbounded.
If a partition of R™ such that .S is a finite union of cells must
be obtained from special points, it is necessary to introduce

8 “Open” is to be understood with respect to the topology of the
affine support of the points under consideration. In Example 3.6, the
open convex hull can be obtained by requiring that A1, Ag, and As
are strictly greater than 0. This technique also works in general.

a bounding box C', which can be computed in FO+linear, as
explained at the end of Section 2.2. The methodology of the
bounded case can easily be extended, provided we can in-
corporate into the finite representation the “corner points at
infinity” of the unbounded cells of the partition. “Points at
infinity” will be represented by directional vectors. Hence,
for each direction, we consider two “points at infinity,” one
for each orientation.

Thus, we construct in PFOL from S N C the set T' of
special points and the set U of “finite” corner points, in the
same way as in the bounded case. To find the “corner points
at infinity,” we compute the set V' of directional vectors 5=
+(Z— p), where Cis a point of T" on the boundary of C' and
P 1Is an arbitrary point of T', and the open interval between
both points is fully contained in S. Using the coordinates of
the points of T' as a finite domain for restricting the range
of product variables, we can easily write a PFOL program
to compute V.

The finite representation of S contains again finite rela-
tions Ri,..., Rny1, but, now, for : = 1,...,n 4+ 1, R; has
arity ¢ X (n + 1). Intuitively, we add an extra coordinate to
each point, which equals “1” for a “finite” point, and “0”
for a “point at infinity,” i.e., for a directional vector.

For:=1,...,n+1, R; is the subset of

B

Jw x {13y < (v x fopy'~

j=1
consisting of all ¢-tuples

(1,1, ..., (75, 1),(5541,0),...,(5:,0))

such that the “finite” and “infinite” points involved are not
co-(¢ — 1)-dimensional and such that the open convex hull
of all these points is contained in S. We notice that a point
p is in this open convex hull if there exist A1 > 0,...,A; >
0,541 > 0,...,4; > 0such that Ay +--- 4+ A; =1 and

pP=Mpi+---+)‘Jﬁj + “J+1§J+1 R S TR
Since product variables can be used to represent the points
of the finite relations U and V', we conclude that the entire
query of type [n] — [n41,2(rn+1),..., (n+1)?], that, given
a semi-linear set S as input, returns its finite representation
as output, can be computed in PFOL.

Example 5.3 Consider again the two-dimensional set S of
Example 2.4, shown with a bounding box C in Figure 5.
For convenience, we shall assume that the angular point has
coordinates (0,0), while the special points on the bounding
box have coordinates (1,0) and (1,0.5), respectively. The
set T' consists of those points. Clearly, U = T. The set
V' consists of 6 directional vectors, with coordinates (1,0),
(=1,0), (1,0.5), (—1,—0.5), (0,0.5), and (0, —0.5), respec-
tively. The finite representation of S is as follows,

R = {(0,0,1),(1,0,1),(1,0.5,1)};

R, = {(0,0,1;1,0,1),(0,0,1;1,0.5,1),(1,0,1;1,0.5,1),
(0,0,1;1,0,0),(0,0,1;1,0.5,0), (1,0,1;1,0,0),
(1,0.5,1;1,0.5,0)}

R (

(

(

{(0,0,1;1,0,1;1,0.5,1),(1,0,1;1,0.5,1; 1,0,0),
1,0,1;1,0.5,1;1,0.5,0),(0,0,1;1,0,1;1,0.5, 1),
0,0,1;1,0.5,1;1,0,0),(0,0,1;1,0,0;1,0.5,0),
(1,0,1;1,0,0;1,0.5,0),(1,0.5,1;1,0,0; 1,0.5,0)},

after closing R2 and Rs under permutations of “finite” points
and permutations of “infinite points.” m|

Proposition 5.2 can immediately be generalized:

Proposition 5.4 Let S be an arbitrary semi-linear set and
let Ry,..., Rny1 be a finite representation of S. Then

n+1

g U U CH((F1,t1), ..., (B 1)),

i=1 ((F1,t1) -, (Fisti)) ER:

where, for j=1,...,i, t; =1 or t; =0 and CH(p1,...,p:)
is the the open conves hull of (p1,t1),..., (5, t;), where, for
j=1,...,4, (P;,t;) is interpreted as the “finite” point p;,
if t; =1, and as the “infinite” point described by the direc-
tional vector py, if t; = 0.

Again, decoding the finite representation of an arbitrary
semi-linear set can be done in PFOL in the obvious way,
suggested by the formula in the statement of Proposition 5.4.

From now on, we shall understand under finite repre-
sentation any set of relations of the right arity that satis-
fies Proposition 5.4. (For these sets of relations, the decod-
ing query described above always returns the original semi-
linear set). The particular finite representation obtained
from the encoding query described above will be referred to
as the canonical finite representation.

We now turn back to our motivation for considering finite
representations, namely “lifting” query languages defined on
finite databases to query languages defined on more general
databases.

Let @ be a query language defined on finite databases.
We define Lift(Q) to be the query language defined on arbi-
trary linear databases consisting of all compositions of the
above PFOL encoding program, a query of Q, and the above
PFOL decoding program. The following property is now im-
mediate.

Theorem 5.5 Let P be a linear query language defined on
arbitrary semi-linear databases that is at least as expressive
as PFOL. Let Q be a query language on finite databases
whose expressive power is bounded by P. Then Lift(Q) is
a query language on arbitrary databases whose expressive
power is bounded by P. If, moreover, Q is complete for
the P-expressible queries from finite inputs to finite outputs,
then Lift(Q) has the same expressive power as P.

As an application of Theorem 5.5, we let P be the lin-
ear queries expressible in FO + poly, and @ the syntacti-
cally defined fragment of FO + poly exhibited by Benedikt
and Libkin [5], of which these authors show it is sound and
complete for the FO + poly-expressible queries from finite
inputs to finite outputs. By Theorem 5.5, Lift(Q) is sound
and complete for the FO + poly-expressible linear queries.
In [9], Dumortier and the present authors also exhibited
an—admittedly, artificial—sound and complete query lan-
guage for the FO 4 poly-expressible linear queries, mainly
to motivate the search for more natural such languages. [t
can be argued that Lift(Q) is such a language.

6 The expressive power of PFOL

We are now ready to show that PFOL can express a wide
range of natural, linear FO 4 poly-expressible queries.

Definition 6.1 A FO+poly-expressible linear query is con-
structible if there exists an SPFOL program that computes,
from the canonical finite representation of the input, a su-
perset of the active domain of the canonical finite represen-
tation of the output. a

We claim that the notion of a constructible linear query
is a natural notion, which, to a certain extent, can be seen
as a generalization of the notion of domain preservation
in the relational model to the context of the linear spa-
tial database model. Indeed, from the equivalence of SP-
FOL and SafeEuQl (Theorem 4.3), one can argue that con-
structibility implies that the output can be “assembled”
from “material” “constructed” from the “building blocks”
of the input; in the relational model, domain preservation
means that the output can be “assembled” from the “build-
ing blocks,” i.e., the entries, of the input.

We give some examples of constructible queries.

Example 6.2 A Boolean query, restricted to linear inputs,
is always linear. The canonical representation of its out-
put is its output itself.’® Hence, the active domain of the
canonical finite representation of the output is empty, and,
in particular, contained in the active domain of the canonical
representation of the input. Thus, all FO 4+ poly-expressible
Boolean queries are constructible. In particular, the colin-
earity query on arbitrary semi-linear sets is constructible. O

Example 6.3 Let S be an arbitrary semi-linear set. Clearly,
a bounding box for S is also a bounding box for both the
convex closure and the affine support of S. It is now easy
to see that a superset of the active domain of the canonical
finite representation of the convex closure, respectively, the
affine support, of S can be computed from the canonical fi-
nite representation of S. As both the convex-closure query
and the affine-support query on arbitrary semi-linear sets
are FO + poly-expressible, we may conclude that they are
also constructible. a

We have the following main result:

Theorem 6.4 All constructible queries can be computed in
PFOL.

Proof. (Sketch.) From the results in the previous section, it
follows that the induced query from the canonical represen-
tation of the input to the canonical representation of the out-
put is also FO 4+ poly-expressible. From the canonical repre-
sentation of the input, we can moreover compute a—finite—
superset, say I}, of the active domain of the canonical finite
representation of the output in SPFOL, whence in PFOL.
Now consider one of the FO+poly queries, say ¢(z1,...,2n),
required to compute the canonical finite representation of
the output from the canonical finite representation of the
input. From a result by Benedikt and Libkin [3, 4], it fol-
lows that there exists an equivalent formula ¢(z1,...,%,) in
which all quantified variables range over the active domain
(of the input of ¢). From Definition 6.1, it follows that ¢ is
further equivalent with

(3p1 € D)...(3pn € D)(z1 = piA. . Azp = puAY(p1, ..., Pn),

which obviously defines a PFOL program. Theorem 6.4 now
follows immediately from Theorem 5.5. a

The relevance of Theorem 6.4 with respect to the ex-
pressive power of PFOL, is that PFOL can compute a wide
range of natural, linear queries, while remaining safe for the
FO +poly-expressible linear queries. The equivalence of SP-
FOL, which is closely related to PFOL-fin, with SafeEuQl,

®Indeed, the 0-dimensional relations {()} and {} can be seen as
representing the entire 0-dimensional space (which is a single point,
which is therefore also a special point) or representing the empty set
(the representation of which is the empty set).

a geometrically inspired point-based language, suggests that
PFOL, while coordinate-bases just like FO + linear, is geo-
metrically much more meaningful than the former. Finally,
it must be observed that Theorem 5.5 implies that, should
SPFOL turn out to be equivalent to PFOL-fin, PFOL would

precisely compute the constructible queries.

7 Directions for future research

We conclude this paper by mentioning two directions for
future research. First, as mentioned on several earlier occa-
sions, the precise relationship between SPFOL and PFOL-
fin must be established. Second, the expressive power of
(S)PFOL can be manipulated in a flexible way. For instance,
the square-root construct, which is not needed in the PFOL
programs encoding and decoding an arbitrary semi-linear
set, could be removed. We believe that the safe language
then precisely expresses the constructions with ruler alone
on finite sets of points in the plane. Finally, it is also possi-
ble to supplement the square-root construct with other con-
structs. By the equivalence of the present version of SPFOL
and SafeFuQl, it follows that trisection of an angle is not ex-
pressible in SPFOL. It can be shown that this query would
become expressible if a cubic-root construct is added to SP-
FOL. Clearly, the languages obtained by these and similar
manipulations deserve further study.

Acknowledgments

During the preparation of this paper, Michael Benedikt and
Leonid Libkin spontaneously communicated to us their pa-
per [5] in response to a question we asked them regarding
their earlier work. Upon reading their draft, we discovered
some parallels between their work and ours, which in turn
allowed us to state the result about sound and complete
query languages for the FO 4 poly-expressible queries at the
end of Section 5. This result should therefore be considered
at least as much their result as it is ours.

Our thanks also extend to an anonymous referee, whose
detailed comments allowed us to improve significantly the
presentation of this paper.

References

[1] F. Afrati, T. Andronikos, and T. Kavalieros, “On the
Expressiveness of First-Order Constraint Languages,” in
Proc. 2nd Int’l Workshop on Constraint Databases and
their Applications (Delphi, Greece), V. Gaede, A. Brodsky,
O. Giinther, D. Srivastata, V. Vianu, and M. Wallace, eds.,
in LNCS, vol. 1191, Springer-Verlag, 1996, pp. 105-115.

[2] F. Afrati, S. Cosmadakis, S. Grumbach, and G. Kuper,
“Linear Versus Polynomial Constraints in Database Query
Languages,” in Proc. 2nd Int’l Workshop on Principles
and Practice of Constraint Programming (Rosario, WA),
A. Borning, ed., in LNCS, vol. 874, Springer-Verlag, 1994,
pp. 181-192.

[3] M. Benedikt, G. Dong, L. Libkin, and L. Wong, “Relational
expressive power of constraint query languages,” in Proc.
15th ACM SIGACT-SIGMOD-SIGART Symp. on Princi-
ples of Database Systems (Montreal, Canada), 1996, pp. 5—
16.

[4] M. Benedikt, and L. Libkin, “Languages for Relational
Databases over Interpreted Structures,” in Proc. 16th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (Tucson, AZ), 1997, pp. 87-98.

[5] M. Benedikt, L. Libkin, “Safe Constraint Queries,” these
proceedings, 1997.

[6] J. Bochnak, M. Coste, and M-F. Roy, Géométrie algébrique
réelle, Springer-Verlag, Berlin-Heidelberg, 1987.

[71 A. Brodsky and Y. Kornatzky, “The LyriC Lan-
guage: Querying Constraint Objects,” in Proc. Post-
ILPS’94 Workshop on Constraints and Databases (Ithaca,
NY), 1994.

[8] J. Chomicki, D.Q. Goldin, and G.M. Kuper, “Variable
Independence and Aggregation Closure,” in Proc. 15th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (Montreal, Canada), ACM Press, 1997,
pp. 68-77.

[9] F. Dumortier, M. Gyssens, D. Van Gucht, L. Vandeurzen,
“On the Decidability of Semi-Linearity of Semi-Algebraic
Sets and its Implications for Spatial Databases,” in Proc.
16th ACM SIGACT-SIGMOD-SIGART Symp. on Princi-
ples of Database Systems (Tucson, AZ), ACM Press, 1997,
pp. 68-77.

[10] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin,
“DEDALE, A Spatial Constraint Database,” in Proc. 6th
Int’l Conf. on Database Programming Languages (Estes
Park, CO), 1997, in preparation.

[11] S. Grumbach, J. Su, and C. Tollu, “Linear Constraint Query
Languages: Expressive Power and Complexity,” in Logic and
Computational Complexity, D. Leivant, ed., LNCS, vol. 960,
Springer-Verlag, 1996.

[12] P.C. Kanellakis and D.Q. Goldin, “Constraint Programming
and Database Query Languages,” in Proc. 2nd Conf. on
Theoretical Aspects of Computer Software, M. Hagiya and
J.C. Mitchell, eds., LNCS, vol. 789, Springer-Verlag, 1994,
pp. 96-120.

[13] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz, “Constraint
uery Languages,” Journal of Computer and System Sci-
guag
ences, 51:1, 1995, pp. 26-52.

[14] J. Nievergelt and M. Freeston, eds., Special issue on spatial
data, Computer Journal, 37:1, 1994.

[15] J. Paredaens, B. Kuijpers, G. Kuper, and L. Vandeurzen,
“Euclid, Tarski, and Engeler Encompassed,” in Proceedings
6th Int’l Conf. on Database Programming Languages (Estes
Park, CO), 1997, in preparation.

[16] J. Paredaens, J. Van den Bussche, and D. Van Gucht, “To-
wards a Theory of Spatial Database Queries,” in Proc. 15th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (Minneapolis, MN), 1994. pp. 279-288.

[17] N. Pissinou, R. Snodgrass, R. Elmasri, I. Mumick, T. Ozsu,
B. Pernici, A. Segef. B. Theodoulidis, and U. Dayal, “To-
wards an Infrastructure for Temporal Databases,” SIGMOD
Record, 23:1, 1994, pp. 35-51.

[18] L. Vandeurzen, M. Gyssens, and D. Van Gucht, “On
the Desirability and Limitations of Linear Spatial Query
Languages,” in Proc. 4th Symp. on Advances in Spatial
Databases (Portland, OR, August 1995), M. J. Egenhofer
and J.R. Herring, eds., in Lecture Notes in Computer Sci-
ence, vol. 951, Springer-Verlag, 1995, pp. 14-28.

[19] L. Vandeurzen, M. Gyssens, and D. Van Gucht, “On Query
Languages for Linear Queries Definable with Polynomial
Constraints,” in Proc. 2nd Int’l Conf. on Principles and
Practice of Constraint Programming (Cambridge, MA, Au-
gust 1996), E. Freuder, ed., in LNCS, vol. 1118, Springer-
Verlag, 1996, pp. 468—481.

