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Abstract
In this paper we study the correlation structure of the output process of an
ATM multiplexer. We consider two special cases : (i) the output process of
the D-BMAP/D/1/N queue, a generic model for an ATM multiplexer and
(ii) a process which results from a renewal process which shares the output
link of a multiplexer with other connections. Both output processes belong
to the versatile class of discrete-time Markovian arrival processes (D-MAP’s).
We derive an expression for the Index of Dispersion for Counts (IDC) and
for the Index of Dispersion for Intervals (IDI) of a D-MAP. Two classes of D-
MAP’s are considered depending on the eigenvalues of the transition matrix :
those with an aperiodic transition matrix and those with a periodic transition
matrix. For both cases we derive a closed form formula for the limit of the
IDC (which coincides with the limit of the IDI) and for the convergence rate
of the covariance sequence. These results are then applied to the two special
cases of output processes.
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1 INTRODUCTION

The Asynchronous Transfer Mode (ATM) must contribute to an efficient use
of the network resources while guaranteeing the required Quality of Service
of the different traffic streams. To quantitatively study these goals of ATM,
there has been made a considerable effort to model ATM traffic sources to-
gether with the different network elements. The basic queueing model for
these studies is a multiplexer whose input consists of a superposition of ATM
traffic sources. Several approaches have been used to derive the required per-
formance measures of such a multiplexer (e.g. fluid flow, matrix-analytical,
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generating functions, etc...). These models are valid at the entrance of the
ATM network, but may be inadequate as generic traffic model for e.g. end-
to-end delay studies.
To analyze a whole path in an ATM network analytically, modeling and char-
acterizing the output process of an ATM multiplexer is an essential step. This
output process will become input process, together with external sources, of
the next network element. In addition, a characterization of the output pro-
cess allows an evaluation of the smoothing effect of bursty traffic when passing
through a multiplexer.
The main problem when using the output process of the previous stage as
input to the next stage is that after a few stages the resulting process be-
comes very complicated and hence intractable. Therefore, it is necessary to
capture its most significant characteristics. Two very important properties
are the correlation between the number of cells in the output process in suc-
cessive slots and the correlation between interdeparture times. Many studies
[8, 15] have confirmed the impact of the autocovariance sum on the queueing
performance. In particular these studies stress the importance of the Index of
Dispersion for Counts (IDC) and the Index of Dispersion for Intervals (IDI),
together with their limits.
In this paper we study a particular class of output processes, namely the
discrete-time Markovian arrival processes (D-MAP’s). This choice is moti-
vated by two important special cases.
(i) In previous papers [2, 1], it has been shown that the D-MAP is a generic
model for ATM traffic, since the output process of a multiplexer whose input
consists of a superposition of D-MAP’s is again a D-MAP.
(ii) Assume that a tagged ATM connection, modeled by means of a process
with renewal cell interarrival time distribution, shares a multiplexer with other
connections (modeled as a batch process with renewal batch size distribution).
The tagged connection belongs, after passing through the multiplexer, to the
class of D-MAP’s. More details can be found in [3].
For the class of D-MAP’s, we study the covariance of the interdeparture time,
the covariance of the number of departures in a slot, the IDC, the IDI and
their limits.
We distinguish two classes of D-MAP’s : those with aperiodic transition ma-
trix and those whose transition matrix is periodic. These two classes natu-
rally arise from the two examples of output processes considered in this paper.
Other examples of the use of periodic D-MAP’s as well as some properties of
their correlations can be found in [9, 10].
The paper is organized as follows. Section 2 recalls the definition of the
discrete-time Markovian arrival process and some related notions. We discuss
the two important examples of D-MAP’s which are models for the output pro-
cesses discussed above. In Section 3, we investigate the correlation structure
of the number of arrivals in a slot of a D-MAP. In Section 4, the correlation
structure of the interarrival times of a D-MAP are investigated. We also de-



rive expressions for the limit of the IDC and the IDI. These results are then
applied to numerical examples in Section 5. Conclusions are drawn in Section
6.

2 A MODEL FOR THE OUTPUT OF AN ATM MULTIPLEXER

In this section we identify two important models for output processes of an
ATM multiplexer. Both these examples belong to a class of versatile Marko-
vian processes, called D-MAP’s. First we recall the definition of this class of
processes.

2.1 A Discrete-time Markovian Arrival Process (D-MAP)

We recall the definition of the D-BMAP, a batch Markovian arrival process
which has proven its usefulness in many papers [2, 1, etc ...]. This process
is the discrete-time version of the MAP defined in [13], which was originally
called N-Process in [14].
Consider a discrete-time Markov chain with transition matrix D. Suppose
that at time k this chain is in some state i, 1 ≤ i ≤ m. At the next time
instant k + 1, there occurs a transition to another or possible the same state
and a batch arrival may or may not occur. With probability (d0)i,j , 1 ≤ i ≤ m,
there is a transition to state j without an arrival, and with probability (dn)i,j ,
1 ≤ i ≤ m, n ≥ 1, there is a transition to state j with a batch arrival of size
n. We have that

∞
∑

n=0

m
∑

j=1

(dn)i,j = 1.

Clearly the matrix D0 with elements (d0)i,j governs transitions that corre-
spond to no arrivals, while the matrices Dn with elements (dn)i,j , n ≥ 1,
govern transitions that correspond to arrivals of batches of size n.
The matrix D =

∑∞
n=0 Dn is the transition matrix of the underlying Markov

chain . Let π be stationary probability vector of this Markov process, i.e.
π D = π, π e = 1, where e is a column vector of 1’s.
The fundamental arrival rate λ of this process is given by λ = π (

∑∞
k=1 kDk) e.

A D-MAP is a special case of a D-BMAP, where arrivals have a batch of size
1. For examples we refer to [1].
We recall some results concerning D-MAP’s which are needed in the sequel
of this paper. A D-MAP is characterized by means of its two matrices D0

and D1. Let π be the steady state vector of the underlying Markov chain
D0 + D1. The fundamental arrival rate λ of this process is now given by
λ = π D1 e. Observe the phase of the process at arrival instants. The phase



transition matrix between these instants is given by (I− D0)−1D1.
Let p be the stationary vector of the phase at arrival instants, i.e.

p (I − D0)−1 D1 = p, p e = 1.

This vector can be expressed in terms of π as follows : p = 1
λ

π D0. Two
special examples of a D-MAP which will be studied in the next subsections.

2.2 The Output Process of the D-BMAP/D/1/N Queue

In [1], it has been shown that the output process of a queue of type D-
BMAP/D/1/N belongs to the class of D-MAP’s. Indeed, let the input process
be defined by the matrices Dn, n ≥ 0. Then the output process is a D-MAP
with parameters
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The process has been studied in detail in [3], e.g. the distribution of the length
of k consecutive interdeparture times, the busy period distribution and the
interdeparture time distribution are derived there.

2.3 A Renewal Process Mixed with Background Traffic

We tag a connection which shares the output link of a multiplexer with other
connections, and describe this tagged connection after passage through the
multiplexer (See Figure 1). First we show that under certain conditions the
resulting process belongs to the class of D-MAPs. Details can be found in [3].
We consider a discrete-time queueing system with deterministic service time,

Background

Traffic

Tagged Traffic

Background
Traffic

Tagged Traffic

Figure 1 Queueing model for departure process of tagged stream



the duration of which equals one time-unit (i.e. a time-slot). We assume the
queue has a finite capacity of N cells.
The input traffic consists of 2 streams :

• Tagged traffic stream
This stream has a cell interarrival time distribution which is assumed to
be renewal, defined by the vector b = (b1, ..., bK), where
bk = Pr{ interarrival time between consecutive cells is k slots }.
Examples :
(i) CBR traffic (interarrival time is deterministic) ;
(ii) On/off sources, where the on and off periods are assumed to have a
duration which is geometrically distributed and such that while in the on
period, the cell interarrival time is deterministic.

• Background traffic
The number of background cells arriving in a time slot is a renewal process;
let
ak = Pr { k arrivals during a time slot }, k ≥ 0.
Example :

Poisson background traffic with arrival rate λ, ak = λk

k! e−λ, k ≥ 0.

In order to describe the tagged traffic stream, after it has left the multiplexer
which it shares with background traffic, we introduce the matrices H1 and
H2.
The transition matrix of the number of cells in the system (between consec-
utive slots) when only the background stream is taken into account is given
by

H1 =

















a0 a1 a2 ... aN−1

∑∞
n=N an

a0 a1 a2 ... aN−1

∑∞
n=N an

0 a0 a1 ... aN−2

∑∞
n=N−1 an

. . . . . .

. . . . . .

0 0 0 ... a0

∑∞
n=1 an
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The transition matrix of the number of cells in the queueing system between
consecutive slots, when both streams are taken into account and knowing that
an arrival of the tagged stream occurs, is given by

H2 =

















0 a0 a1 ... aN−2

∑∞
n=N−1 an

0 a0 a1 ... aN−3

∑∞
n=N−2 an

0 0 a0 ... aN−4

∑∞
n=N−3 an

. . . . . .

. . . . . .

0 0 0 ... 0 1

















.

Now we give an important property of the interdeparture time of consecutive
cells of the tagged stream. The proof is straightforward.

Property 1 Assume that two consecutive arrivals of the tagged stream ob-
serve a queue length of i1, resp. i2. Then the interdeparture time between these
two cells of the tagged stream is k − i1 + i2, with probability bk, 1 ≤ k ≤ K.

We show that the tagged stream after the multiplexer is a D-MAP.
Define for each slot k the following variables :

• sk : number of slots to go until the next departure of the tagged stream.
Clearly, its value is the interdeparture time when a cell of the tagged stream
leaves the multiplexer and it decreases by 1 at each slot, until it reaches the
value 0 (i.e. when the next departure occurs) (s ≤ sk ≤ S = N + K − 1).

• ik : queue length of the multiplexer at the arrival instant of a tagged cell,
which was the last of the tagged stream to depart before slot k. This means
that the value of ik remains constant between departures of the tagged
stream (1 ≤ ik ≤ N).

Then {(sk, ik) | k ≥ 0} forms a discrete-time Markov chain, with the following
transition matrix D.

• If sk = s > 0 and 1 ≤ ik = i ≤ N ,
D(s,i),(s−1,i) = 1

= 0 elsewhere,
• If sk = s = 0 and 1 ≤ i ≤ N (i.e. a tagged cell departed form the multi-

plexer at slot k) :

D(0,i),(k−i+j−1,j) = bk × [H2H
k−1
1 ]i+1,j+1, k = 1, · · · , K, j = 1, · · · , N

= 0 elsewhere.



The matrix D defined in this way is the transition matrix of this Markov
chain. The matrices D0 and D1 defined as

[D0]s,i =

{

[D]s,i ∀(s, i), s 6= 0

0 ∀(0, i)
and [D1]s,i =

{

[D]0,i ∀(0, i)

0 ∀(s, i), s 6= 0,

describe the cell generation process of the D-MAP that models the departure
process of the tagged traffic stream.
Hence under the assumption that cells of both tagged and background connec-
tions arrive according to independent renewal processes, the output process
of the tagged traffic stream belongs to the class of D-MAP’s.
The transition matrix has the following form

D =















U0 U1 U2 . . . US−1 US

I 0 0 . . . 0 0
0 I 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . I 0















.

In view of the special form of D, it is possible to simplify the computations
as follows.
First the steady state vector π = (π0, π1, . . . , πS) of the matrix D is com-
puted.
As π satisfies πD = π, we have that

π0Ui−1 + πi = πi−1, i = 1, . . . , S

π0US = πS .

This implies that π0 satisfies π0(
∑S

i=0 Ui) = π0. But as
∑S

i=0 Ui = H =
∑K

k=1 bkH2H
k−1
1 , we have that

π0H = π0 (1)

Furthermore, as
∑S

i=0 πie = 1, we derive that

π0[

S
∑

i=0

(i + 1)Ui]e = 1. (2)

Formulas (1) and (2) completely determine π0. The other πi’s are given by

πn = π0(
∑S

i=n Ui).



3 CORRELATION STRUCTURE OF THE NUMBER OF

ARRIVALS OF A D-MAP

In this section we refer to the occurance of a cell in a slot as to a cell arrival
(since the D-MAP is called Markovian arrival process), but the results will
be applied in the next section to D-MAP’s which are departure processes. We
study the correlation between both successive interarrival times and number
of arrivals in successive slots.
Recall that when (X1, X2, ..., Xk) are random variables, then the correlation
between X1 and Xk can be expressed in terms of the covariance matrix

cov(X1Xk) = E[(X1 − µ1)(Xk − µk)]

with µ1 and µk being the scalar mean of X1 and Xk.
The scalar covariance function is given by

cov(X1Xk) = πcov(X1Xk)e = πE[X1Xk]e− µ1µk

3.1 Correlation between Arrivals

In this subsection we study the correlation between the number of arrivals in
a slot.
Let (X1, . . . , Xk) be random variables, where Xi is the number of arrivals (0
or 1) at time slot i. In [4], it has been shown that

Theorem 1 The scalar covariance of X1 and Xk is given by

cov(X1X1) = πD1e− (πD1e)2

cov(X1Xk+1) = πD1(D0 + D1)k−1D1e − (πD1e)2, k ≥ 1.

Remark that an extension of this theorem for D-BMAP’s was obtained in [1].

(a) Correlation of an aperiodic D-MAP
In order to identify over what time period correlations do exist, we study the
way the sequence of covariances cov(X1Xk) converges to its limiting value (if
it exists).
We have to distinguish between two cases depending on the number of eigen-
values of D0 + D1 on the unit-circle.

Theorem 2 Assume that the matrix D0 + D1 is diagonizable and that the



eigenvalue 1 is the only one on the unit circle. The convergence of the co-
variance of the number of arrivals towards zero is geometric, The ratio is
determinded by the eigenvalue λ2 of D0 + D1 with the largest absolute value,
excluding 1. Thus

| cov(X1, Xk) |= c· | λ2 |k, for k → ∞,

with c a certain constant.

PROOF. Since D0 +D1 is diagonalizable, we can find the following spectral
representation (see e.g. [5], Theorem 5.1, p.379)

D0 + D1 = B1 + λ2B2 + · · · + λnBn.

From the theory of Perron–Frobenius we know that an irreducible stochastic
matrix D0 + D1 has a unique eigenvalue 1 and the other eigenvalues have
absolute value |λ| < 1.
Substituting this representation for D0+D1 in the expression for cov(X1, Xk)
derived in Theorem 1, yields

cov(X1, Xk) = λk−1
2 πD1B2D1e + · · · + λk−1

n πD1BnD1e

and this implies the required result.

(b) Correlation of a periodic D-MAP
When there is more than one eigenvalue on the unit circle (apart from the
eigenvalue 1), then the situation is somewhat more complicated. It means that
the matrix D0 + D1 is periodic, i.e. there exist δ > 0 (i.e. the the number
of eigenvalues on the unit circle) and matrices Fi, i = 1, 2, ..., δ, such that
D0 + D1 can be transformed into

D0 + D1 =















0 F1 0 . . . 0 0
0 0 F2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 Fδ−1

Fδ 0 0 . . . 0 0















. (3)

The δ different eigenvalues with | λj |= 1, are {λj = e
2πi

δ
j | j = 0, 1, . . . , δ−1}.

The convergence mentioned in Theorem 4, is no longer valid. However it is
possible to prove the following result. We denote by ⊕ addition modulo δ.

Theorem 3 Assume that the matrix D0 + D1 has δ eigenvalues on the unit



circle, i.e. it has the form as shown in (3). Let π
0 = (π0

1, . . . , π
0
δ) (resp.

ν
0 = (ν0

1, . . . , ν
0
δ)) the left (resp. right) eigenvector of D0+D1 with eigenvalue

one.
If µj = π

0
jFjν

0
j⊕1, then the δ possible limits of the δ subsequences of the

covariance sequence are given by

lim
n→∞

cov(X1, Xnδ+l) = (δ − 1)

δ
∑

i=1

µiµ(i⊕l) −
∑

1≤i,j≤δ j 6=i⊕l

µiµj , l = 1, 2, · · · , δ.

PROOF. See [7].
From this theorem we see that in the covariance sequence we can distinguish
δ subsequences each converging to a different limit. Note that some of these
limiting values can be equal.

3.2 Limit of Index of Dispersion for Counts of a D-MAP

An important measure for the correlation is the Index of Dispersion for Counts
(IDC).

Denote by N
(k)
ij (l) the conditional probability that in k slots there are l arrivals

and at the k-th slot the phase of the process is j, given that at time t=0 the
phase was i. Let

N(k)(z) =

∞
∑

l=0

N(k)(l)zl.

Clearly N(k)(z) = (D0 + D1z)k. We define the index of dispersion for counts
(IDC) as

C(k) =
Var[N (k)]

E[N (k)]
,

where Var[N (k)] and E[N (k)] denote the scalar variance, resp. scalar mean, of
the variable N (k). For a general stationary arrival process, it is known that
the following holds

C(k) =
kcov(X1X1) + 2

∑k−1
j=1 (k − j)cov(X1X1+j)

kE[X1]
.

It is also well known that for a process for which the number of arrivals in a
slot is renewal, C(k) = c2

1, for all k ≥ 1, where c2
1 is the squared coefficient

of variation of the number of arrivals in a slot. In particular for a Bernoulli



process, C(k) = 1− p [15], where p is the probability of generating an arrival
in a slot.
In contrast to the limit of the correlation of the arrival process of a D-MAP,
the limit of the IDC is not dependent on the periodicity of the transition
matrix D0 +D1. The limit of the IDC has a unique value. We give an explicit
expression of this limit for a DMAP in the next Theorem.

Theorem 4 Consider a D-MAP with ergodic Markov chain D0 + D1. The
limit of the IDC of this D-MAP is given by

lim
k→+∞

C(k) =
πD1e− [πD1e]2 + 2πD1ZD1e− 2π[D1]2e

πD1e
, (4)

with Z the fundamental matrix of the Markov chain D0 + D1, given by

Z = [I− (D0 + D1 − eπ)]−1.

PROOF. In view of Theorem 1,

∑k−1
j=1

k−j
k

cov(X1, X1+j) =
∑k−1

j=1
k−j

k
[πD1[D0 + D1]j−1D1e − (πD1e)2]

= πD1{
∑k−1

j=1
k−j

k
[(D0 + D1)j−1 − eπ]}D1e.

In view of [12, Theorem 5.1.4 ,p.101], the following series is Cesaro-summable

k−1
∑

j=1

k − j

k
[(D0 + D1)j−1 − eπ].

and the Cesaro-limit is given by Z − I, with Z = [I − (D0 + D1 − eπ)]−1

the fundamental matrix of the Markov chain D0 + D1. From this we obtain
expression (4).

4 CORRELATION STRUCTURE OF INTERARRIVAL TIMES

OF A D-MAP

Let (T1, . . . , Tk) be random variables representing the interarrival times until
the k-th arrival. Based on the results in [4] it is straightforward to prove the
following expression for the scalar covariance of T1 and Tk, k ≥ 1.

Theorem 5 The scalar covariance of T1 and Tk is given by the following
formulas :

cov(T1T1) = 2p[(I − D0)−1]2e− [p(I − D0)−1e]2 − p(I − D0)−1e



cov(T1Tk+1) = p(I − D0)−1[(I − D0)−1D1]k−1(I − D0)−1e
−[p(I − D0)−1e]2, k ≥ 1.

4.1 Correlation of Interarrival Times of a D-MAP

The analysis of the correlation decay for interarrival times of a D-MAP is
completely analogue to the analysis of Section 3.1. Again, the correlation
structure depends on the (a)periodicity of (I−D0)−1D1. The geometric decay
in the periodic case is determined by the eigenvalue µ2 of (I−D0)−1D1 with
the largest absolute value, excluding one. An analogue of Theorem 3 can also
be stated here in case (I − D0)−1D1 is periodic.

4.2 Limit of the Index of Dispersion for Interarrival Times

of a D-MAP

The dependence among successive interarrival times can be expressed by
means of the Index of Dispersion for Intervals (IDI). The IDI, also called the
k-interval squared coefficient of variation sequence is defined as the sequence
I(k), k ≥ 1, given by

I(k) =
Var[Sk]

k(E[T1])2
, with Sk = T1 + . . . Tk.

It is well known that the following holds :

I(k) =
kcov(X1X1) + 2

∑k−1
j=1 (k − j)cov(X1Xj+1)

k(E[T1])2
.

When the interarrival time distribution is renewal, then I(k) = c2
1, for all

k ≥ 1, where c2
1 is the squared coefficient of variation of a single interarrival

time [15].
The limit of the IDI is an important measure to characterize the effect of an
arrival process on the congestion of a queue in heavy traffic [11].

Theorem 6 The limit of the IDI of a D-MAP is given by

limk→+∞ I(k) = λ2{2p(I − D0)−1W(I − D0)−1e− [p(I − D0)−1e]2

−p(I − D0)−1e},

with W the fundamental matrix of the Markov Chain (I−D0)−1D1, given by

W = [I − ((I − D0)−1D1 − ep)]−1.



PROOF. Follow a similar reasoning as in Theorem 4.
In [6] it is shown that the limit of the IDC and the limit of the IDI coincide,
i.e. limk−→∞ C(k) = limk−→∞ I(k).

5 NUMERICAL EXAMPLES

In this Section we apply the results obtained in Section 3 to the two special
output processes considered in Section 2.

5.1 Example 1

We consider an ATM multiplexer whose input consist of a number of on/off
sources. Both the on and off period are geometrically distributed and while
a source is in the on period cells arrive with interarrival time d slots. In [2],
it has been shown that this superposition can be adequately approximated
by means of a D-BMAP. The resulting model for the ATM multiplexer is a
D-BMAP/D/1/N queue.
We apply the results described in the previous sections to characterize the
correlation structure of the output process. In particular, we illustrate the ef-
fect the burstiness of the input sources has on the IDC of the output process.
We consider three types of sources, each having the same arrival rate, but
with varying burstiness. Clearly type 1 is more bursty than type 2 and type
2 is more bursty than type 3 (see Table).
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Figure 2 IDC for variable bursti-
ness of input traffic

We let M = 7 sources enter the multiplexer. The buffer of the multiplexer is
assumed to be N = 5. Figure 2 shows an increasing IDC (and its limit) for
an increasing burstiness of the input traffic.



Type mean on period mean off period d limit idc

type 1 120 880 2 69.30
type 2 300 700 5 54.56
type 3 600 400 10 24

5.2 Example 2

Consider a CBR source with interarrival time 4 slots which is mixed with
a Poisson traffic stream in a multiplexer. The corresponding matrix of the
resulting D-MAP output process has eigenvalue 1 with multiplicity 4. Figure
3 shows the behavior of the covariance function. In Figure 4 we show a detail
of Figure 3, it clearly illustrates Theorem 5. We distinguish four subsequences
of the covariance sequence.
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Figure 3 Covariance of a tagged
output process
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Figure 4 Covariance of a tagged
output process : detail

5.3 Example 3

In this example we tag a CBR connection (interarrival time distribution 6
slots) and let it share a multiplexer with Poisson input (= background traffic)
with variable arrival rate λ = 0, λ = 0.4 and λ = 0.8. Figure 5 shows how
the covariance changes with the rate of the background traffic λ. The higher
the rate, the flatter the covariance curve, and hence the less important the
correlations are.

5.4 Example 4

In this example we illustrate the impact of the variability of the arrival process
of the tagged source on the IDC of the output process. We consider three types
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Figure 5 Covariance for variable
Poisson background traffic

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

slot

id
c

 type 1 : __ , type 2 : −− , type 3 : −. 

Figure 6 Covariance against vari-
ability tagged source

of traffic :
• type 1 : b = [0 0 0 0 1]
• type 2 : b = [0 0 0.3 0 0 0 0.7]
• type 3 : b = [0.1 0 0 0 0.1 0 0 0 0 0.7]
From Figure 6 it follows that the higher the variability of the input stream,
the larger the covariance (and its limit) is.

6 CONCLUSIONS

In this paper we have investigated the correlation structure of two important
models for the output process of an ATM multiplexer. We have given closed
formulas for the IDC and IDI and for their limits. Moreover the limiting
behavior of the covariance function is also characterized.
These measures of the output process are very useful when investigating end-
to-end performances in an ATM network. In particular these characteristics
will be used to describe ATM input traffic to intermediate nodes in future
work.
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