Reinforcement Learning in Large State Spaces

Simulated Robotic Soccer as a testbed

Karl Tuyls, Sam Maes, and Bernard Manderick

Computational Modeling Lab (COMO)
Department of Computer Science
Vrije Universiteit Brussel
Belgium
{ktuyls@, sammaes@, bernard@arti.}vub.ac.be,
http://como.vub.ac.be

Abstract. Large state spaces and incomplete information are two prob-
lems that stand out in learning in multi-agent systems. In this paper we
tackle them both by using a combination of decision trees and Bayesian
networks (BNs) to model the environment and the Q-function. Simu-
lated robotic soccer is used as a testbed, since there agents are faced
with both large state spaces and incomplete information. The long-term
goal of this research is to define generic techniques that allow agents to
learn in large-scaled multi-agent systems.

1 Introduction

In this paper we address 2 important problems that occur when learning in
multi-agent systems (MAS). The first is a problem of large state spaces. Existing
formalisms such as the Markov game model[Hu99][Lit94] suffer from combinato-
rial explosion, since they learn values for combinations of actions. We suggest to
use a combination of decision trees and Bayesian networks (BNs)[Rus94]to avoid
this problem of tractability. We will discuss the problem of modeling the envi-
ronment and other agents acting in the environment in the context of Markov
Games. The Markov game model is defined by a set of states S, and a collection
of action sets Ay, ..., A, (one set for every agent). The state transition function
S x Ay x ... x A, = P(S) maps a state and an action from every agent to a
probability on S. Each agent has an associated reward function R; :

Sx A X..xA, >R (1)

where S x A; X ... X A, constitutes a product space. The reward function for
an agent A; calculates a value which indicates how desired the state S and the
actions of the agents Ay, ..., A, are for agent A;.

In this model learning is done in a product space and when the number of
agents increases this model becomes prohibitively large.

Agent 1 observes the environment and all other n agents. A table represents
the accumulated reward over time according to each possible situation. We rep-
resent the environment by a set S of possible states, and each agent has a set A;

of possible actions. So we have |S| x |A1|x, ..., x|A,| possible situations, which
need to be stored in a table with a matching reward value. Now if the number of
agents increases and the environment becomes more complex this table becomes
intractable. This is what we call the large state space problem.

Nowe and Verbeeck [Now00] avoid this problem by forcing an agent to model
only the agents that are relevant to him. A similar approach is adopted in [Def01].

The second problem is one of incomplete information. Often an agent is not
given all information about the environment and the other agents. For instance
we don’t always know what action each agent is taking, where the other agents
and the ball are at every timestep. We suggest to use Bayesian networks to
handle this problem of incompleteness. Bayesian networks are a compact repre-
sentation of a joint probability distribution, which allows us to make estimates
about certain variables, given values of other variables. We believe that BNs can
contribute a great deal to this problem.

These two problems that emerge in the setting described above, will be dealt
with in the context of simulated robotic soccer, and we will suggest solutions for
them.

1.1 Simulated Robotic Soccer as a testbed

We decided to use simulated robotic soccer as the test bed for our research,
because it is particularly well suited for testing the specific problems we are
interested in.

— Large state space, it is obvious that 23 objects on a field can be in a massive
amount of states, especially if we take into account the speed, the accelera-
tion, the direction of these objects next to their position on the field.

— Incomplete information, each agent has only a limited and noisy view of the
environment.

Both the presence of these characteristics and the competitive aspect of
RoboCup make it a challenging domain to work in.

In section 2 we will discuss our general solution to the problems stated in
this introduction. Section 3 will discuss the methodology we will follow to test
the presented ideas and section 4 will present some results. Finally we will end
this paper with a conclusion.

2 Modeling the Environment and Other Agents

In this section we will present our solutions to the problems described in the
introduction. We start with a small introduction on Q-learning, the form of
learning under study.

2.1 Q-learning

We use a variation of reinforcement learning called single agent Q-learning.
In this form of learning the Q-function maps state-action pairs to values. Let
Q*(s,a) be the expected discounted reinforcement of taking action a in state s,
then continuing by choosing the optimal actions. We can estimate this function
by the following Q-learning rule

Q(st,a1) = Q(st,a1) + afrerr +ymar,Q(si+1,a) — Q(st, ar)] (2)

where 7 is a discount factor and where « is the learning rate. r;y1 represents the
immediate reward at time ¢+ 1. If each action is executed in each state an infinite
number of times on an infinite run and « is decayed properly, the Q-values will
converge with probability 1 to Q*.

We will use this form of learning for learning individual skills in the simulated
robotic soccer, like for instance learning to go to the ball, or learning to shoot at
goal. When we come in a more challenging situation with other agents present
(for example in a 2-2 situation), this Q-learning rule has to be converted to a
multi-agent Q-learning rule, looking like

Q(st, ai, v ap) = Q(st, ai, ey A7)

+ a[rt-i-l + ’ymawal,...,a”Q(St+17 0,1, ey a'n) - Q(St7 a’%a ey a’?)]

where a}, ...,al present the actions of agent 1 to n at time ¢.

2.2 Bayesian Nets for Large State Spaces

We propose to use Bayesian nets (BNs) for modeling the other agents acting in
the environment and the environment itself. A Bayesian net [Rus94] is a graphical
knowledge representation of a joint probability distribution. A Bayesian net has
one type of node, more precisely a random node which is associated with a
random variable. This random variable represents the agent’s possibly uncertain
beliefs about the world. The links between the nodes summarize their dependence
relationships. BNs can represent a certain domain in a compact manner and this
representation is equivalent to the joint probability distribution.

Our idea is to use such Bayesian nets for each agent to model the other
agents in the domain. The resulting model must describe how the different agents
influence each other and how they influence the reward the agent receives.

Every node of a BN has an associated conditional probability table (CPT),
which quantizes the direct influence of the parents on the child node. In figure
1 we give an example BN of a situation with 4 agents and 5 state variables
representing the environment. This network represents the view of agent 1, and
every other agent has an analogous network representing his view. Without in-
dependence relations in the domain, the network would be fully connected. As
you can see, every node has a direct influence on the accumulated reward Q.

In figure 2 you can see the associated CPT for node). Again this table can
become very large, depending on the number of links with Q. So we still have

o @)

©

Fig. 1. Large state space solution: BN of a domain with 4 agents and 5 state variables.

S, |S,|S3|8,|8a |a|a |Qfora;
10111 [1]1]1 Q
10111 |1]1]2 Q
1|11 |1]1|1]3 Q

nsl n52 n53 nsA naQ naS na4 Q ‘

Fig. 2. The CPT of node Q from figure 1

a large state space problem. We suggest to use decision trees to overcome this
problem. This is illustrated in figure 3 where we convert a CPT to a decision
tree. On the left you see the classic table lookup with constant resolution and
on the right you see a decision tree with varying levels of resolution.

o
»
I
»
oo
»
N
D
N
o
oS
bm
O
S
HQJ

Ble|e
Ble|e
Ble|e
Ble| e
Ple|e
Ble|e
N
o]

state space /

Fig. 3. The CPT of node Q converted to a decision tree

Note that the tree is constructed online, and that it is continuously refined
during the Q-learning process. In this way the attention of the agent can be
shifted to other areas, by refining the resolution at some point in the state
space. For more details on the approximating algorithm we refer to [Pye98].

2.3 Bayesian Nets for Incomplete Information

The second problem that we intend to solve in this paper is that of an agent
being faced with incomplete information about the environment. In multi-agent
systems in general and especially in those where a large number of agents are
involved, it is common that at any given moment a specific agent can only
directly observe a part of the environment and a subset of the agents.

Our solution consists of learning a Bayesian network over the domain. As we
have mentioned before a BN is a concise representation of the joint probability
distribution of the domain. This means that, given a subset of variables, the
BN can be queried to calculate beliefs for the unknown variables. A belief for a
variable consists of a probability for each possible state of the variable. In other
words, a BN can be used to calculate the most probable value for an unknown
variable and that information can then be used to do Q-learning.

For the moment we concentrate our effort at investigating whether the use
of a Bayesian network can help agents to have a more realistic and up-to-date
view of the environment and of the other agents. Until now we assume that the
Bayesian network of the domain is given beforehand, learning a BN online is
part of the future work.

3 Methodology

In this section we clarify where we want to go with our research, how we want
to get there and also where we stand today.

The ultimate goal of our research is to define generic techniques that allows
agents to learn in large-scaled multi-agent systems. To achieve this, two problems
stand out. Firstly, large state and action spaces, and secondly agents being faced
with incomplete information about the domain and the other agents.

We want to reach this goal by the following distinct steps. Step 1: Using
single agent reinforcement learning to learn an agent simple moves, such as
controlling the ball, giving a pass, dribbling, etc. using only low-level actions.
All this in a setting where the agents can cope with a large state and action
space and with incomplete information. This has already been done by other
people [Kos99, Sto00] but is indispensable for the rest of our approach.

Step 2: Using multi-agent RL on small groups of agents to learn them skills
such as scoring a goal in a situation with 2 attackers vs. 1 defender and a
goalkeeper, learning to defend in the same situation, etc.

An example of incomplete information at this point could be that an agent
doesn’t exactly know where his teammate is, because he isn’t facing in that di-
rection. Then the agent uses the information in his Bayesian network to calculate
the most probable position of the agent, given the last known position of the
agent and all the other agents he can see.

To reduce the complexity of this task, we want to avoid the action selection
module of the agent to manipulate low-level actions directly. Instead we want it
to make use of the basic skills learned in step 1.

Step 3: Using multi-agent RL on larger groups of agents (entire teams), using
Bayesian networks to help the agents in modelling the domain. Additionally we
want the BNs to make use of the local structure in the conditional probability
distributions (CPDs) that quantify these BNs. To clarify: our approach must take
advantage of the following type of information: an attacker is independent of a
defender if they are far from each other, but if they are together on the midfield
they are clearly dependent. One way to do this is to insert local structure in the
conditional probability distributions of the BNs [Bou96].

Again, to reduce complexity we want to use as much as possible the moves
learned in step 2, instead of using basic low-level actions and moves learned
during step 1.

At this point in time we are finishing step 1, and starting to tackle the
problems associated with step 2. In the next section we will elaborate on what
we have achieved so far.

4 Experiments

This section describes some of the experiments that we have conducted.

4.1 Learning to run to the ball

The first experiment conducted is an agent who learns to run to the ball. In the
learning process he will explore his action set and try to exploit this knowledge
to find the optimal policy, namely running to the ball via the shortest path. The
experimental settings are as follows : the agent and the ball are put on the field
in a random place. Every 1000 steps the ball will be randomly moved to different
coordinates.

This simple example illustrates how complicated and large the state space can
become. We used Q-learning to learn this skill and the state of the environment
is represented by the distance to the ball and the angle of the body with the ball.
We considered 2 possible actions for the agent in this situation, turn and dash. If
you discretize the parameters of both actions in 10 intervals, you have alltogether
20 actions. With the default dimensions of the field ! a player can be at most 125
meter from the ball. If we assume that the distance and the angle are discretized
respectively to 1 meter and 1 degree, this makes a total of 12536020 = 900.000
situations for which Q-values have to be learned. So learning with the classical
table lookup method can demand quite some resources, even for simple player
skills.

As explained in section 2.2 we take advantage of the fact that a lot of these
situations are quite similar and that in some cases a Q-value can be associated
with a set of situations instead of one situation. In figure 4 you can see a soccer
field that is divided in planes with only one Q-value for each plane.

1 68 * 105 meters

’I"I"I‘

|
Q" Q Q

Fig. 4. An example of how a decision tree approach would split the field in regions
with an equal Q-value.

4.2 Learning to dribble

This section describes an experiment where the goal was to learn the agent to
go to the ball and to run with the ball.

We used the same variables to represent the state of the environment as in
the previous experiment, but in this case an agent is capable of doing 3 actions:
turn, dash and kick. We had to extend the reward function used in the previous
experiment so that an agent is not only rewarded when he is close to the ball,
but also when he performs a run with the ball.

5 Conclusion

In this paper we introduced a generic solution for learning in multi-agent systems
that is able to cope with two important problems in MAS. Firstly, that of learning
in large state and action spaces. Secondly, that of an agent being faced with
incomplete information about the environment and other agents.

We propose to use Bayesian networks with the conditional probability dis-
tributions represented by decision trees instead of classical table lookup to solve
the first problem. This reduces the size and complexity of the state and action
space, because it causes Q-values to be associated with regions in the state space
instead of having to learn a Q-value for every single point in the state space.

For the second problem, we propose to keep a model of the environment in a
concise manner. Again we use a Bayesian network to do this, since it is a com-
pact representation of the joint probability distribution over the environment.
In this way estimates can be calculated for variables representing a part of the
environment that hasn’t been observed in recent timesteps.

In our experiments we prove that the learning approach is feasible for an
agent running to the ball and dribbling the ball.

6 Future work

— Allow pruning in the decision tree, so that an agent can also decrease his
attention for a specific area of the state space.

— Use other techniques as decisiontrees that learn an adaptive-resolution model,
such as the Parti-game algorithm [Mo0095].

— Learning the Bayesian network that represents the environment and the
other agents online and adaptively.

References

[Bou96] Boutilier, C., Friedman, N.; Goldszmidt, M., and Koller, D. Context-specific
independence in Bayesian networks. In Proc. UAI, 1996.

[Def01] Defaweux, A., Lenaerts, T., Maes, S., Tuyls, K., van Remortel, P., Verbeeck,
K., Niching and Evolutionary Transitions in MAS. Submitted at ECOMAS-
GECCO 2001.

[Hu99] Hu, J., Wellman, M. P., Multiagent reinforcement learning in stochastic
games. Submitted for publication, 1999.

[Kos99] Kostiadis, K., Hu, H., Reinforcement Learning and Co-operation in a Simu-
lated Multi-agent System. Proc. of IEEE/RJS IROS’99, Korea. 1999.

[Lit94] Litmann M.L., Markov games as a framework for multi-agent reinforcement
learning. Proceedings of the Eleventh International Conference on Machine
Learning, pages 157-163, 1994.

[M0095] Moore, A. W., and Atkeson, C. The Parti-game Algorithm for Variable Res-
olution Reinforcement Learning in Multidimensional State Space. Machine
Learning Journal, 21, 1995.

[Nod98] Noda, I., Matsubara, H., Hiraki, K., and Frank, I., Soccer Server: A Tool for
Research om Multiagent Systems. Applied Artificial Intelligence, 12:233-250,
1998.

[Now00] Nowe, A., Verbeeck, K., Learning Automata and Pareto Optimality for Coor-
dination in MAS. Technical report, COMO, Vrije Universiteit Brussel, 2000.

[Pea88] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-
ble Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[Pye98] Pyeatt, L.D., Howe, A.E., Decision Tree Function Approximation in Rein-
forcement Learning. Technical Report CS-98-112, Colorado State University,
1998.

[Rus94] Russell, S., Norvig, P., Artificial Intelligence: a Modern Approach. Prentice
Hall Series in Artificial Intelligence. Englewood Cliffs, New Jersey, 1995.

[Sto00] Stone, P., Layered Learning in Multiagent Systems. A Winning Approach to
Robotic Soccer. MIT Press, 2000.

[Sut98] Sutton, R.S., Barto, A.G., Reinforcement Learning: An Introduction, Cam-
bridge, MA: MIT Press, 1998.

