
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Relations between the continuous and the discrete Lotka power function

Peer-reviewed author version

EGGHE, Leo (2005) Relations between the continuous and the discrete Lotka power

function. In: Journal of the American Society for Information Science and

Technology, 56(7). p. 664-668.

DOI: 10.1002/asi.20157

Handle: http://hdl.handle.net/1942/737



 1 

Relations between the continuous and 

the discrete Lotka power function 

 

by 

 

L. Egghe 

 

Limburgs Universitair Centrum (LUC), Universitaire Campus, B-3590 Diepenbeek, Belgium
1
 

and 

Universiteit Antwerpen (UA), Campus Drie Eiken, Universiteitsplein 1, B-2610 Wilrijk, 

Belgium 

 

leo.egghe@luc.ac.be 

 

ABSTRACT 

The discrete Lotka power function describes the number of sources (e.g. authors) with 

n 1,2,3,...=  items (e.g. publications). As in econometrics, informetrics theory requires 

functions of a continuous variable j, replacing the discrete variable n. Now j represents item 

densities instead of number of items. The continuous Lotka power function describes the 

density of sources with item density j. The discrete Lotka function is the one that one obtains 

from data, obtained empirically; the continuous Lotka function is the one needed when one 

wants to apply Lotkaian informetrics, i.e. to determine properties that can be derived from the 

(continuous) model. 

 

It is, hence, important to know the relations between the two models. We show that the 

exponents of the discrete Lotka function (if not too high, i.e. within limits encountered in 
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practise) and of the continuous Lotka function are approximately the same. This is important 

to know in applying theoretical results (from the continuous model), derived from pratical 

data. 

 

I.  Introduction 

 

Lotka’s law in its historical formulation in Lotka (1926) is formulated as follows: in a fixed 

group of authors (or in a bibliography), the number ( )f n  of authors with ( )n n 1,2,3...=  

publications is given by the power law: 

 

 ( )
a

K
f n

n
=  (1) 

 

where K and a are positive constants. The most classical value for the exponent is a 2=  but 

even Lotka himself pointed out in Lotka (1926) that other values of a might occur, but usually 

a 1> , making (1) a (fastly) decreasing function. 

 

Lotka’s law is found to be valid in many applications in or even outside the informetrics field 

(see e.g. Wilson (1999), Egghe (2004) and many references in both works). In general we can 

talk about sources (generalizing authors above) having (or producing) items (generalizing 

publications above) and in this framework, ( )f n  in (1) denotes the number of sources with 

n Î ¥  items. 

 

As in other “-metrics” theories (such as econometrics), instead of (1), one uses functions of a 

continuous variable j, replacing the discrete variable n above. This is done for mathematical 

reasons: models and their properties can better be understood when one can use the formalism 

of calculus (i.e. mathematical analysis). This is so because it is easier to evaluate derivatives 

and integrals than discrete differences or sums. 

 

Hence, in the theory of Lotkaian informetrics (see e.g. Egghe (2004a)) one uses the 

continuous variant of (1), denoted by  . 
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The continuous Lotka function   is also given by a power function but of a continuous 

variable j 1³ : 

 

 ( )
C

j
j

 =  (2) 

 

where again C and   are positive constants. In words: ( )j  is the density of sources with 

item density j 1³ . 

 

As said above: knowing the continuous Lotka function (2) is important since (2) is the basis 

for many derived results, that are not possible to prove with (1), using discrete sums. More 

fundamentally, without a continuous model one has no relations with other informetric (even 

econometric or linguistical) distributions such as the ones of Pareto and Zipf. 

 

The problem with the continuous model (2) above is that its parameters C and   (the most 

important one) cannot be determined directly from a concrete set of data (e.g. a bibliography). 

Such a set of data (obviously being discrete) gives information about the discrete function f in 

(1). 

 

From the above it is clear that the following problem is worth studying. 

 

Problem I.1 : Determine relations between the discrete Lotka function f and the continuous 

Lotka function  . Especially determine relations between the exponents a and  . 

 

This problem will be studied in the next section. The relation between f and   will be 

clarified using a third function: the discretized version of the continuous function  , to be 

introduced in the sequel. 
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II.  Comparing f and   : introduction of the                                                                                 

discretized version of   

 

It is clear that, if 1>  

 

 ( )
1 1

C C
T j dj dj

j 1




¥ ¥

= = =
-ò ò  (3) 

 

and, if 2> : 

 

 ( )
1

1 1

C C
A j j dj dj

j 2




¥ ¥

-
= = =

-ò ò  (4) 

 

Formulae (3) and (4) imply 
A

T

æ ö

÷ç = ÷ç ÷çè ø
 

 

 
2A T 2 1

A T 1






- -
= =

- -
 (5) 

 

 
AT A

C
A T 1

= =
- -

 (6) 

 

In the same way, for the discrete Lotka function f, we have 

 

 ( )
a

n 1 n 1

K
T f n

n

¥ ¥

= =

= =å å   . (7) 

 

Hence 

 

 
( )

T
K

a
=  (8) 
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Also since 

 

 ( )
a 1

n 1 n 1

K
A nf n

n

¥ ¥

-
= =

= =å å  (9) 

 

we have 

 

 
( )

( )

a 1A

T a






-
= =  (10) 

 

for a 2> , where ( )
a

n 1

1
a

n


¥

=

= å  denotes Riemann’s Zeta function. So the knowledge of T (the 

total number of sources) and of A (the total number of items) determine (within the range  , 

a 2> )   and C (the two parameters of the continuous Lotka function) via (5) and (6) and a 

and K via (8) and (10). The latter determination goes as follows: since we know A and T, we 

know 
A

T
 = , the average number of items per source. Then we can determine a numerically 

if we have a table of a versus 
( )

( )

a 1

a





-
 (which is provided in this article – see Appendix – 

from a 2.11=  on (in 0.01 increments)). Then, since T and a are known, K follows from (8), 

using a table of a versus 
( )

1

a
 which can be found in Egghe and Rousseau (1990) and Egghe 

(2004a). 

 

Note that ( ) ( )K f 1 C 1= ¹ = . In fact even more is true: if 2> , then 

 

 ( ) ( )K f 1 T C 1= < < = , (11) 

 

showing that f and   are different functions. 

 

The first inequality is obvious since ( )f 1  is the number of sources with one item and since T 

is the total number of sources. The second inequality trivially follows from (3). That ( )1 T >  
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is not counter-intuitive since every j (hence also j 1= ) denotes an item density (compare with 

a Gaussian density which has a total area of 1 but which can have a peak (at 0) as high as we 

wish). 

 

The above yields f and  , given A and T, so theoretically the relation between f and   is 

established. However, e.g. due to the occurrence of the cumbersome function   in (8) and 

(10), we will continue our search for more practical relations between the functions f and  . 

This is obtained by discretization of the function  , which is defined now. 

 

Definition II.1 : Let   be as in (2). The discretized version of  , denoted ( )I  , is defined on 

¥  as follows: for every n 1,2,3,...=  

 

 ( )( ) ( )
n 1 n 1

n n

C
I n j dj dj

j
 

+ +

= =ò ò  (12) 

 

For 1 ¹  we hence have 

 

 ( )( )
( )

11

C 1 1
I n

1 n n 1





--

æ ö
÷ç ÷ç= - ÷ç ÷ç- ÷ç +è ø

 (13) 

 

It is clear that, in exact mathematical terms, ( )I   is not a power function, hence ( )I   is 

never equal to f. But both functions represent discrete size-frequency functions of the same 

informetric system. So f and ( )I   should have the same “shape”. Note that 

 

 ( )( )
( )

1 1

C 1 1
I n

1 nn 1
 




- -

æ ö
÷ç ÷ç= - - ÷ç ÷ç- ÷ç +è ø
 

 

 ( )( )
1

C d 1
I n

1 dn n


 -

æ ö
÷ç» - ÷ç ÷çè ø-
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 ( )( )
C

I n
n

 »  (14) 

 

So ( )I   and   have the same shape (heuristic argument). For ( )I   and f to have the same 

shape we hence require 
C

n
 and 

a

K

n
 to have the same shape. This implies 

 

 a »  (15) 

 

for values of a and   not too high (if these values are high then, even if they are very 

different, 

 

 
a

C K
0

n n
» »  

 

for n 2³ ). 

 

Whether (15) is true for values of a and   not too high can be proved in an exact (numerical) 

way as we will do in the sequel. Note first that it follows from the exhaustive list of examples 

in Egghe (2004a) (Chapter I) that most exponents are below 4 (and most commonly around 

2). For these values we can indeed prove (15) as follows. Use (5) and (10) (and hence also the 

table in the Appendix) to obtain the following table of  - and a-values in function of 
A

T
 =  

(note that (5) and (10) imply that both a and   only depend on   and not on the two values 

of T and A themselves!). 
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Table 1.  Comparison of values of   and a for several 

values of 
A

T
 =  

 

    a 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

5.5 

6 

4.00 

3.00 

2.67 

2.50 

2.40 

2.33 

2.29 

2.25 

2.22 

2.20 

2.81 

2.48 

2.34 

2.27 

2.22 

2.18 

2.16 

2.14 

2.13 

2.12 

 

 

We see that   and a are indeed comparable and closer to each other the closer they are to 2, 

the most common value. We also note from (4), (5) and (10) that 2>  if and only if a 2>  

(hence also 2£  if and only if a 2£ ), even if a and   are very different (for high values). 

This is an important conclusion because many, from Lotka’s function   derived properties 

(e.g. shape of the cumulative first-citation distribution, existence of the Groos droop, 

concentration and fractal properties,… - see Egghe (2004a)), are common for different s  

above 2 and for different s  below 2 but are different for values of   below and above 2. 

 

Indeed, data show a Groos droop (see Groos (1967)) if and only if 2<  (see Egghe (1985, 

2004a) or Egghe and Rousseau (1990)). The cumulative first-citation distribution is S-shaped 

if and only if 2>  and is concave if and only if 2£  (see Egghe (2000)). In all these 

results, the value 2=  is a turning point. 

 

So, from the above, the practical calculation of the exponent a (based on the data) yields an 

estimate of   which determines ( )
C

j
j

 = . 

 

Note also that (3) and (13) imply that 
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 ( )( )
1

1
I 1 T 1 T

2


-

æ ö
÷ç= - <÷ç ÷çè ø

 (16) 

 

, a property that is shared with the discrete function f (and not with the continuous function   

itself). In fact it is easy to see that ( )( )I n T <  for every n Î ¥ . Inequality (16) can even be 

improved by the following proposition. 

 

Proposition II.2 : If a 2= > , then 

 

 ( )( ) ( ) ( )I 1 K f 1 T C 1 < = < < =  (17) 

 

Proof : We only have to show that (using (11)) ( )( )I 1 K < . Using (16) and (8) we hence 

have to show (using that a = ) that 

 

 
( )1

1 1
1

2  -
- <  

 

or 

 

 
1

k 1

1 1
1 1

2 k 

¥

-
=

æ ö
÷ç - <÷ç ÷çè ø
å  

 

Hence we must prove that 

 

 
1 1 2 2 2

1 ... 1
2 3 2 4 6    

+ + + - - - <  

 

or 

 

 
1 1 1 1 1

1 ... 1
2 3 4 5 6    

- + - + - <  (18) 

 

But the left-hand side of (18) equals 
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1 1 1 1

1 ...
2 3 4 5   

æ ö æ ö
÷ ÷ç ç- - - - -÷ ÷ç ç÷ ÷ç çè ø è ø

 

 

which is strictly inferior to 1 since all numbers between brackets are positive.               

 

It is easy to see that, if a=  is large enough, we have that ( )( ) ( )I n f n > . Indeed, this 

relation is satisfied if (use (3), (8) and (13)) 

 

 ( ) ( )
n

n n 1 1
n 1



 
æ öæ ö ÷ç ÷ç ÷ç - + >÷ ÷çç ÷ç ÷è ø ÷ç +è ø

 

 

which is always true for n 2,3,...=  and   large enough (since ( )lim 1


 
® ¥

= ). Of course, by 

definition of ( )I  , we always have that ( )( ) ( )I n n <  for every n Î ¥ . 

 

We also have the following proposition, showing the closeness of f and ( )I   for large  . 

 

Proposition II.3 : If a= , then 

 

 ( ) ( )( )lim f n I n 0



® ¥

é ù- =ë û  (19) 

 

for every n Î ¥ . 

 

Proof : If a= , then, using (3), (8) and (13) 

 

 ( ) ( )( )
( ) ( )

11

T 1 1
lim f n I n lim T

n n n 1
  


 

--® ¥ ® ¥

é ùæ ö
÷çê ú÷é ù ç- = - - ÷ê úçë û ÷ç ÷ç +ê úè øë û

 (20) 

 

since in the above limit we can assume that 2> . If n 1=  then (20) equals 
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1

1 1
T lim 1 0

1 1 2
lim 1 ...

2 3



 

-® ¥

® ¥

æ ö
÷ç ÷ç ÷æ öç ÷ç ÷÷ç- - =÷ç ÷ç ÷ç ÷ç æ ö è ø÷ç ÷ç ÷+ + +ç ÷ç ÷÷çç ÷è øè ø

 

 

while, if n 1¹ , the same value 0 is trivially obtained.                       

 

Table 2 illustrates the above proposition for n 1= . We use the table of ( )1 -  versus   that 

e.g. can be found in Egghe and Rousseau (1990). Note that the values ( )2  and ( )4  are 

explicitely known since 

 

 ( )
2

2
n 1

1
2

n 6




¥

=

= =å  (21) 

 

and 

 

 ( )
4

4
n 1

1
4

n 90




¥

=

= =å  (22) 

 

as e.g. can be found in Gradshteyn and Ryzhik (1965) or in Abramowitz and Stegun (1972). 

 

Table 2.  Comparison of ( )( )I 1  and K (both divided by T) 

 

 
1

1
1

2-
-  ( )1 -  

1.5=  

2=   

2.5=  

3=   

3.5=  

4=   

0.2929 

0.5 

0.6464 

0.75 

0.8232 

0.875 

0.3828 

2

6


= 0.6079 

0.7454 

0.8319 

0.8875 

4

90


= 0.9239 
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Fig. 1 illustrates, qualitatively, the relation between f,   and ( )I  . 

 

 

 

Fig. 1  Qualitative illustration of the relation between f,   and ( )I   

 

 

Note that, from (17), the order of the function values in 1 is as depicted. For ( )n 2,3,..., I =  

can intersect f (if   is large enough) but remains below   for every n Î ¥ . Note also, 

however, that ( ) ( )f n n<  for all n Î ¥ . This is seen as follows. Formulae (3) and (8) imply 

that ( ) ( )f n n<  is equivalent with (for 1> ) 

 

 ( ) ( )1 1  - >  (23) 

 

Putting 1 0 = - > , (23) is equivalent with 

 

 
1

n 1

1
n

¥

+
=

>å  (24) 

C

T

K

I() (1)

0
1 2 3 4 ... n


f

I()
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But, n" Î ¥ : 

 

 

n 1

1 1

n

dj
n j 

 
+

+ +
> ò  

 

as is obvious since j n>  on ] ]n,n 1+ . So 

 

 

n 1

1 1
n 1 n 1 n

dj
n j 

 
+¥ ¥

+ +
= =

>å å ò  

 

 
1

1
dj 1

j
¥

+
= =ò  

 

since 0> . This proves (24) and hence that 

 

 ( ) ( )f n n<  (25) 

 

for all n Î ¥ . 

 

 

III.  Conclusions 

 

In this paper we discussed the discrete Lotka function f (formula (1)), obtained from practical 

data, and the continuous Lotka function   (formula (2)), needed for applying results from 

Lotkaian informetrics theory (see Egghe (2004a)). 

 

We showed that the discrete Lotka function f  and the theoretical Lotka function  , although 

they are different power laws, can be calculated from each other in an exact (but numerical) 

way. We provide the numeric “key” to calculate one from the other. 
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The simplest and most important result is the fact that, for values of the exponents a and   

not too high (which is usually true in practise) we have that a » , showing that Lotkaian 

informetrics theory can be applied using the empirical value of a. 
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Appendix 

 

Values of a versus 
( )

( )

a 1

a





-
 

 

a ( ) ( )ζ a -1 /ζ a   a ( ) ( )ζ a -1 /ζ a   a ( ) ( )ζ a -1 /ζ a  

2.11 6.235  2.58 1.785  3.05 1.342 

2.12 5.773  2.59 1.767  3.06 1.337 

2.13 5.382  2.60 1.751  3.07 1.332 

2.14 5.049  2.61 1.735  3.08 1.328 

2.15 4.763  2.62 1.719  3.09 1.323 

2.16 4.510  2.63 1.705  3.10 1.318 

2.17 4.286  2.64 1.690  3.11 1.314 

2.18 4.088  2.65 1.676  3.12 1.309 

2.19 3.911  2.66 1.662  3.13 1.305 

2.20 3.752  2.67 1.649  3.14 1.301 

2.21 3.607  2.68 1.636  3.15 1.297 

2.22 3.477  2.69 1.624  3.16 1.293 

2.23 3.356  2.70 1.612  3.17 1.289 

2.24 3.248  2.71 1.601  3.18 1.285 

2.25 3.147  2.72 1.589  3.19 1.281 

2.26 3.054  2.73 1.578  3.20 1.278 

2.27 2.969  2.74 1.568  3.21 1.274 

2.28 2.888  2.75 1.557  3.22 1.270 

2.29 2.815  2.76 1.547  3.23 1.267 

2.30 2.745  2.77 1.537  3.24 1.263 

2.31 2.681  2.78 1.528  3.25 1.260 

2.32 2.619  2.79 1.519  3.26 1.256 

2.33 2.563  2.80 1.509  3.27 1.253 

2.34 2.509  2.81 1.500  3.28 1.250 

2.35 2.459  2.82 1.492  3.29 1.247 

2.36 2.411  2.83 1.484  3.30 1.244 

2.37 2.366  2.84 1.475  3.31 1.240 

2.38 2.324  2.85 1.467  3.32 1.237 

2.39 2.283  2.86 1.460  3.33 1.234 

2.40 2.245  2.87 1.452  3.34 1.232 

2.41 2.208  2.88 1.445  3.35 1.229 

2.42 2.174  2.89 1.438  3.36 1.226 

2.43 2.141  2.90 1.431  3.37 1.223 

2.44 2.109  2.91 1.424  3.38 1.220 

2.45 2.079  2.92 1.417  3.39 1.217 

2.46 2.051  2.93 1.410  3.40 1.215 

2.47 2.023  2.94 1.404  3.41 1.212 

2.48 1.997  2.95 1.398  3.42 1.210 

2.49 1.972  2.96 1.392  3.43 1.207 

2.50 1.947  2.97 1.386  3.44 1.205 

2.51 1.924  2.98 1.380  3.45 1.202 

2.52 1.902  2.99 1.374  3.46 1.200 

2.53 1.880  3.00 1.368  3.47 1.197 

2.54 1.860  3.01 1.363  3.48 1.195 

2.55 1.840  3.02 1.358  3.49 1.193 

2.56 1.821  3.03 1.352    

2.57 1.802  3.04 1.347    

 


