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ABSTRACT
We show that the composition of two information production processes (IPPs), where the items of the 
first IPP are the sources of the second, and where the ranks of the sources in the first IPP agree with 
the ranks of the sources in the second IPP, yields an IPP which is positively reinforced with respect to 
the first IPP. This means that the rank-frequency distribution of the composition is the composition of 
the rank-frequency distribution of the first IPP and an increasing function ϕ , which is explicitly 
calculable from the two IPPs’ distributions. 
 
From the rank-frequency distribution of the composition, we derive its size-frequency distribution in 
terms of the size-frequency distribution of the first IPP and of the function ϕ . 
 
The paper also relates the concentration of the reinforced IPP to that of the original one. 
 
This theory solves part of the problem of the determination of a third IPP from two given ones (so-
called three-dimensional informetrics). In this paper we solved the “linear” case, i.e. where the third 
IPP is the composition of the other two IPPs. 
 
I.  Introduction
 
One-dimensional informetrics is that part of informetrics where one studies one object, one variable, ... 
as shown in the following examples: 
(i) The number of books in a library 
(ii) The number of circulations in a library 
(iii) The total number of researchers in a field, e.g. mathematics, at a certain moment 
(iv) The total number of publications in a field, e.g. mathematics, say in a year 
(v) The total number of citations in a field, e.g. mathematics, say in a year. 
 
Such studies can be interesting, certainly if they are made in connection with evolution in time. 
However, in order to really understand information production, one needs to study two-dimensional 
informetrics, where one considers two objects, one called the sources and the other one called the 
items and where it is understood that the items are produced by the sources. Of course, here, one does 
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not only perform two times a one-dimensional informetrics study (one for the sources and one for the 
items) but one studies the “higher” (more interesting) problem of the link between sources and items, 
i.e. which sources produce which items. One could say that such a study implies the two one-
dimensional informetrics studies but not vice-versa. Two-dimensional informetrics is the one in which 
one has the celebrated (historic) informetric laws, describing this source-item relationship, such as the 
laws of Lotka, Zipf, Mandelbrot, Bradford, Leimkuhler and so on. It is also here that the notion of 
information production process (IPP) is defined as a general bibliography: an IPP is a triplet (S,I,F), 
where S is the set of sources, I is the set of items and F : S→ I is a function describing which sources 
contain or produce which items. Two-dimensional informetrics is the most famous part of informetrics 
and it is even so that - in most studies - one does not even mention the adjective “two-dimensional”. 
Examples abound (see e.g. Egghe and Rousseau (1990a)): 
(i) Books (as sources) in a library and the circulations (as items) they generate (cf. examples (i) 

and (ii) in one-dimensional informetrics) 
(ii) Researchers (as sources) in a field (e.g. mathematics) and their publications (as items) (cf. 

examples (iii) and (iv) in one-dimensional informetrics) 
(iii) Publications (as sources) in a field (e.g. mathematics) and the citations (as items) they receive 

(or give) (cf. examples (iv) and (v) in one-dimensional informetrics). 
We stress again that the above examples study more than the two one-dimensional examples that we 
indicated namely also, more importantly, the relationship between sources and items, e.g. the number 
of sources with 1,2,3,... items (size-frequency study such as Lotka’s law) or the number of items in the 
source on rank r=1,2,3,... (where we rank sources decreasingly with respect to the number of items 
they have) (rank-frequency study such as Zipf’s law or the law of Mandelbrot, Bradford or 
Leimkuhler). We can nowadays say that the majority of informetrics papers (theoretical as well as 
practical ones) deal with two-dimensional informetrics as a quick inspection of leading informetrics 
journals makes clear. 
 
The mathematics of two-dimensional informetrics was developed in Egghe (1985, 1989, 1990) where 
the size and rank-frequency functions were studied and their interrelations proved. Exact results were 
obtained but only in the continuous setting, i.e. where the source set S (bijective with {1,2,...,T}) is 
replaced by the interval [0,T] and where the item set I (bijective with {1,2,...,A}) is replaced by the 
interval [0,A]. The reason for this is that interrelations, say between Lotka’s law and the one of 
Mandelbrot can only be shown by evaluating integrals which is much easier than evaluating finite 
sums. Since we need this theory in the elaboration of 3-dimensional informetrics we give a brief 
overview of this theory in the next section. 
 
So we arrived now at the challenge of studying three-dimensional informetrics. The attentive reader 
may already have thought of the following example of three-dimensional informetrics (based on the 
above mentioned cases): 
(i) Researchers (as sources) in a field (e.g. mathematics), their publications as items produced by 

the researchers, but also considered as sources, producing citations (being items in the sources 
being publications) (cf. examples (iii), (iv) and (v) of one-dimensional informetrics or the 
examples (ii) and (iii) in two-dimensional informetrics). 

Note again that three-dimensional informetrics is much more than three times the one-dimensional or 
two times the two-dimensional study. Now we face (as in the two-dimensional case) to describe the 
relations between the two types of sources and the two types of items. The above example is an 
example of what we could call “linear three-dimensional informetrics” since the items in the first IPP 
(publications) are the sources in the second IPP and three-dimensional informetrics takes the 
(symbolic) linear form (cf. Rousseau (1992)) 
 

researchers  publications →  citations →
 
Of the same type is the example 
 

journals →  articles →  citations 
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meaning that journals publish articles (on a certain topic) and that articles give (or receive) citations. 
 
In Egghe (1990), see also Egghe and Rousseau (1990a), other forms of (nonlinear) three-dimensional 
informetrics are defined (but no results obtained): 
(ii)  Journals produce articles and these articles are written by authors. Here we have two source 

sets (journals and authors) and one item set (articles), symbolically visualized by a triangle: 
 

            journals     authors 
                                                                             
                                                                         articles 
 
(iii)  Papers have references and receive citations. Here we have one source set (papers) and two 

item sets (references and citations), symbolically visualized by a triangle of another type 
 

                      papers 
                                                                            
                                                              references    citations 
 
In all three examples of three-dimensional informetrics we have two IPPs (in the two-dimensional 
sense) but each example shows a different relation between these two IPPs. 
 
On three-dimensional informetrics, almost no papers or results exist. There was a first (theoretical) 
attempt to model general three-dimensional informetrics in Egghe and Rousseau (1996), generalizing 
work of Qin (1995). Egghe and Rousseau (1996) also give further examples (found in the literature) of 
case (iii) above (examples of Lafouge (1995), Coleman (1992), Yitzhaki (1995) and Kyvik (1990)), 
where sources produce two sets of items. In general we can say that the theoretical remarks in Egghe 
and Rousseau (1996) are not capable of really modelling general three-dimensional informetrics (say 
cases (ii) and (iii) above). 
 
In Rousseau (1990), Egghe (1990) and Egghe and Rousseau (1990a) the problem to model at least 
linear three-dimensional informetrics is mentioned. In Rousseau (1990) the author deals with the linear 
problem 
 

journals →  articles →  software programs 
 
meaning: journals have articles and these articles describe certain software programs. Linear three-
dimensional informetrics problems were also (implicitely) mentioned in Rousseau (1992) and Fox 
(1983). In Fox (1983), one also uses the term “reinforcement” referring to the transitive effect of linear 
three-dimensional informetrics - here the context of high productivity of authors as a consequence of 
earlier recognition (heavy citations) is mentioned. Rousseau (1992) mentions positive reinforcement. 
This can (intuitively - exact definitions follow in the sequel) be described as: the item-producing 
sources increase their production. Rousseau (1992) shows that, under certain conditions (see also 
further), a positively reinforced IPP has a higher concentration, expressed by the fact that its Lorenz 
curve is above the original one (when ordering the production vectors decreasingly). It seems that 
Fellman (1976) was the first to notice these facts. Using the latter result, we will generalise Rousseau’s 
result in section IV. Besides the example researchers → publications citations, Rousseau (1992) 
also mentions the example of availability of CDs in certain music categories and its use (loans) in a 
public library as another example of linear three-dimensional informetrics. 

→

 
The key result in this paper will be that linear three-dimensional informetrics, in which the ranks of the 
sources in the first IPP agree with the ranks of the sources in the second IPP, is an example of positive 
reinforcement of the first IPP. We will present an explicit relation between the reinforcement function 

 (to be defined later) and the size- and rank-frequency functions of the two IPPs in the composition. ϕ
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A consequence of this result is that the positive reinforcement of a Lotkaian IPP with a reinforcement 
function ϕ  that is a power law, yields a Lotkaian IPP. 
 
As mentioned above the paper closes with an application of Fellman’s concentration result (1976) 
(partially reproved in Rousseau (1992)). We give necessary and sufficient conditions for the positively 
reinforced IPP to have a lower, equal or higher concentration (i.e. a lower, equal or higher Lorenz 
curve) than the one of the original IPP, hereby generalizing Rousseau (1992) 
 
II.  Aspects of two-dimensional informetrics.
 
Here we have an IPP consisting of a set of sources S=[0,T] (the continuous extension of the counting 
of T sources in S, namely {1,2,...,T}) and a set of items I=[0,A] (the continuous extension of 
{1,2,...,A}). We also have a strictly increasing differentiable function V : [0,T] →  [0,A] where, for 
every r∈[0,T], V(r) denotes the cumulative number of items in the sources in the interval [T-r,T]. If 
sources are arranged in decreasing order of number of items they have, this definition guarantees that 
the function 
 ( ) ( )r V ' rρ =  (1) 
 
is not only positive but that it also increases: the function ρ  can be interpreted as the density of the 
items at the source T-r. With an abuse of notation we define, for every i∈[0,A], 
 
 ( ) ( )( )1i V ' V iρ −=  (2) 
 
meaning that we put ρ (i)=ρ (r) iff i=V(r) (the relation r↔ i being unique since V is injective). 
Although it is not necessary, we will assume that ρ (0)=1, the minimal item-density of a source. The 
value ρ (A)= (T) is the maximal item-density of a source. In discrete terms it is the maximum 
production of a source. 

ρ

 
For this IPP we define the size-frequency function f as a positive function on the interval [1,ρ (A)], 
where f(j) (for each j∈[1,ρ (A)]) is the density function of sources as a function of j, i.e. for every 
i∈[0,A] 
 

 ( )
( )i

1
f j dj

ρ

∫  (3) 

 
is the cumulative number of sources with item-density j∈[1, ρ (i)]. To define the rank-frequency 
function g we express that, for every j∈[1, ρ (A)] 
 

 ( )
( )A

j
f j' dj'

ρ

∫  (4) 

 
denotes the cumulative number of sources with item-density j or higher. Hence, by definition 
 

 ( ) ( )
( )A

j
r r j f j' dj

ρ
= = '∫  (5) 

 
and finally, g:[0,T]→ [1, ρ (A)] is defined as the inverse of the function r=r(j). Thus 
 

 ( ) ( )
( )A

1

j
g j f j' dj

ρ
− = '∫  (6) 
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defines g-1, hence g. So j=g(r) is the item-density in the source r. From (6) it follows trivially that, for 
all j∈[1, ρ (A)]: 
 

 ( )
( )( )1

1f j
g ' g j−=− , (7) 

 
an identity that we will use frequently in the next section. For more on two-dimensional informetric 
theory, we refer the reader to Egghe (1989, 1990) and to Egghe and Rousseau (1990a, 2003). 
 
Note that, in Lotkaian informetrics, f corresponds to the law of Lotka and g to the law of Mandelbrot 
which is (by (6) and (7)) equivalent with Lotka’s law (see again Egghe and Rousseau (1990a)). 
 
III.  Linear three-dimensional informetrics
 
In this section we intend to give a mathematical description of linear three-dimensional informetrics 
(cf. the first example on three-dimensional informetrics, given in the previous section). Here we have a 
first IPP with source set S1=[0,T1] and item-set I1=[0,A1] and with f1 and g1 as size-frequency, 
respectively, rank-frequency function as defined in section II. Then we have a second IPP for which 
S2=[0,T2]=I1=[0,A1] by definition (hence the items in the first IPP are the sources of the second IPP), 
defining a new item-set I2=[0,A2] for this second IPP. In this second IPP we have a size-frequency 
function f2 and a rank-frequency function g2. 
 
We can now state the following problem : 
 
Problem III.1 : Give a mathematical description of the “composed” IPP with source-set S=S1=[0,T1] 
and item-set I=I2=[0,A2]: describe its size-frequency function f and its rank-frequency function g. This 
composed IPP has sources in S1 which produce items (in the first IPP) in I1 which is considered as the 
source-set in the second IPP, which sources produce items in I2. 
 
We will give a complete solution in the following special (but most important) case. 
 
Restriction III.2 : In this paper we will restrict ourselves to the case that the source-rankings r2 in the 
second IPP are the same as the rankings in I1, induced by the source-rankings r1 in the first IPP. We 
will express this restriction in an exact mathematical way but first we give an intuitive interpretation: 
items in I1 are ranked according to the ranking we have in S1 (as always, sources are ranked in 
decreasing order of production). Considering I1=S2 as sources in the second IPP, we require that their 
productivity in the second IPP is such that the source-ranking r2 in this second IPP is the same as the 
one we have already in I1. An exact formulation of this restriction is 
 

 ( )1r

2 10
r g r= dr∫  (8) 

 
This situation will be proved to be a case of positive reinforcement of production of the first IPP. We 
will first define “positive reinforcement”. 
 
Definition III.3 : Let S=[0,T], I=[0,A] be an IPP with rank-frequency function g. Let I*=[0,A*]. We 
say that the IPP (S,I*) is a positive reinforcement of the IPP (S,I) if its rank-frequency function g* is 
given by 
 *g gϕ= ° , (9) 
 
where ϕ  is a strictly increasing function. 
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The interpretation of the above definition is clear: the positively reinforced IPP (S,I*) has the same 
sources but with an increased productivity, given by (9). 
 
We have the following basic result on linear three-dimensional informetrics. The used elementary 
calculus can e.g. be found in Apostol (1957). 
 
Theorem III.4 : Let the first IPP have source-set S1=[0,T1], item-set I1=[0,A1], size-frequency 
function f1 and rank-frequency function g1 and let the second IPP have source-set S2=[0,T2]=I1=[0,A1], 
item-set I2=[0,A2], size-frequency function f2 and rank-frequency function g2. Then the composed IPP 
(under restriction III.2) has source-set S=S1, item-set I=I2, rank-frequency function 
 
 1g gϕ= ° , (10) 
where 

 ( )
( )( )

1

1
1 2 ' 1j

1 1

jdjj g
g g j

ρ
ϕ −

⎛ ⎞⎟−⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∫  (11) 

 

 ( ) ( )1

1
1 2 1j
j g jf j d

ρ
ϕ ⎛ ⎟⎜= ⎟⎜ ⎟⎝ j⎞⎠∫  (12) 

 
is a strictly increasing function. Hence the composed IPP is a positive reinforcement of the first IPP. 
Its size-frequency function f has the form 

 ( )
( )( )
( )( )

1
1

' 1

f j
f j

j

ϕ

ϕ ϕ

−

−=  (13) 

 
j∈[1, (ρϕ 1)], where ρ 1=ρ (A1)= (Tρ 1), the maximal item-density in the first IPP. 
 
Proof : Since g2 acts on the ranks r2 in the second IPP and since the restriction (8) defines the relation 
between r1 and r2, we have that the composed IPP has the following rank-frequency function g: 
 

 ( ) ( )1r

1 2 10
g r g g r dr⎛ ⎞⎟⎜= ⎟⎜ ⎟⎝ ⎠∫  (14) 

 
Now we are looking for a function  such that ϕ
 
 ( ) ( )( )1 1g r g rϕ= ° 1  (15) 
 
We will prove its existence via (14), show that ϕ  strictly increases and hence that the composed IPP is 
a positive reinforcement of the first one. 
 
If such a ϕ  exists then, (14) and (15) combined yield 

 ( )( ) ( )1r

1 1 2 10
g r g g r drϕ ⎛ ⎞⎟⎜= ⎟⎜ ⎟⎝ ⎠∫ . 

Substituting r = g1
-1(j) gives 

 ( )
( )( )

1 1

1

r j

1 ' 10
1 1

jdjg r dr
g g jρ −=∫ ∫  

 
since g1(0)=ρ 1 (see (6)) and where r1=g1

-1(j1), the existing relation between j1 and r1 in the first IPP. 
Hence 
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 ( )
( )( ) ( )1 1

1 1

j

1 2 2 1' 1 j
1 1

jdjj g g jf j d
g g j

ρ

ρ
ϕ −

⎛ ⎞⎟ ⎛ ⎞⎜ ⎟⎜ ⎟⎜= =⎟ ⎟⎜ ⎜ ⎟⎟ ⎝ ⎠⎜ ⎟⎟⎜⎝ ⎠
∫ ∫ j  

 
using (7), hence proving (11) and (12). That ϕ  strictly increases follows easily from (11): 

 ( )
( )( ) ( )( )

1

1

j
' ' 1

1 2 ' 1 ' 1
1 1 1 1

jdj jj g .
g g j g g jρ

ϕ − −

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∫  

 
since j1 ≥ 1>0 and since  and  are negative (by (6)), '

2g '
1g 'ϕ >0. Hence linear three-dimensional 

informetrics is an example of positive reinforcement. 
 
Let us now determine the size-frequency function f of this positively reinforced IPP. Invoke (7): 

 ( )
( )( )1

1f j
g ' g j−=−  

and then (10) gives r1∈[0,T1], j∈[1, (ϕ ρ 1)], g(r1)=j: 
 
 ( ) ( )( ) ( )'

1 1 1 1g ' r ' g r g rϕ= 1  
 

 ( )( ) ( )( )( ) ( )( )1 1 '
1 1g ' g j ' g g j g g jϕ− −= 1−  

 
But g=ϕ °g1, hence g-1=g1

-1°ϕ -1 hence 

 ( )( ) ( )( ) ( )( )( )1 1 ' 1
1 1g ' g j ' j g g jϕ ϕ ϕ− − − −= 1  

So, by (7), 

 ( )
( )( ) ( )( )( )

( )( )
( )( )

1
1

11 ' 1 1
1 1

f j1f j
' j' j g g j

ϕ

ϕ ϕϕ ϕ ϕ

−

−− − −
=− =  

 
for all j∈[1,ϕ (ρ 1)], again using (7) in the first IPP.                    � 
 
Corollary III.5 : Let µ1 be the average number of items per source (i.e. µ1=A1/T1) in the first IPP and 
µ be the average number of items per source in the positively reinforced IPP. Then 
 
 1µ µ≥  (16) 
 
Proof : Since the number of sources in both the first and the reinforced IPP are the same (being T1) we 
have, by (6) and (10) 

 ( )1T

1 10
1

1 g r dr
T

µ= ∫  

 

                                                                     ( )( )1T

1 1 10
1

1 g r dr
T

ϕ= ∫  

 

                                                                     ( )1T

1 1 1 10
1

1 g r dr
T

µ≥ =∫  

since . This follows from the fact that  and by (10).                       � 1ϕ≥ g 1≥
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Corollary III.6 : If the first IPP is Lotkaian (i.e. if f1 is a power law) and if ϕ  is a power law then the 
positively reinforced IPP is also Lotkaian. 
 
Proof : Let 
 ( )x Bxβϕ =  (17) 

0β>  (hence ( )
1

1 jj
B

β
ϕ− ⎛ ⎞⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

) and  

 ( )
11 1

1

Cf j
jα

=  (18) 

( )0α> . Then, by (13) 

 ( )
1 1

C 1f j
j jB
B B

α β
β β

β

−=
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 

 

 ( )
1

1

1

1
C 1f j B

j

α
β

α β
ββ

−

+ −=  (19) 

 which is also a power function, hence a Lotka law with exponent 
 

 1 1α β
α

β
+ −= . (20) 

� 
Examples III.7 : 
(i) If β =1, i.e. ϕ  is linear, then  as could be expected. 1α α=
(ii) For β =2 we have that 

 1 1
2

α
α

+= . (21) 

 
This is the case that ϕ (x) is proportional to x2. This case has links with the “Type/Token-
Taken” theory of Egghe (2002) in which one does not measure the source-item 
(=Type/Token)-relationship but the source/used-item relationship. Examples of this are 
- books (sources) are borrowed (a loan being an item) but the more a book is borrowed, 

the more it is encountered (when one wants to borrow it) as “in use”; i.e. sources with 
a high number of items are encountered more in use, 

- search keys (e.g. N-grams) occur in a database (via books) but frequently occurring 
search keys are also encountered more often than less-frequently occurring search 
keys. 

(iii)  If β >1 and >1, then : indeed, 1α 1α α< 1α >1 and β >1 implies ( )1 1α β β− > −1

1− <
 hence 

, hence, by (20), 1 1α β α β+ 1α α< . 
 
IV.  Concentration aspects 
In the previous section we showed that linear three-dimensional informetrics yields a positive 
reinforcement of the first IPP: in terms of the rank-frequency distribution g1 of the first IPP, the rank-
frequency distribution g of the reinforced IPP has the form g=ϕ °g1 (cf.(10)), where  is given by 
(11) or (12). 

ϕ
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Each IPP represents an unequal situation expressed by the values of the rank-frequency function: if g 
represents the rank-frequency function of an IPP with T items, then we calculate the inequality in the 
numbers g(r), r∈[0,T] by considering its Lorenz curve.  
 
This curve is constructed (see Egghe (2003)) by the following formulae 
 

 ( )( )
( )

( )

1

1

yT 1

11
1 T 1

11

g r dr
L g y

g r dr

+

+= ∫
∫

 (22) 

 

 ( )( ) ( )( )
( )( )
( )( )

1

1

yT 1

11
1 T 1

11

g r dr
L g y L g y

g r dr

ϕ
ϕ

ϕ

+

+= ° = ∫
∫

 (23) 

 
where y∈[0,1] and where, in g1, the argument r is replaced by (substitution) r+1. 
 
We now invoke the following Theorem of Fellman (1976) on the Lorenz curves of g1 and of g=ϕ °g1

 
Theorem IV.1 (Fellman): Let L(g1) respectively L(g) denote the Lorenz curves of g1 and g=ϕ °g1. 

(x)
x

ϕ
(i) L(g)≥L(g1) iff  is increasing 

(ii) L(g)=L(g1) iff 
(x)
x

ϕ
 is constant 

(iii)       L(g)≤L(g1) iff  
(x)
x

ϕ
 is decreasing. 

We do not give the proof: it can be found in Fellman (1976) where a different formalism is used to 
define the Lorenz curve. It is, however, easy to adapt this proof to the formalism (22)-(23). The proof 
is left to the reader. 
 
It is clear that linear three-dimensional informetrics comprises all cases mentioned in Theorem IV.1. 
Indeed, let e.g. (x)=  as in (17). If ϕ Bxβ β <1, then ϕ (x)/x is strictly decreasing and hence L<L1. If 

=1 then L=Lβ 1 and, finally, if β >1, then ϕ (x)/x strictly increases and hence L>L1. These results 
confirm the one of Rousseau (1992) who defines R(x) to be proportional to ϕ (x)/x. Hence, in 
Rousseau (1992), a special case of positive reinforcement was studied namely the case where R 
increases and hence, where L>L1, i.e. the concentration in the positively reinforced IPP is higher than 
in the original IPP. The author feels that the term “positive reinforcement” should be reserved for the 
general situation expressed by Theorem III.4: indeed, the first IPP’s production is increased by 
composing g1 with ϕ  (see (10)), a strictly increasing function. Hence all productions of the sources 
are increased, hence the name “positive reinforcement”. In this case, it can still be that the 
concentration decreases, remains the same or increases, according to Theorem IV.1. Direct examples 
of a decrease are easy to give: one can even add items to all sources so that they all have equal 
production, in which case the new Lorenz curve L is the first bisector of the unit square (the smallest 
one possible). Another, more realistic, case is given by adding to all productions, the same amount of 
items in which case L is below L1 (this is called the principle of nominal increase and it is known that 
in this case inequality decreases (see Egghe and Rousseau (1990b)). 
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