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ABSTRACT 

In an old paper [M.K. Buckland. Are obsolescence and scattering related? Journal of 

Documentation 28(3), 242-246, 1972] Buckland poses the question if certain types of 

obsolescence of scientific literature (in terms of age of citations) implies certain types of 

journal scattering (in terms of cited journals). 

 

This problem is reformulated in terms of one- and two-dimensional obsolescence and linked 

with one- and two-dimensional growth, the latter being studied by Naranan. Naranan shows 

that two-dimensional exponential growth (i.e. of the journals and of the articles in journals) 

implies Lotka’s law, a law belonging to two-dimensional informetrics and describing 

scattering of literature in a concise way. 

 

In this way we obtain that exponential aging of journal citations and of article citations imply 

Lotka’s law and a relation is given between the exponent   in Lotka’s law and the aging 

rates of the two obsolescence processes studied. 
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I.  Introduction 

 

Obsolescence of literature is defined as the decreasing use of it in time, where “use” – in 

most cases – is expressed in terms of citations. Of course, citations refer to articles but can 

also be considered as citations to the journals in which these cited articles are published. It is 

then clear that use of less articles can lead to use of less journals in which these articles 

appear but this is not always the case. Indeed, take a typical citation-bibliography consisting 

of cited articles and journals. The informetrics of such a bibliography is – as always – very 

skew in the sense that few journals contain many citations, while many journals contain few 

(3, 2 or even 1) citations. Deleting a cited article, at random, from the bibliography (to 

indicate the diminishing use), probably, leads to deleting this article from a journal with 

many cited articles, since such journals have the highest probability to be encountered, and 

hence this process, in this case, does not lead to a decrease in the number of journals. Of 

course, it is always possible that the deleted article belongs to a journal that had only one 

cited article and in this case, this journal is also deleted in this process. 

 

This obsolescence process, as described here, is completely equivalent with the growth 

process to be described now: let us have a situation where we have t Î ¥  articles (here one 

can consider cited as well as published articles), scattered over a certain number of journals, 

where journals contain diverse quantities of articles. Note that we can interpret t (the total 

number of articles), equivalently, as the time t, to be used in the growth process. Let us add 

one more article (the (t+1)
th

, illustrating growth). Then there is a certain chance p(n,t) that 

this new article will be published by an already existing source that had, at t, n ,n tÎ £¥  

articles but there is also a certain chance p(0,t) that this new article will be published by a 

new source (i.e. a source that, at t, did not have an article). Such mechanisms are completely 

determined by the respective probabilities p(n,t), n = 0,1,2,3,… and one usually refers to 

“success-breeds-success” (SBS) to describe such mechanisms. The mechanism is, in fact, 

wider than the describing name, where SBS refers to “the higher n, i.e. the higher the number 

of articles in an already existing source at t, the higher its probability to produce the (t+1)
th

 

article”. Indeed, the mechanism is general enough to comprise other allocation schemes such 

as even “failure breeds failure”. For more on SBS we refer to Simon (1955), De Solla Price 
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(1976), Egghe (1995, 1996, 2003a), Egghe and Rousseau (1990, 1995, 1996) and references 

therein. 

 

The equivalence between the obsolescence process and growth process as described here is 

seen by applying the transformation 't t= - . Indeed, consider the obsolescence process 

where there is a decline of used articles when time increases (in the direction of the past). The 

transformation 't t= -  reverses time and makes us look at the future (with respect to a 

certain point in the past). Looking at the obsolescence process in this way we obtain a growth 

process 

- of used articles in existing journals 

- of journals itself, the probability of a new journal being the one for a deletion of a 

journal in the obsolescence process, as described above. 

 

This equivalence will be formalized in the sequel. 

 

The above description can be extended to the case of sources (generalizing journals) and 

items (generalizing (used) articles). The SBS-mechanism then tells us how a growth of the 

number of items is reflected in a growth of the number of sources. Without defining the exact 

mechanism (i.e. the probabilities p(n,t), n = 0,1,2,…, t Î ¥ ), one is not able to deduce the 

growth of the number of sources from the growth of the number of items and the same for the 

obsolescence of items and sources, because of the indicated equivalence. Since thus the 

source distribution does not follow from the item distribution we hence can talk about two-

dimensional growth and obsolescence models, i.e. where growth (or obsolescence) is 

described by giving the source and item growth (or obsolescence) distribution. 

 

Scattering can be defined as the distribution of items over sources, e.g. describing how many 

sources have how many items, i.e. describing the size-frequency distribution (such as e.g. the 

law of Lotka). Scattering is hence part of two-dimensional informetrics which is not only 

describing the number of items and the number of sources (this would be two times a one 

dimensional informetrics problem) but relates the sources with the number of items they 

contain (or produce). For more on this see e.g. Egghe and Rousseau (1990) or Egghe (2003a). 
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This brings us to the problem formulated by Buckland (1972): what is the relation between 

obsolescence and scattering? In Buckland (1972), this problem is discussed and reformulated 

as (using our definitions and terminology above): what is the relation between the one-

dimensional obsolescence distribution of items and the one-dimensional obsolescence 

distribution of sources (the latter considered as scattering in Buckland (1972))? In view of the 

above considerations it is not possible to derive such a relation since it depends on the SBS-

mechanism adopted. Remarkably, however, the graphs in Buckland (1972) reveal that 

Buckland, in his effort to formulate the problem in a concise way, is considering the 

obsolescence distributions of items (used articles, e.g. citations) and of sources (journals) in 

an independent way, occupying two axes of a plane, constituting two coordinates on which 

other variables might be dependent (see Fig. 1 in Buckland (1972)). Hence Buckland himself 

considers two-dimensional obsolescence. 

 

Based on the above and inspired by the graphs in Buckland (1972) we can now reformulate 

the problem of Buckland as follows: 

 

Problem of Buckland: Given two-dimensional obsolescence (i.e. the aging distributions of 

the items as well as of the sources), can one determine scattering in the sense above: two-

dimensional informetrics e.g. expressed by the size-frequency distribution? 

 

The answer to the above question is yes, as we will explain in a mathematically concise way 

in the next section. We will now indicate below how we will proceed. First of all both 

obsolescence distributions are transformed (as indicated above) to growth distributions. In 

case we assume the obsolescence distributions to be decreasing exponential distributions (the 

simplest model and conforming with the graphs in Fig. 1 in Buckland (1972)), we then obtain 

increasing exponential growth distributions (for sources as well as for items). Then we recall 

an important result of Naranan (1970) (reproved and linked with the theory of self-similar 

fractals in Egghe (2003b), see also Egghe (2003a)), stating that if sources grow exponentially 

and if items in sources grow exponentially (with the same growth rate in every source) then 

the size-frequency distribution, describing the number of sources with n Î ¥  items is 

Lotkaian, i.e. a function of the form 

 

 ( )
C

f n
n

=  (1) 
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where C, 0> . The theorem also clarifies the relation between Lotka’s exponent   and the 

two growth rates (exact relations will be given). Because of the transformation of the 

obsolescence problem into a growth problem (in an equivalent way) we will, hence, obtain 

the new result that exponential obsolescence distributions for sources and items imply a 

Lotkaian size-frequency distribution and where we have an exact relation between Lotka’s 

exponent   and the given obsolescence rates. This can be considered as the answer to the 

problem that was (implicitely) formulated by Buckland in 1972. 

 

This paper closes with the link of this theory to the theory of self-similar fractals in the same 

way as was done in Egghe (2003b) (using two-dimensional growth processes). 

 

II.  Solution of the problem of Buckland 

 

In the previous section we used discrete time t Î ¥  in order to give an intuitively more 

appealing description of what we want to study in this paper. For the mathematically correct 

description of the relation between obsolescence and scattering we need continuous time 

t +Î ¡ . 

 

We will continue using the terminology of items and sources but it is handy to interpret the 

framework in terms of used (e.g. cited) articles (as items) and of the journals in which these 

used articles are published. Two-dimensional obsolescence implies that we give the source- 

and item-obsolescence distribution. In this paper we will work with the simplest models, 

being basic simplifications of other models (see also Egghe and Rao (1992)), namely 

decreasing exponential distributions (or rather functions giving actual quantities). 

 

So we base ourselves in the present (representing time t = 0) and we look into the past 

(denoted by time t > 0). The decrease of used articles (as items) and of corresponding 

journals (as sources) is expressed by two decreasing exponential functions described as 

follows: 
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(i) The number of sources decreases exponentially in time [ ]0t 0, tÎ  in the past. Heuristic 

(discrete) interpretation: 0t  is the time (in the past) when the last source “disappears”: 

 

 ( ) 0t t

1 1N t c b
-

=  (2) 

 

 where 1c 0>  and 10 b 1< <  (to make sure that N is decreasing) are parameters. 

 

(ii) The number of items in each source decreases exponentially in time [ ]1t 0, tÎ  in the 

past. Heuristic (discrete) interpretation: 1t  is the time in the past when the source 

disappears (according to (i): i.e. when the last item in the source disappears): 

 

 ( ) 1t t

2 2q t c b -=  (3) 

 

 where 2c 0>  and 20 b 1< <  are parameters, assumed to be the same for every source 

(a simplifying assumption) ( 1t  is variable over the sources, of course). 

 

Note that 

 

 ( ) 0t t

1 1N t c b
-

=  

 

                

0t t

1

1

1
c

b

-
æ ö

÷ç ÷= ç ÷ç ÷çè ø
 

 

              

't

1

1

1
c

b

æ ö
÷ç ÷= ç ÷ç ÷çè ø

 

 

         t '

1 1c a=  

 

             ( )': M t=  (4) 
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where 
1 1

1

1
c 0, a 1

b
> = >  are parameters and where [ ]0 0t ' : t t 0, t= - Î  increases into the 

future when t decreases into the past. Similarly 

 

 ( ) 1t t

2 2q t c b -=  

 

               

1t t

2

2

1
c

b

-
æ ö

÷ç ÷= ç ÷ç ÷çè ø
 

 

             2

2

1
c

b


æ ö

÷ç ÷= ç ÷ç ÷çè ø
 

 

        2 2c a=  

 

           ( ): m =  (5) 

 

where 2 2

2

1
c 0, a 1

b
> = >  are parameters and where [ ]1 1: t t 0, t = - Î  increases into the 

future when t decreases into the past; in fact,   is the age of the source. 

 

Making now the present arbitrary, we hence arrived at the following situation: 

 

(a)  

 ( )
'' t

1 1M t c a=  (6) 

 

1 1c 0, a 1> >  is the formula for the number of sources at time 't 0> . 

 

(b) 

 ( ) 2 2m c a =  (7) 

 

, 2 2c 0, a 1> >  is the formula for the number of items in a source of age 0>  and 

2c  and 2a  are (assumed to be) the same for every source. 
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We now invoke a theorem of Naranan (1970), reproved in Egghe (2003b), see also Egghe 

(2003a)) on the relation of two-dimensional growth and scattering: 

 

Theorem II.1 (Naranan): 

Under the assumptions (a) and (b) above, we have that 

 

 ( )
C

f j
j

=  (8) 

 

for j 0> , where f(j) denotes the size-frequency distribution, i.e. f(j) is the density of sources 

with item-density j, i.e. Lotka’s law. Furthermore, the Lotka parameter   satisfies 

 

 1

2

lna
1

lna
 = +  (9) 

 

The above arguments now yield the following new result, establishing a relation between 

two-dimensional obsolescence and scattering. 

 

Theorem II.2: 

Let us have a process in which one has 

 

(i) The number of sources decreases exponentially in time [ ]0t 0, tÎ  in the past: 

 

 ( ) 0t t

1 1N t c b
-

=  

 

 where 1c 0>  and 10 b 1< <  are parameters. 

 

(ii) The number of items in a source decreases exponentially in time [ ]1t 0, tÎ  in the 

past: 

 

 ( ) 1t t

2 2q t c b -=  
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 where 2c 0>  and 20 b 1< <  are parameters. 

 

Then, if f(j) denotes the size-frequency distribution, describing the density of sources with 

item-density j, we have Lotka’s law 

 

 ( )
C

f j
j

=  (10) 

 

j 0>  and where Lotka’s   is given by 

 

 1

2

ln b
1

ln b
 = +  (11) 

 

Proof: 

This follows readily from Theorem II.1, using formulae (4) and (5). Formula (11) follows 

from formula (9) by using that 1

1

1
a

b
=  and 2

2

1
a

b
= .                            

 

Corollary II.3: 

If the obsolescence rates 1b  and 2b  are equal, then Lotka’s 2= . 

 

This closes the logical reformulation of the problem of Buckland as well as its solution. 

 

III.  Two-dimensional growth or obsolescence and 

the link with self-similar fractals 

 

In Egghe (2003b), based on Theorem II.1 of Naranan, one could show that systems as 

described in Theorem II.1 can be considered as self-similar fractals with fractal dimension D 

being equal to 

 

 1

2

ln a
D

lna
=  (12) 
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hence, using formula (9) 

 

 D 1= - . (13) 

 

Reformulated in terms of the obsolescence aging rates 1b  and 2b  we hence have, using (11) 

that 

 

 1

2

ln b
D 1

ln b
= - =  (14) 

 

Intuitively, a self-similar fractal (in a k-dimensional space, k = 1,2,3,…) is a subset of k¡  

such that, when we reduce the set by a factor 0 1< < , we need N 1>  times this reduction 

in order to cover the original set and then its fractal dimension is given by 

 

 
ln N

N
ln

=
-

 (15) 

 

The fractal dimension is a measure of “how spread out” the fractal is – see Egghe (2003a) for 

a more detailed description – and hence is a measure of its complexity. Formula (12) (and 

hence also formula (14)) is obtained by applying the reduction 

t

t

2

2

1
b

a

æ ö
÷ç ÷= ç ÷ç ÷çè ø

 (the number of 

items in a source expresses the scale at which we look at the process) and then expressing 

that we need 

t

t

1

1

1
a

b

æ ö
÷ç ÷= ç ÷ç ÷çè ø

 sources (times the number 1c = the number of sources at t = 0). As in 

Egghe (2003b) we have the following corollary: 

 

Corollary III.1: 

The obsolescence rates 1b  and 2b  are the same then we have a self-similar fractal with fractal 

dimension equal to 1. 

 

This follows readily from formula (14). 
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