
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Properties of the n-overlap vector and n-overlap similarity theory

Peer-reviewed author version

EGGHE, Leo (2006) Properties of the n-overlap vector and n-overlap similarity

theory. In: JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION

SCIENCE AND TECHNOLOGY, 57(9). p. 1165-1177.

DOI: 10.1002/asi.v57:9

Handle: http://hdl.handle.net/1942/747



 1 

Properties of the n-overlap vector 

and n-overlap similarity theory 

 

by 

 

L. Egghe 

 

Universiteit Hasselt (UHasselt), Agoralaan, B-3590 Diepenbeek, Belgium
1
 

and 

Universiteit Antwerpen (UA), Campus Drie Eiken, Universiteitsplein 1, B-2610 Wilrijk, 

Belgium 

 

leo.egghe@uhasselt.be 

 

ABSTRACT 

 

In the first part of this paper we define the n-overlap vector whose coordinates consist of the 

fraction of the objects (e.g. books, N-grams,…) that belong to 1, 2,…, n sets (more generally: 

families) (e.g. libraries, databases,…). With the aid of the Lorenz concentration theory we 

build a theory of n-overlap similarity and corresponding measures, such as the generalized 

Jaccard index (generalizing the well-known Jaccard index in case n 2= ). 

 

Next we determine the distributional form of the n-overlap vector assuming certain 

distributions of the object’s and of the set (family)-sizes. In this section the decreasing power 

law and decreasing exponential distribution is explained for the n-overlap vector. Both item 

(token) n-overlap and source (type) n-overlap are studied. 
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The final section is devoted to the n-overlap properties of objects indexed by a hierarchical 

system (e.g. books indexed by numbers from a UDC or Dewey system or by N-grams). We 

show that the results of Section II can be applied here. We also show that the Lorenz-order of 

the n-overlap vector is respected by an increase or a decrease of the level of refinement in the 

hierarchical system (e.g. the value N in N-grams). 

 

 

I.  Introduction 

 

Overlap is an important topic in information science. The simplest type of overlap is the one 

between two sets A and B, where A and B can be libraries, databases or (more generally) 

collections of objects and where one counts the number of objects that are common to both 

sets. So, essentially, one studies A BÇ , the number of objects in the intersection of A and B. 

Next one determines relative measures of overlap, where one divides A BÇ  by a 

“normalizing” number e.g. 

 

 
A B

J
A B

Ç
=

È
 (1) 

 

(Jaccard’s index) or the asymmetric measures 

 

 
( )1

A B
O

min A , B

Ç
=  (2) 

 

 
( )2

A B
O

max A , B

Ç
=  (3) 

 

(cf. also Salton and McGill (1983), Gluck (1990), Hood and Wilson (2003), Egghe and 

Rousseau (2005)). Other measures can be built from (2) and (3), e.g. the harmonic average of 

1O  and 2O  (leading to Dice’s coefficient) or the geometric mean of 1O  and 2O  (leading to 

Salton’s cosine measure) – see again Salton and McGill (1983) or Egghe and Rousseau 

(2005). 
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Basic in overlap is the notion of equality, required for an exact definition of the sets A and B. 

Mathematically this is a clear notion (boiling down to the concept of element of a set) but in 

practise (in information science) it is a delicate notion to define. Let us consider the case of 

two libraries A and B. How can their overlap be defined? Everything depends on what one 

wants to study. From the cataloger’s point of view (and in the connection of making union 

catalogs) one uses the finest methods to make a distinction between books e.g. expressed by 

the ISBN. Here soft- and hardcovers of the “same” book are considered to be different. For 

the library user, most probably, they will be considered the same. Even old and new editions 

of the “same” book can be considered the same by library users if their content is the same (or 

almost the same). 

 

In a way we can say that overlap is determined by the hierarchical level of the description 

(indexing) of an object and this object’s description replaces the object in the sets A and B. 

An example is the description of books in libraries using a topical numbering systems such as 

UDC or Dewey or the description of articles using subject-dependent classification systems. 

Another example is given by using N-grams for the book description (e.g. the first N letters in 

the title or a combined system of letters in authors’ names and title’s words  - see e.g. Egghe 

(2000) and references therein). It is clear that the degree of refinement (expressed by the 

length of the UDC or Dewey number or by N, the number of letters (more generally: symbols) 

in an N-gram) of the indexing is of direct influence on the measurement of the overlap of sets 

A and B. 

 

A second important aspect in the definition of overlap is the fact that overlap can be measured 

using type or using token (in the linguistical terminology). Type means the object as such and 

token the uses (or occurrences) of this object. So does it make a difference whether or not we 

consider a book, of which 5 identical copies are in a library, as being once (type) or 5 times 

(token) in a library and the same for the overlap between two libraries (also in the connection 

of relative measures of overlap: do we consider the total number of token or of type ?). Both 

types of overlap will be studied in this article. Since sets can only contain an element once it 

is better to consider A and B as families, the mathematical notion of “sets” where identical 

elements can occur. 
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Notationally we can also consider sets A and B as consisting of objects and where we 

consider their (hierarchical) description (i.e. indexing) as type, denoted by ( )F A  and ( )F B  or 

as token, denoted by ( )G A  and ( )G B . Let us give a simple example. A and B are libraries. 

Let A have 6 books and let B have 4 books. Let their 3-gram descriptions be (as token) (with 

index 3 to denote 3-grams) 

 

  ( ) { }3G A abc,abb,abc,cad,dbc,ccc=  

  ( ) { }3G B abc,abb,abb,abc=  

 

then we have 

 

  ( ) { }3F A abc,abb,cad,dbc,ccc=  

  ( ) { }3F B abc,abb=  

 

If we consider their 2-gram descriptions then we have (right truncation) 

 

  ( ) { }2G A ab,ab,ab,ca,db,cc=  

  ( ) { }2G B ab,ab,ab,ab=  

 

and 

 

  ( ) { }2F A ab,ca,db,cc=  

  ( ) { }2F B ab=  

 

Note also that ( ) ( )3 2G A G A=  and the same for B and that this equality is false for F. 

 

Particularly when we study N-gram overlap (in the last section), the above notation will be 

handy. 
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So, summarizing, the study of overlap (between two families A and B) requires the definition 

of equality of objects (which we consider to be established, throughout this paper) and the 

choice between type overlap or token overlap (exact definitions will be given in Section II – 

in Section I it does not matter whether we consider the overlap for tokens or for types). 

 

Let us now turn our attention to n-overlap meaning aspects of overlap between n families, 

denoted as 1 nD ,...,D  (recall that we keep the full generality by using families but these can be 

ordinary sets as well, of course). Essentially we can consider n aspects of overlap namely 

objects belonging to only one family or to exactly 2 families, …, or to all n families. Let us 

denote, for k 1,...,n=  

 

 
( )k fraction, with respect to the union of all families,

of the objects that belong to exactly k families

 =
 (4)  

 

(we will specify this more in Sections II and III also making the difference between type and 

token overlap). 

 

Then we can consider the n-overlap vector 

 

 ( ) ( ) ( )( )1 , 2 ,..., n   =  (5) 

 

Note that only n 1-  of these n coordinates are independent since 

 

 ( )
n

k 1

k 1
=

=å . (6) 

 

The study of this vector will be the main topic of this paper. Theoretically,   can be any 

vector satisfying (6). There are not many studies that deal with n-overlap. In Hood and Wilson 

(2003) one presents a 12-overlap vector (in table form) on the overlap of records on fuzzy set 

theory across 12 databases. More correctly, the n in Hood and Wilson, is not 12 but (as they 

indicate) “over 100” where all values ( )k 0 =  for k 12> . In this sense, the data of Hood 
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and Wilson (2003) fit into our framework (5). Their twelve ( ) ( )1 ,..., 12   values are as in 

table 1 (multiplied by 15,644 to yield the actual numbers). 

 

Table 1.  Hood and Wilson (2003) data 

 

i 15,644 ( )i  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

9,897 

1,922 

1,299 

1,209 

781 

344 

122 

40 

8 

10 

7 

5 

Total 15,644 

 

 

As is clear from Table 1, ( )k  is decreasing (except for 2 objects in ( )10 ). It is indeed a 

general intuition that   should be decreasing. An elementary (but too elementary) 

explanation of this is as follows: let p be the probability for an object to belong to one 

database ( 0 p 1< <  and assumed to be equal for all databases). If independence applies 

(which is not always the case) then we have that the probability to belong to k databases is 

kp , hence ( ) kk p = , a decreasing function. 

 

An example of the most extreme case of an increasing vector  , being ( )0,0,...,0,1=  is 

given by n databases of documents where their 1-gram indexing (i.e. rough indexing with one 

letter) comprises all 1-grams A,...,Z  in all databases, hence ( ) ( ) ( )1 2 ... n 1 0  = = = - =  

and ( )n 1 = . 

 

In the next section we will study the n-vector   from a Lorenz-curve point of view. Here we 

suppose   to be decreasing or increasing. We will determine the Lorenz-curve of   and we 
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deduce, in case n 2= , the classical overlap similarity measure J (formula (1)) from the 

Lorenz-curve. Next we generalise this method for general n and present nJ , the n-overlap 

similarity measure, extending 2J J= . To the best of our knowledge it is the first time that a 

similarity measure for n-overlap is presented and the presented Lorenz theory of n-overlap 

allows for comparisons of n-overlap vectors. 

 

In the third section we will derive explicite functional forms for the n-overlap vector   for 

type as well as token n-overlap which we will define in an exact way. Based on well-

established type-token distributions (e.g. Zipfian ones) and on well-established rank-size 

distributions for databases (e.g. Zipfian or decreasing exponential) we derive the decreasing 

power-law functionality or the decreasing exponential functionality for the vector  , the most 

evident candidates for a decreasing n-overlap vector and fitted in Hood and Wilson (2003) on 

the data of Table 1. From these results we derive that the Lorenz-concentration of the vector 

  increases with increasing Lorenz-concentration of the type-token distribution or of the 

rank-size distribution of the databases. We also prove that in these cases the Lorenz-

concentration of the type n-overlap vector is always higher than the one of the token n-overlap 

vector. 

 

The last section studies n-overlap from a hierarchical point of view. Here only token n-

overlap can be treated. We prove that, for decreasing n-overlap vectors  , the Lorenz-

concentration curve increases with increasing hierarchical refinement. A similar result is 

proved for increasing n-overlap vectors. An example of this is given by N-grams with 

increasing N, illustrating increasing hierarchical refinement. 

 

 

II.  Lorenz theory of the n-overlap vector and a 

similarity measure of Jaccard-type for n-overlap 

 

In this section any type of overlap can be considered (type or token): we just suppose we have 

an overlap vector ( ) ( )( )1 ,..., n  =  as in (5) restricted to (6). Hence each ( )i  ( )i 1,...,n=  
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represents the fraction, with respect to the union of all families, of the objects that belong to 

exactly i families from the system of families 1 nD ,...,D . 

 

The case n 2=  will show us how to treat the general case. Here we have that 

( ) ( )( )1 , 2  = , with 

 

 ( ) ( )1 2 1 + =  (7) 

 

The number ( )2  is the fraction of objects that belong to both families 
1D  and 

2D . Hence, 

by (1) 

 

 ( )2 J =  (8) 

 

in case n 2=  and in case 1 2A D , B D= =  are sets. Note that the above is already a 

generalization of the Jaccard index in case 1 2D , D  are families and where we consider token 

2-overlap: ( )2  equals the fraction of the tokens that appear in both families 1 2D , D . 

 

Let us suppose that   is decreasing (increasing is also possible, covering all cases if n 2= ; 

the Lorenz-curves in this case are mirrors (over the diagonal y x= ) of the ones obtained in 

case   decreases). So ( ) ( )1 2 ³ . The Lorenz-curve of   consists of the straight line 

connection of ( )0,0  with ( )
1

, 1
2


æ ö

÷ç ÷ç ÷çè ø
 with ( )1,1  (see Egghe and Rousseau (2001) for a simple 

description of how to construct Lorenz-curves or see the general description (general n) 

below). Its graph L  can be depicted as in Fig. 1. 
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Fig. 1. Lorenz-curve of   for n 2= . 

 

 

The Lorenz-theory gives that, the higher L , the more concentrated (unequal) are the values 

( ) ( )( )1 , 2  . The area under L  (related to the well-known Gini index – cf. Egghe and 

Rousseau (1990)) is known to be a good measure of concentration because it gives higher 

values for more concentrated (i.e. higher Lorenz-curves L ) situations. This area   equals 

 

 ( ) ( )
3 1

1 2
4 4

  = +  

 

 
3 J

4 2
 = -  (9) 

 

using (7) and (8). Hence 

 

1

0 1

2
1






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3

J 2
2

= -  (10) 

 

is a good measure of the opposite of inequality in the vector  , hence is a good measure of 

similarity in the vector   hence of  2-overlap similarity. In general, any decreasing function 

of   can be considered as a good measure of similarity. We will now extend these ideas to 

general n-overlap vectors ( ) ( )( )1 ,..., n  = . 

 

We suppose   to be decreasing. The Lorenz-curve of   connects (linearly) ( )0,0  with the 

points 

 

 ( )
i

j 1

i
, j

N


=

æ ö
÷ç ÷ç ÷ç ÷çè ø

å  (11) 

 

i 1,...,n= , this point being ( )1,1  for i n= , by (6). Its graph is depicted in Fig. 2. 
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Fig.2. Lorenz-curve of  , general n 

 

Let us now calculate (as we did in the case n 2= ) the value   being the area under L : 

 

  
( ) ( ) ( )

( ) ( )( )
( )1 1 2 31 1 1 1

1 2
2 n n 2 n n 2 n

   
  = + + + + +  

 

   ( ) ( ) ( )( )
( )

( ) ( )( )
41 1 1

1 2 3 ... 1 ... n 1
n 2 n n


    + + + + + + + + -  

 

   
( )n1

2 n


+  

1

0 1

n
1









n

2

n

3

n

n-1

n
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  ( ) ( ) ( )
1 n 1 1 n 2 1 n 3

1 2 3
2n n 2n n 2n n

   
æ ö æ ö æ ö- - -÷ ÷ ÷ç ç ç= + + + + +÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

 

 

   ( ) ( )
1 1 1

... n 1 n
2n n 2n

 
æ ö

÷ç+ + - + +÷ç ÷çè ø
 

 

 ( )
( )n

k 1

2n 2k 1
k

2n
 

=

- -
= å  

 

 

 ( )
n

k 1

2k 1
1 k

2n
 

=

-
= - å  (12) 

 

, a good measure of Lorenz-inequality in the n-overlap vector ( ) ( )( )1 ,..., n  = . Hence, any 

increasing function of 

 

 ( )
n

k 1

2k 1
S k

2n


=

-
= å  (13) 

 

is a good measure of similarity in the n-overlap vector  . Amongst all these good measures 

we will now derive the generalized n-overlap Jaccard measure nJ  (hence such that 2J J= ). 

For n 2=  we see that 

 

     ( ) ( )
1 3

S 1 2
4 4
 = +  

 

        ( )
1 3

1 J J
4 4

= - +  

 

     
1 1

S J
4 2

= +  

 

So 
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 ( )
1

2 J 2 S
4


æ ö

÷ç= = - ÷ç ÷çè ø
 (14) 

 

For n 3=  we find 

 

    ( ) ( ) ( )
1 3 5

S 1 2 3
6 6 6
  = + +  

 

       ( ) ( )( ) ( ) ( )
1 3 5

1 2 3 2 3
6 6 6

   = - - + +  

 

       ( ) ( )
1 1 2

2 3
6 3 3

 = + +  

 

So 

 

 ( ) ( )
1

2 2 3 3 S
6

 
æ ö

÷ç+ = - ÷ç ÷çè ø
 (15) 

 

which extends ( )J 2=  in case ( )3 0 = . In general we have 

 

 ( ) ( ) ( ) ( )
1 3 5 2n 1

S 1 2 3 ... n
2n 2n 2n 2n

   
-

= + + + +  

 

  

 ( ) ( ) ( )( ) ( ) ( ) ( )
1 3 5 2n 1

S 1 2 3 ... n 2 3 ... n
2n 2n 2n 2n

     
-

= - - - - + + + +  

 

 ( ) ( ) ( )
1 1 2 n 1

S 2 3 ... n
2n n n n

  
-

= + + + +  

 

So 
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 ( ) ( ) ( ) ( )
1

2 2 3 ... n 1 n n S
2n

  
æ ö

÷ç+ + + - = - ÷ç ÷çè ø
 (16) 

 

extends each previous case ( )i 2,...,n 1= -  and is an increasing function of S, hence a good 

measure of similarity in the n-overlap vector  . We therefore define 

 

 ( ) ( )
n

n

k 2

J k 1 k
=

= -å  (17) 

 

to be the generalized Jaccard index for the n-overlap (generalizing the classical Jaccard index 

2J J=  for 2-overlap). 

 

 

III.  Functional expressions for the n-overlap vector 

  

 

III.1  Type and token n-overlap 

In this section we will study n-overlap in two versions: type and token n-overlap, defined as 

follows. Let us have n families 1 nD ,...,D  consisting of objects that are characterized 

(indexed) using a certain source set S (e.g. a set of N-grams as types but the representation 

can be anything). Let us denote, for k 1,...,n=  

 

( )kF D     =  the set of those sources in S that occur (as representation) 

     in kD  as type           (18) 

( )kG D    =  the family of those occurences of sources (i.e. items) in S  

    that occur (as representation) in kD  as token      (19) 

 

Note that, as already remarked in the first section, that ( ) ( )k k kF D G D D£ =  for every 

k 1,...,n=  (of course ( )kG D  denotes the total number of elements, with their repetition, as 

they occur in kD ). 
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Let us now define the n-overlap vectors for type and token. 

 

We denote, for k 1,...,n=  

 

 ( )k =  the fraction (with respect to ( )
n

i
i 1

F D
=
È ) of the sources (from S) 

    that belong to exactly k sets out of the ( ) ( )1 nF D ,...,F D .     (20) 

 

Let us denote by 

 

 ( )
n

i
i 1

G D
=
È  

 

the family consisting of all elements of each ( )iG D , with their repetition. Denote, for 

k 1,...,n=  

 

( )k = the faction (with respect to ( )
n

i
i 1

G D
=
È ) of the occurrences of the sources (i.e. 

the items) that are spread out over exactly k families out of the 

( ) ( )1 nG D ,...,G D .          (21) 

 

Let us denote by   the vector ( ) ( )( )1 ,..., n   and by  the vector ( ) ( )( )1 ,..., n   being two 

examples of an n-overlap vector   as defined in the previous sections. It is trivial that we 

have 

 

 ( ) ( )
n n

k 1 k 1

k k 1 
= =

= =å å  (22) 

 

Let us give a simple example where the source set consists of letters of the alphabet. 

 

    ( ) { }1G D a,b,a,c,d,e=  
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    ( ) { }2G D b,d,f ,g,b,e,e=  

    ( ) { }3G D b,h,h=  

 

Then 

 

    ( ) { }1F D a,b,c,d,e=  

    ( ) { }2F D b,d,f ,g,e=  

    ( ) { }3F D b,h=  

 

We have 

 

    ( ) { }
3

i
i 1

F D a,b,c,d,e,f ,g,h
=
È =  

 

( ) { }
3

i
i 1

G D a,a,b,b,b,b,c,d,d,e,e,e,f ,g,h,h
=
È =  

 

Hence 
5 2 1

, ,
8 8 8


æ ö

÷ç= ÷ç ÷çè ø
 and 

7 5 4
, ,

16 16 16


æ ö
÷ç= ÷ç ÷çè ø

. This makes it also obvious that  ¹  and hence 

that it is worthwhile to study both n-overlap vectors. In the sequel we will show relations 

between these n-overlap vectors   and  . 

 

We will now prove some functional forms for the functions ( )k k®  and ( )k k® , 

k 1,...,n=  supposing some functional relations for 

 

 (1) the source-item relationship (as they occur in ( )
n

i
i 1

G D
=
È ) 

(2) the sizes of the families iD , i.e. iD , the number of elements (with repetition) 

in the families iD , i 1,...,n= . 

 

At the same time we claim (and we will prove it) that these two attributes are determining n-

overlap (both   and  ), a fact that has not been remarked before. 
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III.2  Source-item and families’ sizes relationships 

In Egghe (2005a) (and many references therein) it is shown that the power law relationship 

for source-items as well as for sizes of sets (extendable to sizes of families) is the most 

common and most accepted functional relation. This means the following. We define the 

overall source-item (i.e. type-token) rank-frequency distribution to be Zipfian: 

 

 ( )
D

P r
r

=  (23) 

 

where ( )P r  denotes the fractional density of items in the source on rank-density r 1³  and 

where 0> . 

 

Next, comparable with city-sizes or journal-sizes we define the families’ sizes, also in the 

rank-frequency form, to be a Zipfian function (not distribution): denote by ( )kD k 1,...,n=  

the number of elements (with repetition) in the family kD , then, with 0 > : 

 

 ( ) k

C
h k D

k
= =  (24) 

 

(i.e. the families are ranked in decreasing order of kD ). 

 

III.3  General aspects of n-overlap 

In the next subsections we will make distinction between type- and token-n-overlap, but both 

forms of n-overlap are determined by the same model. 

 

Since (23) expresses the overall probability for a source element to occur (i.e. as an item) and 

since (24) expresses the number of “possible occurrences” in kD  ( )k 1,...,n=  we have that an 

item occurs in exactly k families if and only if, for k 1,...,n 1= -  

 

 
( )

D C D C
1

r k r k 1
  

³ >
+

 (25) 
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, i.e. counting an occurrence as existing from 1 onwards (the right inequality can be deleted 

for k n= , keeping the first one). Relation (25) expresses that the source on rank r appears (or 

rather “is used”) in family kD  (hence also in the families 1 k 1D ,...,D - , because of (24)) and 

not in the family k 1D +  (hence also not in the families k 2 nD ,...,D+ , again because of (24)), 

hence that the source on rank r appears in exactly k sets ( ) ( )1 kF D ,...,F D  as type and k 

families ( ) ( )1 kG D ,...,G D  as token. Relation (25) is equivalent with 

 

 
( )

( )
k 1 D k

P r
C r C

 



+
> = ³  (26) 

 

for k 1,...,n 1= -  and for k n=  we have 

 

 ( )
D n

P r
r C




= ³  (27) 

 

Before we can proceed further with this general model for n-overlap we first need some 

general results from source-item informetrics (also called dual informetrics theory). 

 

III.4  General aspects of source-item informetrics 

From the general source-item informetrics theory (see Egghe and Rousseau (1990), Egghe 

(2005a) and references therein) we have that 

 

 ( ) ( )
AD

j g r AP r
r

= = =  (28) 

 

is the rank-frequency function of the source-item relationship and that [ ]mj 1,Î  ( m  = 

maximum item density), being the variable of the size-frequency function ( )f f j=  denoting 

the density of the sources with item-density j. Here A denotes the total number of items in the 

system (equalling here the total number of elements ( )
n

k
k 1

G D
=
È ). We refer again to the above 
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references for a proof of the following theorem (which is a combination of results of Egghe 

and of Rousseau). 

 

Theorem III.4.1 : 

We have equivalency of 

 

(i)  

 ( )
( )'

AD
g r

1 r


=
+

 (29) 

 

 0> , [ ]'r 0,TÎ  (hence (28) with 'r 1 r 1= + ³ ) 

 

(ii) 

 ( )
E

f j
j

=  (30) 

 

1> , [ ]mj 1,Î ,  

 

 

1

1

m

E
AD

1






-æ ö
÷ç= =÷ç ÷çè ø-

 (31) 

 

and where 

 

 
1

1


= + , (32) 

 

hence Lotka’s power law for 1> . For 1=  (also interesting in this paper as we will see in 

the sequel) we have the following theorem. 

 

Theorem III.4.2 : 

If 1=  we have equivalency of 

 

 



 20 

(i) 

 ( ) rg r Hq=  (33) 

 

 [ ]r 0,TÎ  

 

(ii) 

 ( )
E

f j
j

=  (34) 

 

 [ ]mj 1,Î , 
1

E0 q e 1
-

< = <  

 

i.e. Lotka’s power law f with exponent 1=  is equivalent with the exponentially decreasing 

rank-frequency function g. 

 

The latter theorem can be found in Egghe (2005a) and Egghe and Rousseau (2003). In 

conclusion, Lotka’s power law ( )
E

f j
j

=  with 1 ³  comprises Zipf’s power law (28) (if 

1> ) and an exponentially decreasing rank-frequency function (33) (if 1= ). The latter 

model will also be applied in the connection of n-overlap. 

 

Note : 

We could also use that the distribution P (in (23)) and function g (in (28)) is a Mandelbrot 

function in which case we obtain, in Theorem III.4.1, an equivalency with Lotka’s function 

(30) for even all 0>  (instead of 1> ) (cf. Egghe (2005a)). We leave the extension of our 

model to this case to the reader. The values 0 1< <  are not very common in practise and 

including them – although allowed – would yield a mixture of different results which would 

make this paper more confusing to read and understand. 

 

We can now continue the elaboration of the general n-overlap model, expressed in (26) and 

(27). First we study type n-overlap. 
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III.5  Type n-overlap 

We can now calculate the functional form of the type n-overlap vector ( ) ( )( )1 ,..., n  = . 

 

Theorem III.5.1 : 

Under the assumptions (23) and (24) we have that the type n-overlap vector   has the form 

(note that 0 >  and 1> ) 

 

 ( )
( )

( )
( )1 1

1 1
k M

k k 1
   


- -

æ ö
÷ç ÷ç= - ÷ç ÷ç ÷÷ç +è ø

 (35) 

 

approximating a power law : 

 

 ( )
( )

( )1 1

M 1
k

k
 

 


+ -

-
»  (36) 

 

if k 1,...,n 1= -  and 

 

 ( )
( )

'

1

1
n M M

n
 


-

æ ö
÷ç= - ÷ç ÷çè ø
 (37) 

 

where M and 'M  are constants and where 1> . Hence ( )k  decreases in k. This implies 

that the Lorenz-curve of   equals 

 

 
( )

( )1

k 1
L M 1

n k 1
  -

æ öæ ö ÷ç ÷÷ç ç= - ÷÷ç ç ÷÷ç çè ø ÷÷ç +è ø
 (38) 

 

, i.e. a constant minus a power law. L  increases with   and with   (i.e. L  follows the 

increases of the Lorenz-curves of h and f). 

 

Proof : 

From (26), (27) and (28) we have 
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( )A k 1 Ak

j
C C

 +
> ³  (39) 

 

for k 1,...,n 1= -  and (since mj £  always) 

 

 m

An
j

C



 ³ ³  (40) 

 

for k n= . 

 

The size-frequency function f is needed in the distinction between type- and token-n-overlap. 

For type-n-overlap we have, in general notation, that 

 

 ( )
b

a

1
f j dj

T ò
 (41) 

 

is the fraction of sources (T = total number of sources in the system, equalling here 

( )
n

k
k 1

F D
=
È ) with item density j between a and b. For the values given in (39) and (40) we 

hence have that (41) gives the fraction of the sources (i.e. types) that belong to exactly k sets 

( ) ( )1 kF D ,...,F D , hence ( )k , k 1,...,n= . More concretely we have for k 1,...,n 1= -  : 

 

 ( )
( )A k 1

C

Ak

C

1 E
k dj

T j








+

= ò  (42) 

 

and 

 

 ( )
m

An

C

1 E
n dj

T j





 = ò  (43) 

 

where 1> , using Theorem III.4.1. Hence, for k 1,...,n 1= -  (since 1> ) 
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 ( )
( ) ( )

( )
( )

1

1 1 1

EC 1 1
k

T 1 A k k 1



    




-

- - -

æ ö
÷ç ÷ç= - ÷ç ÷ç- ÷÷ç +è ø
 

 

which is (35) for the appropriate choice of M (its exact form is of no importance here since   

is normalized). Formula (37) is found similarly. 

 

Hence, using that 

 

 
( )

( )
( ) ( )1 1 1

1 1 1

k kk 1
     - - -

¢
æ ö

÷ç- » - ÷ç ÷çè ø+
, 

 

the derivative of the function 
( )1

1
k

k
 -

® , we find (36), a decreasing power function (since   

and 1-  are 0> ). 

 

By definition of the Lorenz-curve of   (formula (11) for  = ) we have, for k 1,...,n 1= -  

that (since   decreases in k, since 1> ) 

 

 
( )

( )1

k 1
L M 1

n k 1
  -

æ öæ ö ÷ç ÷÷ç ç= - ÷÷ç ç ÷÷ç çè ø ÷÷ç +è ø
 

 

(and, as always, ( )L 0 0 =  and ( )L 1 1 = ). 

 

From this it follows that L  is an increasing function of   and of  , a fact that is already 

proved in Egghe (2005c), see also Egghe (2005a): a Lorenz-curve of a decreasing power law 

is increasing in the exponent of the power law. From this it also follows readily that L  is 

increasing with fL  and with hL , the Lorenz-curves of the Lotka-function f (expressing the 

source-item size-frequency relationship) and of the Zipf-function h (expressing the family 

rank-size relationship). This finishes the proof of the functional form (and its properties) of 

the type-n-overlap vector .                                 
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We now turn our attention to token-n-overlap. 

 

III.6  Token-n-overlap 

Now we can calculate the functional form of the n-overlap vector ( ) ( )( )1 ,..., n  = . 

 

Theorem III.6.1 : 

Under the assumptions (23) and (24) we have that the token-n-overlap vector   has the form, 

for 2 ¹  

 

 ( )
( )

( )
( )2 2

1 1
k N

k k 1
   


- -

æ ö
÷ç ÷ç= - ÷ç ÷ç ÷÷ç +è ø
 (44) 

 

approximating a power law 

 

 ( )
( )

( )1 2

N 2
k

k
 

 


+ -

-
»  (45) 

 

for k 1,...,n 1= -  and 

 

 ( )
( )

'

2

1
n N N

n
 


-

æ ö
÷ç= - ÷ç ÷çè ø

 (46) 

 

where N and 'N  are constants. Hence ( )k  is decreasing in k if 2>  and increasing if 

2< . The case 2=  is a continuous limiting case of the cases 2<  and 2>  covered in 

(44) and hence is not treated here, for the case of simplicity. The Lorenz-curve of   equals 

(for 2> , the most common case – see Egghe (2005a), Chapter I) 

 

 
( )

( )2

k 1
L N 1

n k 1
  -

æ öæ ö ÷ç ÷÷ç ç= - ÷÷ç ç ÷÷ç çè ø ÷÷ç +è ø
 (47) 
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, i.e. a constant minus a power law. Again L  increases with   and  , i.e. L  follows the 

increases of the Lorenz-curves of h and f. 

 

Furthermore, in this case 

 

 L L >  (48) 

 

everywhere (except of course in ( )0,0  and ( )1,1 ). This means that the type-n-overlap vector is 

more concentrated (unequal) than the token-n-overlap vector. 

 

Proof : 

For token-n-overlap we have, in general notation, that 

 

 ( )
b

a

1
jf j dj

Aò
 (49) 

 

is the fraction of items (A = total number of items in the system, equalling here 

( )
n n

k k
k 1 k 1

G D D
= =
È = È ) with item density between a and b. For the values given in (39) and (40) 

we hence have that (49) gives the fraction of the items (i.e. tokens) that belong to (or are 

spread out over) exactly k families ( ) ( )1 kG D ,...,G D , hence ( )k , k 1,...,n= . More 

concretely we have for k 1,...,n 1= - :  

 

 ( )
( )A k 1

C

Ak 1

C

1 E
k dj

A j








+

-
= ò  (50) 

 

and 

 

 ( )
m

An 1

C

1 E
n dj

A j







-
= ò  (51) 
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where 1> , using Theorem III.4.1 and where we suppose (as indicated above) 2 ¹ . 

Hence, for k 1,...,n 1= -  we have 

 

 ( )
( ) ( )

( )
( )

2

1 2 2

EC 1 1
k

2 A k k 1



    




-

- - -

æ ö
÷ç ÷ç= - ÷ç ÷ç- ÷÷ç +è ø

 

 

which is (44) for the appropriate choice of N (again its exact form is of no importance since   

is normalized). Formula (46) is found similarly. 

 

Hence, using that 

 

 
( )

( )
( ) ( )2 2 2

1 1 1

k kk 1
     - - -

¢
æ ö

÷ç- » - ÷ç ÷çè ø+
, 

 

the derivative of the function 
( )2

1
k

k
 -

® , we find (45). The properties of L , the Lorenz-

curve of   (a decreasing vector for 2> ) are proved in the same way as in the previous 

theorem (note that again L  increases in   and  ). 

 

As to the comparison of L  and L  we have the following result: by (38), L  is the 

normalized function of 

 

 
( )

( )1

k 1
1

n k 1
 -

® -
+

 

 

while L , by (47), is the normalized function of 

 

 
( )

( )2

k 1
1

n k 1
 -

® -
+

 

 

we have that, since ( ) ( )1 2 0   - > - >  that 
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 L L >  

 

everywhere (except in ( )0 0,0=  and ( )1,1 . This also follows from the approximate results 

(36) and (45) and the mentioned theorems on Lorenz-curves of power laws in the proof of the 

previous theorem (see Egghe (2005a) or Egghe (2005c)). This finishes the proof of the results 

on the token-n-overlap vector  .                      

 

Remark 1 : 

Also in subsection III.1 an example was given where L L > : the example 
5 2 1

, , ,
8 8 8


æ ö

÷ç= ÷ç ÷çè ø
 

7 5 4
, ,

16 16 16


æ ö
÷ç= ÷ç ÷çè ø

. Since 
5 7

8 16
>  and 

7 12

8 16
>  we indeed have L L > . Because of the above 

theorem, this result is generally valid in the case of power functions for P (hence g) and h (for 

2> ). There are, however, other cases where this result is not true. 

 

Example : 

 

    ( ) { }1G D a,a,a,b=  

    ( ) { }2G D b=  

 

Hence 

 

    ( ) { }1F D a,b=  

    ( ) { }2F D b=  

 

and 

 

    ( ) ( ) { }1 2F D F D a,bÈ =  

    ( ) ( ) { }1 2G D G D a,a,a,b,bÈ =  
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Hence ( ) ( )
3 1

1 1
5 2

 = > = , contradicting L L > . In fact, since n 2=  we have here 

L L > ! 

 

Remark 2 : 

If, in the above Theorem III.6.1, 2£  then we still can use formula (47) for L  but now L  

is constructed for an increasing vector   (as in (44)). Hence L  is now a convexly increasing 

function below the first bisectrix y x= . Alternatively, we can use its “concave equivalent” 

by reordering   as the vector ( ) ( )( )n ,..., 1   which is now decreasing (and positive since 

N 0<  now). We leave these constructions to the reader. 

 

The same remark could be made in Theorem III.5.1 if 0 1< <  where, in this case, also the 

vector   is increasing (note that now M 0< ). The same remark as above for   can now be 

made for   which execution is also left to the reader. 

 

III.7  Type- and token-n-overlap in case 1=  

In this case we assume, following Theorem III.4.2 that ( )P r  and ( )g r  are exponentially 

decreasing functions. We have the following results (only k 1,...,n 1= -  is given, the most 

important cases since the vectors are normalized). By (41), (39) and (34) we have 

 

 ( )
( )A k 1

C

Ak

C

1 E
k dj

T j





+

= ò  

 

 ( )
E k 1

k ln
T k

 
æ ö+ ÷ç= ÷ç ÷çè ø

 (52) 

 

a decreasing function of k. The Lorenz-curve of    hence has the form ( )k 1,...,n=  

 

 
( )

( )

ln k 1k
L

n ln n 1


æ ö +÷ç =÷ç ÷çè ø +
 (53) 
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By (49), (39) and (34) we have 

 

 ( )
( )A k 1

C

Ak

C

1
k Edj

A





+

= ò  

 

 ( ) ( )
E

k k 1 k
C

  é ù= + -ê úë û
 

 

, now increasing in k! Its Lorenz-curve (now starting with ( )n ,... ) is 

 

 
( ) ( )

( )

n 1 n k 1k
L

n n 1 1

 

 

æ ö + - - +÷ç =÷ç ÷çè ø + -
 (54) 

 

We close this section by replacing the families’ rank-size function h by a decreasing 

exponential one. We will explain in the sequel why we also consider this case. 

 

III.8  Type- and token-n-overlap in case h is an exponential function 

If we replace h in (24) by a decreasing exponential function of the form 

 

 ( ) k

kh k D Cb= = , (55) 

 

where 0 b 1< < , we have that condition (25) for a source on rank r to be used in exactly k 

families 1 kD ,...,D  (i.e. to appear in ( ) ( )1 kF D ,...,F D  as type and to be spread out over the k 

families ( ) ( )1 kG D ,...,G D  as token) now reads: 

 

 ( ) ( )k k 1P r Cb 1 P r Cb +³ >  

 

So 

 

 
( ) ( )
k 1 k1 1

b P r b
C C

- + -> ³  
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Hence the same argument as in (28) now leads to the following variants of (39) and (40): 

 

 
( )k 1 kA A

b j b
C C

- + -> ³  (56) 

 

For the type-n-overlap vector   we now have (same argument as in Theorem III.5.1), for 

k 1,...,n 1= -  

 

 ( )
( )k 1

k

A
b

C

A
b

C

1 E
k dj

T j


- +

-
= ò  

 

(since   is normalized we do not deal with ( )n ). Hence 

 

 ( ) ( ) ( )( )k 1 k 1 1
k M b b

 


- + -é ù= -ê úë û
 (57) 

 

where M is a normalizing factor.   is decreasing in k (for 1> ). 

 

For the token-n-overlap vector   we have (same argument as in Theorem III.6.1), for 

k 1,...,n 1= -  

 

 ( )
( )k 1

k

A
b

C

A 1
b

C

1 E
k dj

A j


- +

- -
= ò  

 

 ( ) ( ) ( )( )k 2 k 1 2
k N b b

 


- + -é ù= -ê úë û
 (58) 

 

where N is a normalizing factor.   is decreasing in k for 2>  (the most common case as 

already remarked above). As in Theorems III.5.1 and III.6.1, we can approximate (57) and 

(58) by 

 

 ( ) ( )( ) ( )k 1
k M ln b 1 b


 

-
» - -  (59) 
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(where ( )( )M ln b 1 0- - >  for 1> ) and 

 

 ( ) ( )( ) ( )k 2
k N ln b 2 b


 

-
» - -  (60) 

 

(where ( )( )N ln b 2 0- - >  for 2> ), hence decreasing exponential models. 

 

The results in subsections III.5, III.6 and III.8 yield approximate power models and 

decreasing exponential models for the n-overlap vectors   and  . Both models were also 

studied on the data in Table 1 of Hood and Wilson (2003), with a (statistical) preference for 

the exponential model. 

 

 

IV.  The influence of hierarchy on the n-overlap 

vector 

 

Objects in the families 1 nD ,...,D  can be represented (indexed) using different source sets S 

(as indicated above). It is even so that in many cases one can choose the source set amongst a 

large variety of indexing refinements. A well-known example are the N-grams (see e.g. Egghe 

(2000) or Egghe (2005b)). N-grams are concatenations of N letters (more generally N 

symbols) determined by author and/or title words. It is clear that, when N Î ¥  increases, the 

indexing becomes finer and less documents are represented by a particular N-gram. 

 

Other hierarchical indexing systems are common, say the linking of a document to a decimal 

number, representing a topic, and the longer the decimal number, the finer the indexing 

(comparable with N-grams). Examples are the UDC (Universal Decimal Classification), the 

Dewey system and many other ones. 

 

To fix the ideas we will always use the terminology of N-grams, partially also because we 

will refer to some papers we have written on this topic (e.g. the ones mentioned above) and 

we will use results that were proved in these papers. But the reader should bear in mind that 
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all results on n-overlap of N-grams (particularly on variable N) can be extended to all other 

hierarchical systems (e.g. yielding results on variable hierarchical level). 

 

We have two subsections in this Section IV. The first one deals with the application of results 

from Section III to N-grams (hence to general hierarchical systems). The second subsection 

deals with the influence of the indexing level (i.e. of N in an N-gram) on the Lorenz order 

determined by the n-overlap vector. 

 

IV.1  Applications of the results of Section III to N-grams 

It is clear that the general results of Section III can be applied to the case that the source set S 

consists of N-grams. Basic in this application are the assumptions (23) and (24) (on the 

source-item relationship and the families’ sizes, respectively). It is clear that (24) can still be 

used since this has nothing to do with the used indexing method. For (23), we remark that our 

arguments (essentially formulae (39) for type- and token-n-overlap, (41) for type-n-overlap 

and (49) for token-n-overlap) only use the size-frequency function f. 

 

We are lucky with this remark since, as proved in Egghe (2005a,b), the rank-frequency 

distribution P (called here NP  to indicate that we deal with N-grams) is extremally 

complicated while its size-frequency equivalent (denoted Nf ) is relatively simple. In Egghe 

(2004a,b) we prove, based on (23) for 1-grams (i.e. the rank-frequency distribution for single 

symbols is supposed to be Zipfian), that the size-frequency distribution of N-grams satisfies 

 

 ( ) N 1 m
N

E
f j ln

j j

-
æ ö

÷ç= ÷ç ÷ç ÷è ø
 (61) 

 

for [ ]mj 1,Î  ( m  is again the maximal N-gram item-density) and 

 

 
1

1


= +  (62) 

 

(as in the pure Zipfian case – see (32)). 
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Although relatively simple, formula (61) is not exactly a power law, a fact that we used in  the 

previous section (see Theorem III.4.1, formula (30)). 

 

But as is easily seen, function (61) has the shape of a power law, i.e. convexly decreasing and 

where we can put 

 

 ( )
N

N
N

E
f j

j


»  (63) 

 

where NE  is a constant (dependent on N) and where N  is an exponent which is increasing in 

N. This follows from the fact that, in (61), Nf  depends (besides on 
1

j
) also on 

N 1

1
ln

j

-
æ ö

÷ç ÷ç ÷ç ÷è ø
 

which results in the fact that Nf  decreases more rapidly for increasing N. 

 

In Theorems III.5.1 (for the type-n-overlap vector  ) and III.6.1 (for the token-n-overlap 

vector  ) we showed, now using (63), that (now denoting N  respectively N  to show the N-

dependence) 

 

 ( )
( )
( )N

N N

N 1 1

M 1
k

k
 

 


+ -

-
»  (64) 

 

 ( )
( )

( )N

'

N N

N 1 2

M 2
k

k
 

 


+ -

-
»  (65) 

 

and from the conclusions of both theorems we have that the corresponding Lorenz-curves 

N
L  and 

N
L  increase with increasing N , hence (since N  is a strictly increasing function of 

N) we have that 
N

L  and 
N

L  are strictly increasing in N. 

 

This approximate result, based on power laws, will now be reproved exactly and in a general 

way, only using hierarchical aspects (of, in this case, N-grams) but for the token-n-overlap 

vector N  only. 
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IV.2  Exact proof of the influence of hierarchy on the token-n-overlap 

vector 
N  

Independent of the underlying rank- or size-frequency laws for source-items or for families’ 

sizes we have the following results.  

 

Theorem IV.2.1 : 

For all k 1,...,n=  and N Î ¥ , we have 

 

 ( ) ( )
k k

N 1 N

j 1 j 1

j j -

= =

£å å  (66) 

 

and 

 

 ( ) ( )
n n

N 1 N

j k j k

j j -

= =

³å å  (67) 

 

Proof : 

It is clear that (67) follows from (66) since 

 

 ( ) ( )
n n

N 1 N

j 1 j 1

j j 1 -

= =

= =å å  (68) 

 

for all N Î ¥ . 

 

To prove (66), note that 

 

 ( )
( ) ( )

( )

N 1 N j

N n

N k
k 1

total number of N gram tokens that are spread

out over exactly j families G D ,...,G D
j

G D



=

-

=

È

 (69) 

 

(again we replaced G in (19) by NG  to show the N-dependence). 
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Now, for every N-gram token that belongs to j families ( ) ( )N 1 N jG D ,...,G D  it is clear that its 

( )N 1 gram- -  equivalent (i.e. the truncation of this N-gram to the corresponding 

( )N 1 gram- -  (e.g. ABCD ( ) ( )N 4 ABC N 3= ® = ) belongs to j¢ families 

( ) ( )N 1 1 N 1 j
G D ,...,G D ¢- - , where j j¢ ³  ( j¢ can be j>  e.g. in the above example 

ABCE ABC® ). 

 

Let now { }j 1,...,k , k 1,...,nÎ =  fixed. If { }j 1,...,k¢Î  then this ( )N 1 gram- -  is counted in 

the numerator of one of the j th¢  term in ( )
k

N 1

j 1

j -

=

å  in the same way as this N-gram is 

counted in the numerator of the jth term in ( )
k

N

j 1

j
=

å . 

 

Since { }j j 1,...,k¢ ³ Î  it can also be that j k¢> . In that case this ( )N 1 gram- -  is not 

counted in any nominator of a term in ( )
k

N 1

j 1

j -

=

å  while the N-gram still is counted in the 

nominator of the jth term in ( )
k

N

j 1

j
=

å . Now, if j k>  then also j j k¢ ³ >  and both N-gram 

and ( )N 1 gram- -  are not counted in ( )
k

N 1

j 1

j -

=

å  nor in ( )
k

N

j 1

j
=

å . Hence, in general, the 

nominator in ( )
k

N 1

j 1

j -

=

å  is smaller than the nominator in ( )
k

N

j 1

j
=

å . But their denominators 

are the same since we deal here with token-n-overlap: 

 

 ( ) ( )
n n n

N k N 1 k k
k 1 k 1 k 1

G D G D D-
= = =
È = È = È  (70) 

 

Hence (66) and hence also (67) is proved.                                     

 

Corollary IV.2.1 : 
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(i) Let the token n-overlap vectors ( ) ( )( )N N N1 ,..., n  =  and 

( ) ( )( )N 1 N 1 N 11 ,..., n  - - -=  be decreasing. Then we have that 

 

 
N 1 N

L L -
£  (71) 

 

 everywhere ( ...L  denotes the Lorenz-curve of the vector mentioned in the index). 

 

(ii) Let the token n-overlap vectors N 1 -  and N  be increasing. Then we have that 

 

 
N 1 N

L L -
³  (72) 

 

 everywhere. 

 

Proof : 

(i) For decreasing vectors the construction of the Lorenz-curve (explained in Section II) is 

executed from the first coordinate onwards (see (11) with N 1  -=  or N = ). It is 

clear that (66) now implies (71). 

 

(ii) For increasing vectors the Lorenz-curves are constructed from the nth coordinate 

onwards (since ( ) ( )( )N Nn ,..., 1   is decreasing and the same for ( ) ( )( )N 1 N 1n ,..., 1 - - . 

Now (67) implies (72).                          

 

Theorem IV.2.1 is false for the type-n-overlap vectors N , N 1 - . Indeed, formula (66), for 

k 1=  : 

 

 ( ) ( )N 1 N1 1 - £  (73) 

 

is false for N , N 1 -  as the next examples shows : N 2= , n 2=  

 

    ( ) { }2 1F D ab,ac,ad,bc=  
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    ( ) { }2 2F D ab,ac,ad=  

 

so 

 

    ( ) { }1 1F D a,b=  

    ( ) { }1 2F D a=  

 

and 

 

    ( ) ( ) { }2 1 2 2F D F D ab,ac,ad,bcÈ =  

    ( ) ( ) { }1 1 1 2F D F D a,bÈ =  

 

Hence ( ) ( )2 1

1 1
1 1

4 2
 = < = , contradicting (73). Note that 1  and 2  are increasing. 

 

One could wonder if, for N , N 1 - , the opposite result could be true: this would then require 

that, always 

 

 ( ) ( )N N 11 1  -£  (74) 

 

(as is the case in the previous example). This is not true either as the next example shows. 

 

    ( ) { }2 1F D ab,ac=  

    ( ) { }2 2F D ad,ae,bc=  

 

so 

 

    ( ) { }1 1F D a=  

    ( ) { }1 2F D a,b=  

 

and 
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    ( ) ( ) { }2 1 2 2F D F D ab,ac,ad,ae,bcÈ =  

    ( ) ( ) { }1 1 1 2F D F D a,bÈ =  

 

Hence ( ) ( )2 1

1
1 1 1

2
 = > = . 

 

Decreasing n-overlap vectors are the most natural ones in practise (we refer to the arguments 

given in Section I and to Table 1). In view of the result in Corollary IV.2.1 we hence have that 

the Lorenz-concentration of the token-n-overlap vector N  is higher than the one of the token-

n-overlap vector N 1 - . Hence 
N

L  increases with N and hence the vector ( ) ( )( )N N1 ,..., n   is 

more unequal than the vector ( ) ( )( )N 1 N 11 ,..., n - -
. 

 

Of course this is not an absolute result since also increasing n-overlap vectors exist. One even 

has n-overlap vectors that are neither increasing nor decreasing. 

 

Examples : 

 

1. Database 

       1  aa ba ca 

       2  ab bb cb 

       3  ac bc cc 

 

 ( ) ( )1 20,0,1 , 1,0,0 = =  

 

2. Database 

       1  aa ab ac 

       2  ba bb bc 

       3  ca cb cc 

       4  ad ae af 

       5  bd be bf 

       6  cd ce cf 
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 ( ) ( )1 20,1,0,0,0,0 , 1,0,0,0,0,0 = =  

 

Note, however, that Theorem IV.2.1 is valid for any token-n-overlap vector N , N 1 - , 

whether they are increasing, decreasing or not. Note also that the argument developed in the 

proof of this theorem can be repeated for any hierarchical system and where then N 1 -  is 

replaced by the token-n-overlap vector of the rougher system and N  is replaced by the token-

n-overlap vector of the finer system. 

 

 

V.  Conclusions 

 

In this paper we studied n-overlap, i.e. given n databases (sets, libraries,…), we study the 

vector ( ) ( )( )1 ,..., n  = , where ( )( )i i 1,...,n =  denotes the fraction of objects 

(documents) that belong to exactly i databases. Objects are represented through a set of 

sources (i.e. indexing descriptions such as N-grams, decimal classifications or even ISBNs). 

We study the vector   as a type-n-overlap vector (then denoted as  ) and as a token-n-

overlap vector (then denoted as  ). 

 

We presented a generalization of the classical Jaccard measure J (measuring 2-overlap) to the 

case of n-overlap : 

 

 ( ) ( )
n

n

k 2

J k 1 k
=

= -å  (75) 

 

where   is the vector described above and we showed that 2J J= . nJ  is a measure of n-

overlap similarity. 

 

Next we present exact definitions of the type and token n-overlap vectors   and   and give 

functional forms (power laws and exponential laws) for their coordinates. These are based on 

generally accepted assumptions on the source-item relationship (supposed to be Zipfian) and 



 40 

on the size distribution of the n databases (Zipfian or decreasing exponential). We prove that 

both vectors   and   yield Lorenz-curves L  and L  which increase if the Lorenz-curves of 

the source-item distribution and/or the one of the size distribution increases. We also show 

that, in most cases, the vectors   and   are decreasing, confirming experimental data. We 

further show that 

 

 L L >  (76) 

 

in these cases, i.e. the type-n-overlap vector   is more concentrated than the token-n-overlap 

vector  . We also present examples where (76) is not valid. 

 

Finally the influence of the indexing hierarchy (as e.g. expressed by N Î ¥  in N-gram 

indexing) on the n-overlap vectors   and   is discussed. In general we show (using some 

approximations) that the  -vector (now denoted N ) and that the  -vector (now denoted N ) 

become more concentrated (in the sense of Lorenz) if N increases. These approximate results 

are proved in an exact way (without any approximations) for the decreasing token-n-overlap 

vector N . 
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