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ABSTRACT 

 

This paper extends the Lorenz theory, developed in [L. Egghe and R. Rousseau. Symmetric 

and asymmetric theory of relative concentration and applications. Scientometrics 52(2), 261-

290, 2001], so that it can deal with comparing arrays of variable length. We show that in this 

case we need to divide the Lorenz curves by certain types of increasing functions of the array 

length N. 
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We then prove that, in this theory, adding zeros to two arrays, increases their similarity, a 

property that is not satisfied by the Pearson correlation coefficient. 

 

Among the many good similarity measures, satisfying the developed Lorenz theory, we 

deduce the correlation coefficient of Spearman, hence showing that this measure can be used 

as a good measure of symmetric relative concentration (or similarity). 

 

 

I.  Introduction 

 

In Egghe and Rousseau (2001) see also Rousseau (2001), a Lorenz concentration theory is 

developed in order to have a framework in which good measures of symmetric relative 

concentration or similarity can be derived. What do we mean by this ? Suppose we have two 

vectors ( )1 NX x ,...,x=  and ( )1 NY y ,..., y=  with i ix ,y 0³ , i 1,..., N= . They can be 

interpreted as collaboration vectors of two authors (again called X and Y) where, for each 

i 1,..., N= , ix  denotes the number of times author X collaborated (i.e. was a co-author) with 

author i (and similarly for iy  and Y). The vectors X and Y can also be interpreted as co-

citation vectors (as done in Ahlgren, Jarneving and Rousseau (2003)): here ix  denotes the 

number of times author X and author i are co-cited (and similarly for iy  and Y). These are 

just examples: the vectors X and Y can be interpreted in many more ways. In this framework 

the following question is natural: How can we compare X and Y, i.e. how similar are X and 

Y?  This information is important since it reveals mutual relations of (e.g.) authors in a certain 

research field, expressed by their similarity in (e.g.) collaboration with other authors or co-

citedness with other authors. It is e.g. clear that authors ( )X 3,5,2,1,0=  and ( )Y 3,4,2,1,0=  

are much more similar than authors ( )'X 3,5,2,1,0 X= =  and ( )'Y 0,1,1,0,3= . Note the 

value 0 here denoting a case of no collaboration or co-citation (using again these examples) – 

a case that will become important in the sequel. 

 

In Egghe and Rousseau (2001) the classical Lorenz model (see e.g. Egghe and Rousseau 

(1990, 2001)) was extended as follows in order to compare two vectors X and Y as above. Let 
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( )1 NX x ,...,x= , ( )1 NY y ,..., y= , 
i ix ,y 0³  for all i 1,..., N=  with X 0¹  and Y 0¹ , where 

( )0 0,...,0=  is the zero-vector of length N. Define, for all i 1,..., N=  

 

 i
i N

j

j 1

x
a

x
=

=

å
 (1) 

 

 i
i N

j

j 1

y

y



=

=

å
 (2) 

 

and denote ( )X 1 NA a ,...,a= , ( )Y 1 NA ,..., = . Note that 

 

 
N N

j j

j 1 j 1

a 1
= =

= =å å  (3) 

 

Next we form the vector 

 

 ( )X Y 1 1 N NA A a ,...,a - = - -  (4) 

 

which we assume to be ranked in decreasing order. Note that we do not take into account the 

order of the coordinates in a vector; therefore we will henceforth use the terminology “array” 

for X and Y as above where the order of the coordinates does not matter (but we keep on 

comparing the same coordinates in X and Y as expressed by (4)). 

 

The Lorenz curve of X,Y, denoted X,YL  is the curve consisting of the line segments 

connecting the consecutive points ( )0,0  and 

 

 ( )
i

j j

j 1

i
, a

N


=

æ ö
÷ç ÷-ç ÷ç ÷çè ø

å  (5) 
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i 1,..., N= , hence ending in ( )1,0  because of (3). Since 
X YA A-  is decreasing, 

X,YL  is 

concave. 

 

This Lorenz curve is the basic tool in the comparison of the arrays X and Y: the more similar 

X and Y are, the lower X,YL  (verify that [ ] { }X,YL 0,1 x 0=  for X Y= ). Of course our 

similarity theory should comprise the fact that comparing X and Y must be the same as 

comparing Y and X. We showed in Egghe and Rousseau (2001) that Y,XL  is the Lorenz curve 

X,YL  but mirrored over the vertical line 
1

x
2

=  (we denote ( )Y,X X,YL R L= ). Since 

comparing X with Y must be the same as comparing Y with X we will denote 

 

 { } { }D X,Y Y,X= =  (6) 

 

as the “duo” X,Y. We can now introduce the following partial order relation. Let { }D X,Y=  

and { }' ' 'D X ,Y=  be two duos (not necessarily of the same length: say X and Y have length 

N and ' 'X ,Y  have length 'N ). We define 

 

 'D D³  (7) 

 

and say that duo D is more similar than duo D
’
 if 

 

 ' 'X,Y X ,Y
L L£  (8) 

 

or 

 

 ( )' ' ' 'X,Y Y ,X X ,Y
L L R L£ =  (9) 

 

and say that 'D D>  (duo D is strictly more similar than duo 'D ) if at least one of the 

inequalities in (8) or (9) is strict, meaning that these Lorenz curves differ in at least one 

(hence infinitely many) point(s). 
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We say that f is a good measure of symmetric relative concentration (or inequality) if f is 

defined on the set of these duos and if 'D D>  implies ( ) ( )'f D f D< . We say that f is a good 

Lorenz similarity function if f is defined on the set of duos and if 'D D>  implies 

( ) ( )'f D f D> . Note that f is a Lorenz similarity measure iff -f is a good measure of 

symmetric relative concentration. Note also that (6) forces f to be symmetric. 

 

The requirement for f to be a good measure of symmetric relative concentration is hence such 

that (8) OR (9) (with strict inequality) must lead to ( ) ( )'f D f D< . In Egghe and Rousseau 

(2001) we only required that (8) (with strict inequality) implies ( ) ( )'f D f D<  but this is 

obviously the same for symmetric functions (which we assume). The relations (8) and (9) (in 

the strict sense) are, however, not equivalent. In Egghe and Rousseau (2004a) an example is 

given where ' 'X,Y X ,Y
L L<  but where X,YL  and ' 'Y ,X

L  intersect. 

 

In the next section we will study new similarity requirements as formulated in Ahlgren, 

Jarneving and Rousseau (2003) (in short: the A-J-R requirements) involving the comparison 

of two duos D and 'D  with different array length. We show that the above theory does not 

follow this requirement and, hence, a modification of the above model is presented such that, 

if the array lengths are fixed, the new model is equivalent with the one above and, in addition, 

such that the new model satisfies the A-J-R requirements. 

 

In the third section, this new model is studied in case X and Y are arrays of ranks of objects. 

We show that the new model generates the Spearman rank correlation coefficient, hence 

satisfying the Lorenz order requirements and hence, since the new Lorenz theory implies the 

A-J-R requirements, the Spearman correlation coefficient satisfies the Ahlgren, Jarneving and 

Rousseau requirement (contrary to the Pearson correlation coefficient). 
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II.  A drawback of the existing Lorenz theory of 

symmetric relative concentration and an 

improvement of this theory. 

 

In Ahlgren, Jarneving and Rousseau (2003) the following two requirements for good 

similarity measures f are formulated. Let ( )1 NX x ,...,x= , ( )1 NY y ,..., y ,=  

{1 N

M times

X$M x ,...,x ,0,...,0
æ ö

÷ç ÷ç= ÷ç ÷ç ÷çè ø
, {1 N

M times

Y$M y ,..., y ,0,...,0
æ ö

÷ç ÷ç= ÷ç ÷ç ÷çè ø
, where M Î ¥ . Then 

 

(i) 

 ( ) ( )f X,Y f X$M,Y$M£  (10) 

 

(ii) if 

 

 ( ) ( )f X,Y f X',Y'£  

 

 then 

 

 ( ) ( )f X$M,Y$M f X'$M,Y'$M£  (11) 

 

The idea behind these requirements is that X$M and Y$M are not less similar than X and Y 

and that the “operation” $M should not destroy existing similarity inequalities. Why should 

this be? In the context of collaboration or co-citation this means that if two authors do not 

collaborate with (or are not co-cited by) a certain group of M authors in a field (e.g. active in a 

subfield in which authors X and Y are both not active), this makes X and Y more similar (or 

at least not less similar). This model hence still incorporates the case where the $M operation 

has no influence on the similarity measure (i.e. having an equality in (10)) which is also of 

interest in the following case: suppose, for two given authors, represented by their arrays X 

and Y, we add M new persons but who are not at all related to the field of research of authors 
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X and Y (say we add the pope and the president of the USA, here M=2). Then X and Y are 

not more similar because they both did not publish with (or were not co-cited by) these two 

persons. 

 

Obviously, when comparing X,Y with X$M,Y$M as in (10) we consider two duos of unequal 

length: X,Y have length N and X$M,Y$M have length M+N>N. 

 

According to our Lorenz theory of relative symmetric concentration, condition (10) could be 

logically extended tot the requirement that 

 

 { } { }X$M,Y$M X,Y³  

 

hence that 

 

 X$M,Y$M X,YL L£  (12) 

or 

 X$M,Y$M Y,XL L£  (13) 

 

However, (12) nor (13) can be true due to the following proposition. 

 

Proposition II.1: In the Lorenz theory developed in Section I we have, for X ≠ Y,  

 

 X,Y X$M,Y$ML L<  , (14) 

 

where < is strict in every point [ ]x 0,1Î  except for a possible horizontal maximum (situated 

above a closed interval  ] [0,1Ì  of X,YL ,) where there is equality. 

 

Proof: 

Since ( )
N

j j j 1
a 

=
-  is decreasing and by (3) we have that { }0i 1,..., NÎ  exists such that 0i  is the 

highest index for which 
0 0i ia 0- ³ . So X,YL  is increasing (followed by a possible 
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horizontal interval) on the interval 0i0,
N

é ù
ê ú
ê úë û

 after which 
X,YL  is strictly decreasing. The part of 

X,YL  above the interval 0i0,
N

é ù
ê ú
ê úë û

 is in X$M,Y$ML  homothetically transformed to the abscissa 

interval 0 0N i i
0, 0,

N M N N M

é ù é ù
ê ú ê ú=
ê ú ê ú+ +ë û ë û

, i.e 

 

 ( )X,Y X$M,Y$M

N
L x L x

M N

æ ö
÷ç= ÷ç ÷çè ø+

 

 

Since ( )X,YL x  is not decreasing on this interval we have that here X,Y X$M,Y$ML L<  except 

for a possible equality at the end of this interval. The maximal value 0
X,Y

i
L

N

æ ö
÷ç ÷ç ÷çè ø

 of X,YL  is 

attained for X$M,Y$ML  in the abscissa 0 0N i i

M N N M N
=

+ +
 and continued (because of the M 

zero values) until the abscissa 0i M

M N

+

+
. 

 

On the interval 0i ,1 ,
N

é ù
ê ú
ê úë û

 X,YL  decreases strictly: this is for X$M,Y$ML  transformed 

homothetically on the interval 0i M
,1

M N

é ù+
ê ú
ê ú+ë û

. Since X,YL  decreases strictly on 0i ,1
N

é ù
ê ú
ê úë û

 we hence 

have that X,Y X$M,Y$ML L<  on 0i M
,1

M N

é ù+
ê ú
ê ú+ë û

. This proves the proposition.                     

 

 

 

Proposition II.1 contradicts both (12) and (13). This is clear for (12). Let now ] [x 0,1Î  and 

consider ( )X$M,Y$ML x  and ( )X$M,Y$ML 1 x- . The value ] [x 0,1Î  can be chosen so that 

 

 ( ) ( )X$M,Y$M X$M,Y$ML 1 x L x- ³  

 

(otherwise replace x by 1 x- ) and so that (by Proposition II.1) 
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 ( ) ( )X,Y X$M,Y$ML x L x<  

 

So we have 

 

 ( ) ( )Y,X X,YL 1 x L x- =  

 

( )X$M,Y$ML x<  

 

( )X$M,Y$ML 1 x£ -  

 

contradicting (13). 

 

We will now adapt the Lorenz theory above so that it is the same theory if the array length is 

constant but such that (12) will be valid even with strict inequality. The modification is as 

follows: instead of X,YL  consisting of line segments connecting (0,0) and the points given by 

equation (5) we will define the Lorenz curve (again denoted by X,YL  - confusion will not be 

possible since we will not use the previous one anymore in the sequel) as linearly connecting 

the consecutive points (0,0) and 

 

 
( )

i
j j

j 1

ai
,

N N



=

æ ö- ÷ç ÷ç ÷ç ÷÷çè ø
å  (15) 

 

, i 1,..., N= , where   is a certain function of N, to be determined in the next theorem. 

 

Theorem II.2: Let   be a function such that 

 

 
( )

( )

N 1 N 1

N N





+ +
³  (16) 
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(e.g. ( )N N = ). Then, using (15) for the construction of our Lorenz curves we have, for all 

arrays ( )1 NX x ,...,x= , ( )1 NY y ,..., y=  and for all { }0M 1,2,3,...Î =¥ :  

(i) 

 X,Y X$M,Y$ML L>  (17) 

 

(ii) 

 X,Y X',Y'L L<  (18) 

 

          X$M,Y$M X'$M,Y'$ML LÞ <  

 

i.e. the A-J-R requirements, as expressed by (i) and (ii), i.e. extended to conditions on Lorenz 

curves, are valid. 

 

Proof: 

(i) It suffices (by induction) to prove the theorem for M 1= . 

 

 Let { }0i 1,..., NÎ  be the last index such that 
0 0i ia 0- ³  (this exists since the 

sequence ( )
N

j j j 1
a 

=
-  is decreasing and by (3). Let now { }0i 1,..., iÎ . Adding a zero to 

both X and Y forces the point 
i i

i
P ,z

N

æ ö
÷ç= ÷ç ÷çè ø

 on X,YL  to move to the point 

( )

( )
'

i i

Ni
P ,z

N 1 N 1





æ ö
÷ç ÷= ç ÷ç ÷÷ç + +è ø

. The equation of the straight line iOP  is iNz
y x

i
= . For 

i
x

N 1
=

+
 we have on iOP  that iNz

y
N 1

=
+

. So '

iP  is under or on this line if 

 

 
( )

( )
i

i

N Nz
z

N 1 N 1




£

+ +
 

 

 hence if 
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( )

( )

N 1 N 1

N N





+ +
³  

 

 which is so by (16). This also implies that '

iP  is under X,YL  (strict if i 1¹ ). 

 

 Let now { }0i i ,..., N 1Î - . Adding a zero to both X and Y forces the point 

i i

i
Q ,z

N

æ ö
÷ç= ÷ç ÷çè ø

 on X,YL  to move to the point 
( )

( )
'

i i

Ni 1
Q ,z

N 1 N 1





æ ö+ ÷ç ÷= ç ÷ç ÷÷ç + +è ø
. The equation 

of the straight line ( )( )iQ E E 1,0=  is 

 

 ( )iz N
y x 1

i N
= -

-
 

 

 For 
i 1

x
N 1

+
=

+
 we have on iQ E  

 

 i
i

z N i 1 N
y 1 z

i N N 1 N 1

æ ö+ ÷ç= - =÷ç ÷çè ø- + +
 

 

 So '

iQ  is under or on this line if 

 

 
( )

( )
i i

N N
z z

N 1 N 1




£

+ +
 

 

 again satisfied because of (16). This also implies that '

iQ  is under X,YL  (strict if 

i N 1¹ - ). This proves (17). Note that the point T on X,YL  in the abscissa 0ix
N

=  is 

transformed to the left and to the right (and between them we have an horizontal part 

because of the added zero). 
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(ii) The addition of M zeros to X, Y, X' and Y' first shifts the decreasing part of X,YL  and 

X',Y 'L  over 
M

N
 (“in the middle” we keep the constant maximal value of X,YL  and 

X',Y 'L ) and then both new curves are homothetically transformed (over the abscissa) 

with a factor 
N

M N+
 and finally both curves are multiplied by 

( )

( )

N

N 1



 +
. See Fig. 1 

for an illustration (Lorenz curves are drawn smoothly for clarity). This proves (ii) and 

hence the theorem.                        

 

 

Fig. 1  Illustration of the proof of Theorem II.2 (ii). 

 

0 1

0
1 +1

factor
M+N

N

N

M M+N

N
=

N
M

N
M
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Note that Theorem II.2 (ii) is also valid for Lorenz curves of Section I (i.e. where we do not 

divide by ( )N ). So the crucial part of Theorem II.2 (valid only if we divide by ( )N ) is (i). 

 

Because of the above result we are now confident that our new approach is the right one. 

From the theory of Lorenz curves (see e.g. Egghe and Rousseau (2001), Egghe (2002)) we 

can now deduce several good measures of symmetric relative concentration. We present two 

of them: the Gini index and the coefficient of variation. First a Lemma (taken from Egghe and 

Rousseau (2004a) but adapted to Lorenz curves where we divide by ( )N N = ). Let 

( )i i
i

a
d i 1,..., N

N

-
= = . 

 

Lemma II.3: 

The expression 
N

i

i 1

1
id

N =

- å  is equal to the area under the Lorenz similarity curve. 

 

Proof: 

Define 
i

i j

j 1

c d
=

= å . The area under the Lorenz similarity curve is equal to: 

 

( )
N 2

1 j j 1 N 1

j 1

1
c c c c

2N

-

+ -

=

æ ö
÷ç ÷+ + +ç ÷ç ÷çè ø

å  

 

( ) ( )( 1 1 2 1 2 3

1
d 2d d 2d 2d d

2N
= + + + + + +  

 

( )1 i i 1... 2d ... 2d d ++ + + + +  

 

( ) ( ))1 N 2 N 1 1 2 N 1... 2d ... 2d d d d ... d- - -+ + + + + + + +  

 

( ) ( )( )1 2 N 1

1
N 1 d N 2 d ... d

N
-= - + - + +  
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( )
N 1 N

j j

j 1 j 1

1 1
N j d N d

N N

-

= =

= - -å å    by (3) 

 

N

i

i 1

1
id

N =

= - å  

 

The Gini similarity measure 

One of the best known concentration measures is the Gini index (Myles, 1995). It is easy to 

derive a Gini similarity measure, denoted as sG , from the Gini concentration index: 

 

 ( ) { } ( )
N N

s s i i i2
i 1 i 1

2 2
G D G r,s 1 id 1 i a

N N


= =

= = + = + -å å  (19) 

 

where the id  are ranked in decreasing order. This is, by the lemma, nothing but one minus 

twice the area under the Lorenz similarity curve. This normalizes the Gini similarity measure 

in such a way that all minimal Lorenz similarity curves correspond to a Gini-value of zero, 

and the equality line has a similarity value of one. 

 

The coefficient of variation as a similarity measure 

It is shown in Egghe and Rousseau (2001) that 

 

 
N

2 2

i

i 1

V N d
=

= å  (20) 

 

is a good measure of symmetric relative concentration. Here 

 

 
( )

i i
i

a
d

N





-
= . 

 

This gives, for ( )N N = , that 

 

 ( )
N

22

i i

i 1

1
V a

N


=

= -å  (21) 
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is a good measure of symmetric relative concentration. Consequently, all measures of the 

form 

 

 2a bV+  

 

with a, b constants, b 0<  are good measures of similarity in the sense of the A-J-R 

requirements. 

 

 

III.  Lorenz similarity theory for rank-order arrays 

and the correlation coefficient of Spearman 

 

Rank-order arrays are arrays of the type 

 

 ( )1 NR r ,..., r= , (22) 

 

where 

 

 { } { }1 Nr ,..., r 1,..., N=  (23) 

 

Usually (but not always) rank-order arrays are derived from arrays ( )1 NX x ,...,x= , ix 0³  

( )i 1,..., N=  as we studied in this article. The largest ix  value receives the rank 1, the second-

largest the rank 2 and so on: the smallest value receives the rank N. If this is the case we will 

denote R by XR . 

 

Since all ranks are positive we can apply the Lorenz theory of Section II to two rank-order 

vectors XR  and YR  just as we applied it to X and Y. However, the case of rank-order arrays 

is special since, if 
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 ( )X 1 NR r ,..., r=  

 

 ( )Y 1 NR s ,...,s=  

 

are two such arrays, we always have that 

 

 
( )N N

j j

j 1 j 1

N N 1
r s

2= =

+
= =å å  (24) 

 

, hence we always have (3) but for the not-normalized arrays XR  and YR  (a fact that is not 

true for X and Y). It turns out that the Lorenz theory of Section II can be given also for the 

not-normalized vectors XR  and YR ; this, in turn, since we do not divide by 
( )N N 1

2

+
, gives 

us more possibilities of constructing good similarity measures (or measures of symmetric 

relative concentration), as we will see in the sequel. 

 

So, given two rank-order arrays XR  and YR  as above, we will compare them by constructing 

the Lorenz curve which linearly connects the consecutive points (0,0) and 

 

 
( )

i
j j

j 1

r si
,

N N=

æ ö- ÷ç ÷ç ÷ç ÷÷çè ø
å  (25) 

 

(cf. (15)) (where ( )
N

j j j 1
r s

=
-  is decreasing). We will denote this Lorenz curve as 

 

 
X YX,Y R ,RL=L  (26) 

 

as in the other case, X,YL  concavely connects (0,0) with (1,0) and hence the classical Lorenz 

theory applies (cf. Egghe (2002)). 

 

Now what is the effect of adding M zeros to the arrays X and Y ? It is clear that, since all 

ix 0³  ( )i 1,..., N=  that, if ( )X 1 NR r ,..., r= , 
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 ( )X$M 1 NR r ,..., r , N 1,..., N M= + +  (27) 

 

Note that the same array (27) is obtained when we add to the original array M values t such 

that { }1 Nt min x ,...,x£ . 

 

We have the following Lemma.  

 

Lemma III.1: 

 

 
X Y X$M Y$MR $M,R $M R ,R X$M,Y$ML L= = L  (28) 

 

Proof: The last equality follows by notation (26). Now 
X$M,Y$MRL , by (25), is constructed using 

the difference array {1 1 N N

M

r s ,..., r s ,0,...,0
æ ö

÷ç ÷- -ç ÷ç ÷÷çè ø
 (ordered decreasingly). Now 

 

 {X 1 N

M

R $M r ,..., r ,0,...,0
æ ö

÷ç ÷= ç ÷ç ÷÷çè ø
 

 

 {Y 1 N

M

R $M s ,...,s ,0,...,0
æ ö

÷ç ÷= ç ÷ç ÷÷çè ø
 

 

So 
X YR $M,R $ML  is constructed using the same difference array 

 

 {1 1 N N

M

r s ,..., r s ,0,...,0
æ ö

÷ç ÷- -ç ÷ç ÷÷çè ø
 

 

Hence both Lorenz curves are the same.                            

 

We explicitly prove now that Theorem II.2 is also valid for this Lorenz theory. 

 



 18 

 

Theorem III.2: Let   be a function such that 

 

 
( )

( )

N 1 N 1

N N





+ +
³ . (29) 

 

Then, for all arrays ( )1 NX x ,...,x= , ( )1 NY y ,..., y=  with ( )i ix ,y 0 i 1,..., N³ =  we have 

 

(i) 

 X,Y X$M,Y$M>L L  (30) 

 

(ii) 

 X,Y X',Y'<L L  (31) 

 

          X$M,Y$M X'$M,Y'$MÞ <L L  

 

Proof: We first remark that Theorem II.2 is also valid if we do not divide by 
N

i

i 1

x
=

å  (for X) 

respectively 
N

i

i 1

y
=

å  (for Y), in case 
N N

i i

i 1 i 1

x y
= =

=å å . We call this “statement (*)”. 

 

(i) 

  
X YX,Y R ,RL=L   (by (26)) 

 

X YR $M,R $ML>   (by(*)) 

 

X$M Y$MR ,RL=   (by Lemma III.1) 

 

X$M,Y$M= L   (by (26)) 
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(ii) 

 X,Y X',Y'<L L  

 

 implies, by (26)) 

 

 
X Y X' Y'R ,R R ,RL L<  

 

 Hence, by (*) 

 

 
X Y X' Y'R $M,R $M R $M,R $ML L<  

 

 Using Lemma III.1 we have 

 

 
X$M Y$M X'$M,Y'$MR ,R RL L<  

 

 and so, by (26), 

 

 X$M,Y$M X'$M,Y'$M<L L  

 

 completing the proof.                               

 

This shows the good properties of this rank-order Lorenz theory. We can apply the classical 

results of Lorenz concentration theory on the construction of good concentration measures 

(see e.g. Egghe (2002), Egghe and Rousseau (2001)). For the not-normalized rank-order 

arrays ( )X 1 NR r ,..., r= , ( )Y 1 NR s ,...,s=  we hence have that 

 

 
( )

2
N

j j2

r,

j 1

r s
V N

N


=

æ ö- ÷ç ÷= ç ÷ç ÷÷çè ø
å  (32) 

 

is a good measure of symmetric relative concentration. Hence any measure of the form (a,b 

constants, b 0< ) 
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 2

r,a bV +  (33) 

 

is a good similarity measure satisfying the Lorenz-orderings as well as the properties in 

Theorem III.2. Let us give two examples. 

 

Example III.3: For ( )N N = , (32) yields 

 

 ( )
N

2
2

r j j

j 1

1
V r s

N =

= -å  (34) 

 

Problem: using (33), what interesting (known ?) similarity measures can be derived from 2

rV  

in (34) ? 

 

Example III.4: Take 

 

 ( ) 2N N N 1 = - . (35) 

 

We first have to check that (29) is valid: 

 

   
( )

( )

( ) ( )( )
( )

2 22

2 2

N 1 N 1 1N 1

N N N 1





+ + -æ ö+ ÷ç ÷ =ç ÷ç ÷÷ç -è ø
 

 

( ) ( )

( )( )

2

2

N 1 N 2 N

N N 1 N 1

+ +
=

+ -
 

 

( )( )

( )

N 1 N 2

N N 1

+ +
=

-
 

 

2
N 1

N

æ ö+ ÷ç> ÷ç ÷çè ø
. 
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Hence this function can be used in (32). We now have 

 

 

2
N

j j2

r, 2
j 1

r s
V N

N N 1


=

æ ö- ÷ç ÷= ç ÷ç ÷çè ø-
å  

 

 
( )

( )
N

2
2

r, j j2
j 1

1
V r s

N N 1


=

= -
-

å  (36) 

 

If we now apply (33) with a 1= , b 6= - , then we have that 

 

       
( )

( )
N

2
2

r, j j2
j 1

6
1 6V 1 r s

N N 1


=

- = - -
-

å  

 

 
( )

N
2

j2
j 1

6
1

N N 1


=

= -
-

å  (37) 

 

( )j j j: r s , j 1,..., N = - =  is a good measure of similarity. But (37) is nothing else than the 

classical rank-order correlation coefficient of Spearman (see e.g. Liebetrau (1983)). So, unlike 

the correlation coefficient of Pearson, the one of Spearman satisfies the A-J-R requirements 

(2003) (see Theorem III.2), a fact that can also be checked directly. However, we now have 

the important information that the rank-order correlation coefficient of Spearman fits into the 

Lorenz theory of symmetric relative concentration (similarity). 

 

Pearson’s correlation coefficient does not fit into this Lorenz theory and does not satisfy the 

A-J-R requirements. Also Shoukry (2004) (and references therein) mention some problems 

with Pearson’s coefficient. Hence, this classical measure should be used for what it was made: 

to calculate the degree of linearity of a cloud of points in the framework of the theory of linear 

regression. The debates on these remarks on the coefficient of Pearson (see Bensman (2004), 

Ahlgren, Jarneving and Rousseau (2004a,b)) could have been avoided if this had been 

realized earlier. 
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Remark III.5: 

Note that the correlation coefficient of Spearman was found in this Lorenz theory using   as 

in (35). If we had used the normalized Lorenz theory as in Section II we had to divide the 

difference vector by 
( )N N 1

2

+
 and then to divide again by ( )N  where (29) must be valid, 

i.e. ( )N  must at least be of the order N. So in this theory we had (at least) to divide in the 

order 3N . This means that, in (32), we multiply 2

j  by a number of the order 
6 5

N 1

N N
= , 

hence missing many simpler measures, and especially the coefficient of Spearman (based on 

(36) where one multiplies 2

j  by a number of the order 
3

1

N
). Hence the extension of the 

Lorenz theory given in this section has evident applications. 

 

 

IV.  Problem and conclusions 

 

IV.1  Problem 

In this paper we modified the Lorenz theory of symmetric relative concentration by dividing 

the difference array by ( )N , where (29) is valid. Hence we have 

 

( ) ( )
N 1

N 1 N
N

 
+

+ ³  

 

    ( )
N 1 N

N 1
N N 1


+

³ -
-

 

 

    … 

 

( ) ( ) ( )N 1 N 1 1 + ³ + . 
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Hence ( )
N
lim N
® ¥

= + ¥ . This means that, in the comparison of two arrays ( )1 NX x ,...,x= , 

( )1 NY y ,..., y=  and if we consider the k-replicas of X and Y: 

 

 X 1 N 1 N

k times

k x ,..., x ,..., x ,..., x

æ ö
÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

14442 4443 14442 4443
1444444442 444444443

 

 

 Y 1 N 1 N

k times

k y ,..., y ,..., y ,..., y

æ ö
÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

14442 4443 14442 4443
1444444442 444444443

 

 

we have that 

 

 
X Yk ,k

k
lim L 0
® ¥

=  (38) 

 

no matter how different X and Y are. We do not know how to interpret (38) in practise. Note, 

however, that in our application in Section III on rank-order arrays, k-replicas do not occur. 

 

IV.2  Conclusions 

In this paper we showed that the Lorenz theory of symmetric relative concentration and 

similarity developed in Egghe and Rousseau (2001) can only be applied if the length N of 

arrays is kept constant. Indeed we showed that adding zeros to two arrays yields higher 

Lorenz curves, hence less similar arrays which is counterintuitive. 

 

In Section II we modified this theory by dividing the Lorenz curves by ( )N  such that 

 

 
( )

( )

N 1 N 1

N N





+ +
³  
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This condition then guarantees that, when zeros are added to two arrays, the Lorenz curves 

decrease, hence the similarity increases. This yields a machinery to produce good similarity 

measures that satisfy the A-J-R requirements. 

 

In Section III the above theory is applied to rank-order arrays but we note that, since their 

coordinates always sum up to 
( )N N 1

2

+
, no normalization in the construction of the Lorenz 

curve is needed. We show that also in this model the A-J-R requirements are valid. This 

yields more opportunities of constructing good similarity measures for rank-order arrays. We 

show that one of the good measures is the rank-order correlation coefficient of Spearman, an 

interesting result, certainly in connection with the fact that Pearson’s correlation coefficient 

does not satisfy the A-J-R requirements. 
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