
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Task modelling for ambient intelligent environments: design support for

situated task executions

Peer-reviewed author version

LUYTEN, Kris; VANDERVELPEN, Chris & CONINX, Karin (2005) Task modelling for

ambient intelligent environments: design support for situated task executions. In:

Proceedings of the 4th International Workshop on TAsk MOdels and DIAgrams for

user interface design (TAMODIA 2005). p. 87-94..

Handle: http://hdl.handle.net/1942/7502

Task Modeling for Ambient Intelligent Environments:
Design Support for Situated Task Executions

Kris Luyten Chris Vandervelpen Karin Coninx
Hasselt University

Expertise Centre for Digital Media
Wetenschapspark, 2

B-3590 Diepenbeek (Belgium)

{kris.luyten,chris.vandervelpen,karin.coninx}@uhasselt.be

ABSTRACT
The design of interactive systems for an ambient intelligent
environment poses many challenges because of the great di-
versity in devices the user has control of and the user’s situ-
ation imposed by the environment. Although task-centered
interface design is an established approach for traditional
form-based and even for multi-device user interfaces, this
design approach is, in its current form, not ready for the de-
sign of user interfaces for ambient intelligent environments.
In this paper we propose a task-centered approach to de-
sign interaction mechanisms for ambient intelligent environ-
ments by means of visualization and simulation. We focus
on three different concepts that are important to support
this approach: situated task allocations, user interface dis-
tributions and visualization of context influences. Because
the execution of a task depends strongly on the situation or
context of use, the consequences of a context change on the
execution of a task specification should be communicated
with the task designer during the design process. The de-
signer should be able to define the possibilities to execute a
task while taking into account constraints imposed by the
environment of the user. A tool to support this approach
using visualization of the environment and simulation of the
interface configurations is introduced.

1. INTRODUCTION
Modern middleware solutions allow mobile and embed-

ded software components to communicate with each other
while residing on heterogeneous platforms. Modern middle-
ware also offers automatic discovery mechanisms to locate
necessary software and hardware available in an ubiquitous
environment. While this can be considered as a step toward
the ubiquitous computing vision Mark Weiser predicted [24],
there still exists a large gap between the actual tasks a user
should be able to perform and the user interfaces exposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

by ubiquitous systems to support those tasks. This gap is
caused mainly by two missing pieces: the lack of a task-
centered user interface design approach on the one hand
and the lack of support for distributable user interfaces in
ambient intelligent environments on the other hand. In this
paper we present our ongoing work on model-based user
interface development techniques to enable the design and
deployment of effective distributable user interfaces for het-
erogeneous environments.

Distributable user interfaces enable the user to exploit
more and new possibilities of an ambient computing envi-
ronment by allocating tasks to interaction resources that
best support those tasks. We define an interaction resource
as an atomic I/O channel. In this context, atomic means
the I/O channel is “one way” and limited to a single modal-
ity. Examples of interaction resources are keyboards, mice,
all sorts of screens, speech synthesizers, force feedback de-
vices,. . . . Usually, an interaction resources is advertised in
an environment through the computing device it is attached
to. This computing device is called an interaction cluster
and manages input from or output to interaction resources
attached to it. The aforementioned definitions imply also a
multi-modal user interface is composed of different interac-
tion resources, not necessarily located on the same interac-
tion cluster.

During the last couple of years many research papers have
been published discussing requirements, frameworks and mod-
els for distributed user interfaces (e.g. [20, 1, 22, 9]), but
there is still a lack of tools to allow designers to create such
interfaces. The design of a user interface that can be dis-
tributed over several interaction resources in an ubiquitous
computing environment is a tedious task and has not yet
been addressed extensively. Distributed interfaces are typi-
cal for supporting interaction in ambient intelligent environ-
ments.

In this paper we present our ongoing work on a task-
centered methodology for the design and the deployment of
distributable user interfaces: MoDIE (Mobile Distributable
Interface Engineering). This work is part of the CoDAMoS
project, a joint project with three other Flemish universities
and several industrial partners aimed at solving a set of key
challenges in the area of Ambient Intelligence (AmI), where
personal devices will form an extension of each user’s envi-
ronment, running mobile services adapted to the user and
his context.

The approach we present in this paper is based on the
Model-Based User Interface Development (MBUID) method-
logy. MBUID is already in use to develop multi-device user
interfaces [6, 3, 14], and we show it can be extended for ambi-
ent intelligent environments. In MBUID, different abstract
models highlight different aspects of the user interface in-
dependent of details of the target devices. Concrete models
will “fill in” more specific details towards the presentation of
the interface. Even for the domain of multi-device interface
design there is still work to be done to visualize the differ-
ent models and the influence of model manipulations on the
final user interface. A task-centered approach offers a way
to validate whether the user interface supports the goals of
the user. This paper considers three concepts that are im-
portant for a task-centered approach. The first is situated
task allocations: the execution of a task is dependent on
different parameters that are not part of the software itself,
such as the location of the user. The second concept is the
distribution of interface presentations among the available
interaction devices. The third concept is the visualization
of context influences to inform the designer of possible in-
fluences of the environment on the proposed design.

Several concepts are relevant for the design of usable dis-
tributed user interfaces. In the remainder of this paper, we
focus on two concepts that are supported by this approach:
interface completeness and continuity. The former can be
obtained by ensuring all tasks are represented in the user’s
environment at the required time, the latter is obtained by
defining a set of transition rules to progress from one task
to another. The remainder of this paper is structured as
follows: section 2 gives an overview of the related work that
defines the underlying concepts for the topic of this paper.
Next, section 3 discusses the different aspects that need to
be taken into account to support a task-centered approach to
design user interfaces for ambient intelligent environments.
Section 4 explains how context can have a big influence on
the task execution and what needs to be done to anticipate
this while modelling. Finally, section 5 presents the design
tool we are developing to support the design process.

2. RELATED WORK
There is a growing interest in the design of interactive

systems that can be deployed for ambient intelligent envi-
ronments. Most research work in this area is focused on a
particular subtopic. Georgantas and Issarny show a func-
tional approach towards modelling a situation sensitive user
interface in [7]. Just as in the ICrafter [18] a service frame-
work for user interface services is created. Most of this work
reflects the need for some kind of unified framework to de-
sign and develop the interactive part of a computing system
that is deployed in an ambient intelligent environment. The
service-oriented approach presented in these papers provide
a uniform and location-independent access to the function-
ality of the system. Dynamic composition or on-the-fly ag-
gregations of user interface components are central to these
approaches. However, there is no design support to con-
strain the dynamic behavior of these systems so the result-
ing user interface is usable and still supports the envisioned
tasks depending on the situation.

Heider and Kirste propose a goal-driven approach to de-
cide which interaction resources to use in [8]. In their ap-
proach a planning algorithm is used for developing strategies
to reach the predefined goals. An execution control compo-

nent can execute a strategy and manages the resources that
are necessary for the selected strategy. This approach is
useful to cope with the enormous complexity of designing
a user interface that should work in an ambient intelligent
environment. A task-centered approach could benefit by us-
ing a planning algorithm to calculate an optimal strategy for
executing the required tasks with the interaction resources
that are available.

Distribution of a user interface among different interaction
resources or multiple surfaces is also gaining importance:
unlike traditional desktop computing, a user interface in an
ambient intelligent environment is no longer limited to one
device that is the center of interaction. In [4] an ontology for
multisurface interaction is proposed by Coutaz et al. This
ontology offers an unifying framework for reasoning about
distributed user interfaces. Because of the complexity of the
covered types of problems, these kind of ontologies can only
be shown to full advantage when it is used in a HCI design
tool.

Balme et al. presented the CAMELEON-RT Software Ar-
chitecture Reference Model for Distributed, Migratable, and
Plastic User Interfaces [1]. Some type of middleware is pro-
vided (the Distribution-Migration-Plasticity middleware) to
allow smooth integration of user interfaces that reside on dif-
ferent physical locations. In [23] we show the feasibility of
automatically distributing a highly interactive website over
several interaction resources.

Two requirements should be fulfilled to result in an opti-
mal usability of a distributable user interface: completeness
and continuity. Completeness of a user interface means that
all interaction tasks necessary to reach a goal at a particu-
lar moment are made accessible to the user regardless of the
devices available in the environment (including the user’s
personal devices). This is achieved by using a task-centered
approach. On the other hand, user interface continuity en-
sures the user can interpret and evaluate the internal state
of the system while using different input/output devices [5].
Even when the distribution of the interface parts among
the different interaction resources changes at run time, this
property must hold. Providing support for the preservation
of continuous interaction will pose a difficult challenge for
a design methodology (and tool) that uses tasks, activities
and temporal relations [16, 13].

3. PROPERTIES OF AMBIENT TASK MOD-
ELING

3.1 Task Notation and Dialog Derivation
We use Paternò’s ConcurTaskTrees (CTT) notation [17,

15]; a notation for task modeling that provides temporal
operators between tasks. This notation allows to extract
task sets where each task set contains tasks that should be
“active” during the same period of time in order to reach a
(sub)goal. This concept is called Enabled Task Sets (ETSs)
[17]. For a given task model M several of such enabled task
sets can be identified: each set contains tasks that execute
within the time frame defined by the set and do not overlap
with other tasks from other sets. We can describe this pro-
cess by the function f : M → TS1, TS2, · · · , TSn that maps
a task model M on the enabled task sets TSi,1≤i≤n. Several
design tools exist that provide this ETS extraction function-
ality by means of the ConcurTaskTrees notation and their

use is described in existing literature [15, 14, 11, 21].
Each task set TSi,1≤i≤n contains a subset of tasks t1, t2, · · · , tm

from the task model M . A task set requires a distribution
configuration for the tasks it contains: the representation
of a task set is distributed among different devices that are
available in the environment. Notice a user interface distri-
bution is defined in section 1 and specifies the combination
of tasks in a dialog with the available interaction devices.
Because of the temporal relations between different tasks,
together with the fact there are no two ETSs that can over-
lap in time, a sequence of ETSs can be identified that the
user(s) should execute to reach the goals at hand. Figure 1
depicts an example of such a sequence of enabled task sets
(labeled with TS1, TS2,. . .).

3.2 Task-set Distributions
The first property we consider in our approach is complete-

ness. User interface completeness indicates that all interac-
tion tasks needed to reach a goal at a particular moment are
made accessible to the user regardless of the interaction re-
sources available in the environment (including the interac-
tion resources exposed by the user’s personal devices). The
use of ETSs to guide the design process ensures this prop-
erty: all tasks of the active ETS need to be allocated to
interaction resources that can handle these tasks. From a
given task model the number of ETSs that can be found
is exactly the minimal number of logically different inter-
faces (or “presentation units” according to [6]) the designer
should provide to allow the user to access the complete func-
tionality of a system. Figure 1 shows how tasks in an active
ETS are distributed over interaction resources in the envi-
ronment. Notice ETSs can be ordered in time because of
the definition given above (this ordering is also referred to
as the dialog model).

The second property we consider is continuity. User in-
terface continuity ensures the user can interpret and eval-
uate the internal state of the system while using different
interaction resources. When the distribution of the inter-
face parts changes at run time, this property must hold.
Providing support for the preservation of continuous interac-
tion will pose a difficult challenge for a design methodology
(and tool) that uses tasks, activities and temporal relations
[16]. In our approach continuity is supported by constrain-
ing the possible task-distribution strategies. For example;
a possible constraint to support continuity is the fixed task
constraint which is formalized as follows: if ETSi is enabled
and ∃t ∈ M : t ∈ ETSi ∧ t ∈ ETSj then t will not be
re-distributed when a transition from ETSi to ETSj is ex-
ecuted. In other words: a task that reoccurs in different
ETSs can be restricted to the same device when the tran-
sition to the following ETS is made. In figure 1, task 3 is
an example of the application of such a fixed task constraint
for the transition from ETS5 to ETS3.

We can add more specific constraints depending on the
properties of the devices. For t ∈ M , t can be constrained
to a set of devices Dc that is a subset of all available de-
vices D, and ∀d ∈ Dc, πc(d) = 1. πc(d) is a projection of
the property c over the element d; c represents a property
of a device d. E.g.: when distributed, certain tasks can be
constrained to devices that have some kind of network com-
munication available. In this example the property value
is 0 if there is no network communication available and 1
otherwise. Of course, a distribution can also be constrained

according to a value of a property such as the quality of
network communication that is available. This can be ex-
pressed as b1 ≤ πb(d) ≤ b2, where b is the attribute of d
representing the bandwidth available at element d, b1 is the
lower boundary of the required bandwidth and b2 the upper
boundary. Section 5 shows how the device model and con-
straints can be combined in an environment model and used
in a tool to support task-modelling for ambient intelligent
environments.

3.3 Task Migration Paths
The previous section discussed the distribution of tasks

of each individual ETS taking into account continuity and
completeness of the user interface. Once an appropriate set
of task-set distributions is found for each ETS, the designer
should be able to constrain the transitions from one ETS to
another. A lack of continuity because of a context switch
(other devices that come into play, tasks that appear and
dissapear,. . .) can have a disastrous effect on task perfor-
mance.

In traditional MBUID this is represented by a dialog model
and the transitions between different dialogs. These tran-
sitions could be invoked by simple interactions such as a
window manipulation [21]. In an ambient intelligent envi-
ronment things are more complicated however: the physical
location of the user interface parts differs from one dialog
to another in contrast with a single-device system where a
dialog is always represented on the same device. The design
of such a system should make sure the cognitive burden of
making a transition is minimized while supporting the tasks
and goals of the user. Denis and Karsenty describe a set of
design principles to ensure inter-usability in a multi-device
environment [5]: inter-device consistency, transparency and
adaptability of device usage. In this paper we focus on
the first principle to support task set transition continu-
ity. Inter-device consistency is composed out of four levels:
perceptual (appearance and structure), lexical (labeling),
syntactical (operations) and semantic (service functionality)
consistency. The former two levels, perceptual and lexical
consistency, are provided by the presentation model that is
used. The latter two levels, syntactical and semantic consis-
tency, can be enforced by defining a set of constraints in the
environment model as shown in the previous section. The
support of these types of consistency levels inside the differ-
ent models contributes to a better continuity while making
the transition from one ETS to another.

3.4 Task Representations
Each interaction task from the task specification should

be presented in the environment one way or another so the
user can interact with it. In particular the interaction tasks
can be annotated by different ways they can be presented to
the user(s). For each task t ∈ M an abstract user interface
description x ∈ {X1, X2, ..., Xn} can be retrieved, the set of
related user interface descriptions is referred to as the pre-
sentation model. Based on the findings in related research
(of which an overview can be found in [10]), a user interface
description is specified using an XML-based notation. Fig-
ure 1 shows how the high-level user interface descriptions of
all tasks available in an ETS are distributed among different
appropriate interaction resources available in the environ-
ment while the user continues her/his interaction with the
application, from one active ETS to the other.

Figure 1: Different Enabled Task Sets on a timeline with their distribution

For each ETS there are different possibilities of how the
user interface representing the set of tasks can be divided.
In [23] we showed a method that uses XHTML as the pre-
sentation language and a set of rules and a cost function to
select the “preferred” distribution configuration among all
possible configurations. The XHTML document was sub-
divided according the tasks it supported, and the different
parts were distributed among the available devices in the
neighborhood of the user.

4. CONTEXTUAL TASK CONSTRAINTS
The execution of a task in an ambient intelligent environ-

ment is highly dependent on the situation of the user and the
environment where the task should be executed. A task can
be started or stopped by some direct interaction of the user
with the user interface or by an indirect interaction such as
a change of the user’s physical location. This is referred to
as situated task executions in this paper. In this section we
discuss how situated task executions are constrained by the
task specification (inter-task relationships) and context-of-
use.

The allocation of a task to a set of interaction resources
can constrain the execution of the task. For example: a task
can only be valid within a certain physical range because
the interaction resource it is allocated to, has to maintain
a communication channel with another device that executes
a parallel task exchanging information with the first task.
Figure 2 gives an overview of such a scenario. In [2] we
presented an approach to take these kind of context switches
explicitly into account in the task and the dialog model. A
decision task can be inserted in the task model: this type of
task allows a designer to specify a set of rules that can select
an alternative task set to execute according to the context
of use. This approach allows us to insert a decision rule in
the task specification that will select another task set when
the device is out of range. How this works and what the
effects on the dialog model are, is described into detail in [2]

To support this kind of reasoning for a task-centered ap-
proach we need to extend the semantics of the task specifica-

tion with new constraints besides the temporal constraints
and hierarchical structure. More precisely: we need to relate
the context of use and the task set in terms of constraints
over the task distribution behavior. Elaborating on the ex-
ample of figure 2, where there are two tasks that can be ex-
ecuted in parallel and exchange information while perform-
ing (T1|[]|T2,) two different constraints can be identified
for these two tasks:

1. both tasks should be observable at the same time by
the user, and

2. both tasks should be able to exchange data using some
kind of communication channel.

The first one is dependent of the designer’s intentions and
should be part of the task specification, the second one can
be derived from the task-device allocations. With either one
(or both) of these constraints there is only one possibility:
the device that represents T2 is located in the predefined
area of the device materializing T1 to be a valid distribu-
tion configuration according to the task specification. No-
tice T1 and T2 belong to the same ETS, since they can be
executed during the same period of time. This example is
equally valid for the construction T1|[]|T2|[]| · · · |[]|Tn

(T1, · · · , Tn belong to the same task set), but the number of
constraint checks involved to evaluate a distribution config-
uration for all tasks increases to

`
n
2

´
in this situation. If the

number of areas increases to m, the number of constraint
checks increases exponentially since there are now

`
n
m

´
pos-

sible combinations. The number of possibilities that a de-
signer would have to check by hand is not feasible without
any tool support. Our approach allows to visualize these
constraints and automatically define valid task distribution
configurations according to the task specification.

The example in the previous paragraph focused on a typ-
ical intra-ETS relation: a relation between two tasks in the
same ETS. It is sufficient to take this into account for a
distribution configuration for a single ETS. In other cases
however, similar concerns arise. For example, the construc-
tion T1 []>> T2 []>> T3 []>> · · · []>> Tn implies that ev-

Figure 2: Location constraint example for the task specification T1|[]|T2.

ery task is in a separate ETS, but still requires each task
Ti,1≤i,≤n−1 to exchange information with its successive task
Ti+1,1≤i,≤n−1. These types of relations have to be taken into
account for the possible migration paths between task sets.

5. THE MODIE PLATFORM
The models discussed in the previous section are all inte-

grated by the MoDIE platform, a platform that supports a
user interface design process for ambient intelligent environ-
ments. The central model is the task model, describing the
set of tasks the (ubiquitous) application supports. Other
models include the environment model that lists all avail-
able interaction resources in the environment of the user,
a dialog model containing the ETSs derived from the task
model, a presentation model that can be related to the tasks
in the task model and an interaction model describing the
interaction between the user interface and the application
logic. Every view in MoDIE offers direct manipulation of
these different models and visualizes the relations between
different models appropriately. Figure 3(b) shows an en-
vironment view combined with a task view that allows to
assign tasks to interaction resources.

The environment model in MoDIE can be used in two
different manners: statically and dynamically. The former
implies the user interface designer defines a custom list of
interaction resources, the latter implies that this list is cre-
ated automatically by using off-the shelf service discovery
protocols (currently MoDIE supports UPnP1). In both ap-
proaches the location or range of operation of a device is in-
cluded in the environment model. We extended the UPnP
discovery mechanism to retrieve this information if possi-
ble. With the support for a realistic environment model in
place we can design, test and change a task specification for
different environment models.

Tasks can be related with interaction resources of the en-
vironment model in two ways:

1. Automatically: tasks can be allocated among the avail-
able interaction resources automatically by applying
the different constraints.

1http://www.upnp.org

2. Manually: usually, there are a number of solutions
that are valid w.r.t. the constraints defined by the
different models. MoDIE supports manual editing of
the task allocations (which actually presents the task-
environment inter-relation): the designer can relate
tasks with interaction resources and observe the effects
of these changes.

Constraints on properties of the interaction resources that
are available in the environment model can be checked by us-
ing XPath queries, since the environment model is expressed
as an XML document. The XML document is based on the
CoDAMoS ontology [19] and can be constructed and pro-
cessed by our MoDIE tool. A constraint check on a prop-
erty of an interaction resource can be translated in an XPath
query that is executed on this XML document. Part of the
XPath query is just an implementation of the projection
function of section 3.2 which maps an interaction resource
property on a value in the domain of this property. Another
part of the XPath query reflects the condition on the value
of this property. Other properties such as the physical loca-
tion of an interaction resource in a room inside a building
can also be included in the environment description.

An important aspect of the MoDIE design tool will be
the possibility to simulate the run-time behavior of the dis-
tributed user interface. This simulation is considered as a
view on the different models that are built with the MoDIE
support tool and is integrated with the other views. The
simulation creates a 3D model of the environment model
(using the Java3D API2), and uses the list of interaction
resources to dynamically render the user environment. A
simulation module aids in defining the appropriate Task Mi-
gration Paths. Figure 4 shows the MoDIE combined view
of the environment model and the dialog model (expressed
as a set of task sets). By moving the mobile device away
from the desktop computer the designer can see what kind
of transitions are invoked and how the design fits in the
simulated situation.

Relating tasks with devices through direct manipulation
on the 3D view of the environment model is obviously more
intuitive than working only with diagrammatic notations.

2http://java.sun.com/products/java-media/3D/

(a) Visualizing a distribution configuration for a task set

(b) Allocating tasks from a task specification to devices in an ambient intelligent
environment

Figure 3: Different visualizations with the MoDIE tool.

Figure 4: View on the Interaction Resources of the environment model

Although this model supports direct manipulation, it is also
suitable to visualize existing relations already created be-
tween the other models. This way the designer will have
a graphical overview of the user interface distribution and
instantly sees the effect of model manipulations. Another
advantage of the 3D visualization of the Environment model
is that context influences on the user interface distribution
can be intuitively communicated to the UI designer by vi-
sualizing the tasks assigned to an interaction cluster in the
3D environment. With this approach, context changes can
be animated by letting tasks migrate to other interaction
spaces.

6. CONCLUSIONS AND FUTURE WORK
In this paper we investigated the requirements to sup-

port task-centered user interface design for ambient intel-
ligent environments, where the user interface suppporting
the tasks of the user is distributed among the available de-
vices. We introduced MoDIE, a system that uses a task-
based approach to design user interfaces for ambient intel-
ligent environments. MoDIE allows a designer to combine
a presentation and task model smoothly with an environ-
ment model. It visualizes task allocations in an environ-
ment and supports the design process by visualization and
simulation techniques. User interface completeness (is the
required functionality to reach the user’s goals accessible?)
and continuity (can we create a usable user interface for a
dynamic environment) are the two main properties that are
considered here. Both the visualization of the task alloca-
tions in the environment and the simulation of the execution
of a task specification are the primary tools to ensure com-
pleteness and continuity.

Although there are several theoretical frameworks for de-

termining the influence of device switching on the usability
of a system, there is no support to allow a designer apply
these frameworks while designing a multi-device user inter-
face. Further research is necessary to use these frameworks
in tools that can visualize the effects of certain design deci-
sions on the usability of the system. It is clear there are an
overwhelming number of aspects that need to be taken into
account to use MBUID for ambient intelligent environments.
Traditional MBUID approaches do not take dynamic envi-
ronments with different devices that can be used in parallel
into account. This work contributes to a solution for this
problem by investigating the issues that are specific for the
design of user interfaces for these type of environments and
structuring them so they can be incorporated in design tools
and user interface generators.

7. ACKNOWLEDGMENTS
The authors would like to thank Geert Houben, Frederik

Winters and Tim Clerckx for co-developing the software sup-
porting the ideas of this paper.

The CoDAMoS (Context-Driven Adaptation of Mobile
Services) project (IWT 030320) is directly funded by the
IWT (Flemish subsidy organization). Part of the research
at EDM is funded by EFRO (European Fund for Regional
Development), the Flemish Government and the Flemish In-
terdisciplinary institute for Broadband technology (IBBT).

8. REFERENCES
[1] Lionel Balme, Alexandre Demeure, Nicolas Barralon,

Joëlle Coutaz, and Gaelle Calvary. CAMELEON-RT:
A Software Architecture Reference Model for
Distributed, Migratable, and Plastic User Interfaces.
In Markopoulos et al. [12], pages 291–302.

[2] Tim Clerckx, Kris Luyten, and Karin Coninx.
DynaMo-AID: a Design Process and a Runtime
Architecture for Dynamic Model-Based User Interface
Development. In The 9th IFIP Working Conference
on Engineering for Human-Computer Interaction
Jointly with The 11th International Workshop on
Design, Specification and Verification of Interactive
Systems, 2004.

[3] Karin Coninx, Kris Luyten, Chris Vandervelpen,
Jan Van den Bergh, and Bert Creemers. Dygimes:
Dynamically generating interfaces for mobile
computing devices and embedded systems. In Luca
Chittaro, editor, Mobile HCI, volume 2795 of Lecture
Notes in Computer Science, pages 256–270. Springer,
2003.

[4] Joëlle Coutaz, Christophe Lachenal, and Sophie
Dupuy-Chessa. Ontology for Multi-surface Interaction.
In Matthias Rauterberg, Marino Menozzi, and Janet
Wesson, editors, Human-Computer Interaction
INTERACT ’03: IFIP TC13 International
Conference on Human-Computer Interaction.

[5] Charles Denis and Laurent Karsenty. Inter-Usability
of Multi-Device Systems – A Conceptual Framework,
pages 373–385. Wiley, 2004.

[6] Jacob Eisenstein, Jean Vanderdonckt, and Angel R.
Puerta. Applying model-based techniques to the
development of uis for mobile computers. In
Intelligent User Interfaces, pages 69–76, 2001.

[7] Nikolaos Georgantas and Valérie Issarny. User activity
synthesis in ambient intelligence environments. In
Markopoulos et al. [12], pages 45–50.

[8] Thomas Heider and Thomas Kirste. Supporting
Goal-Based Interaction with Dynamic Intelligent
Environments. In Frank van Harmelen, editor, ECAI,
pages 596–600. IOS Press, 2002.

[9] Anders Larsson and Erik Berglund. Programming
ubiquitous software applications: requirements for
distributed user interface. In Frank Maurer and
Günther Ruhe, editors, SEKE, pages 246–251, 2004.

[10] Kris Luyten, Marc Abrams, Quentin Limbourg, and
Jean Vanderdonckt, editors. Developing User
Interfaces with XML: Advances on User Interface
Description Languages, 2004.

[11] Kris Luyten, Tim Clerckx, Karin Coninx, and Jean
Vanderdonckt. Derivation of a Dialog Model for a
Task Model by Activity Chain Extraction. In J. A.
Jorge, N. J. Nunes, and J. F. e Cunha, editors,
DSV-IS, volume 2844 of Lecture Notes in Computer
Science, pages 203–217. Springer, 2003.

[12] Panos Markopoulos, Berry Eggen, Emile H. L. Aarts,
and James L. Crowley, editors. Ambient Intelligence:
Second European Symposium, EUSAI 2004,
Eindhoven, The Netherlands, November 8-11, 2004.
Proceedings, volume 3295 of Lecture Notes in
Computer Science. Springer, 2004.

[13] Mieke Massink and Giorgio P. Faconti. A reference
framework for continuous interaction. Universal
Access in the Information Society, 1(4):237–251, 2002.

[14] Giulio Mori, Fabie Paternò, and Carmen Santoro.
Design and Development of Multidevice User
Interfaces through Multiple Logical Descriptions.
IEEE Trans. Software Eng., 30(8):507–520, 2004.

[15] Giulio Mori, Fabio Paternò, and Carmen Santoro.
CTTE: support for developing and analyzing task
models for interactive system design. IEEE Trans.
Softw. Eng., 28(8):797–813, 2002.

[16] Giorgio P. Faconti and Mieke Massink. Continuity in
Human Computer Interaction. In CHI 2000 Workshop
report.
http://www.acm.org/sigchi/bulletin/2000.4, 2000.

[17] Fabio Paternò. Model-Based Design and Evaluation of
Interactive Applications. Springer, 2000.

[18] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat
Hanrahan, and Terry Winograd. ICrafter: A Service
Framework for Ubiquitous Computing Environments.
In Ubicomp 2001: Ubiquitous Computing, Third
International Conference Atlanta, Georgia, USA,
September 30 - October 2, 2001, Proceedings, Lecture
Notes in Computer Science, pages 56–75. Springer,
2001.

[19] Davy Preuveneers, Jan Van den Bergh, Dennis
Wagelaar, Andy Georges, Peter Rigole, Tim Clerckx,
Yolande Berbers, Karin Coninx, Viviane Jonckers, and
Koenraad De Bosschere. Towards an Extensible
Context Ontology for Ambient Intelligence. In Panos
Markopoulos, Berry Eggen, Emile H. L. Aarts, and
James L. Crowley, editors, Ambient Intelligence:
Second European Symposium, EUSAI 2004,
Eindhoven, The Netherlands, November 8-11, 2004.
Proceedings, pages 148–159, 2004.

[20] Anthony Savidis, Napoleon Maou, I. Pachoulakis, and
Constantine Stephanidis. Continuity of interaction in
nomadic interfaces through migration and dynamic
utilization of I/O resources. Universal Access in the
Information Society, 4(1):274–287, 2002.

[21] Jean Vanderdonckt, Quentin Limbourg, and Murielle
Florins. Deriving the Navigational Structure of a User
Interface. In M. Rauterberg and J. Wesson, editors,
Proceedings of 9th IFIP Conf. on Human-Computer
Interaction Interact’2003 (Zrich, 1-5 September 2003),
pages 455–462, 2003.

[22] Chris Vandervelpen and Karin Coninx. Towards
model-based design support for distributed user
interfaces. In Proceedings of the third Nordic
Conference on Human-Computer Interaction, pages
61–70. ACM Press, 2004.

[23] Chris Vandervelpen, Geert Vanderhulst, Kris Luyten,
and Karin Coninx. Light-weight Distributed Web
Interfaces: Preparing the Web for Heterogeneous
Environments. In 5th International Conference on
Web Engineering (ICWE’2005), 2005.
http://research.edm.luc.ac.be/cvandervelpen/

research/icwe2005/.

[24] M. Weiser. The Computer for the 21st Century. In
Scientific American, 1991.

