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ABSTRACT 

 

This article calculates probabilities for the occurrence of different types of papers such as 

genius papers, basic papers, ordinary papers or insignificant papers. The basis of these 

calculations are the formulae for the cumulative thn  citation distribution, being the cumulative 

distribution of times at which articles receive their ( )thn n 1,2,3,...=  citation. 

 

These formulae (proved in previous papers) are extended to allow for different aging rates of 

the papers. These new results are then used to define different importance classes of papers 

according to the different values of n, in function of time t. Examples are given in case of a 
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classification into four parts: genius papers, basic papers, ordinary papers and (almost) 

insignificant papers. 

 

The fact that, in these examples, the size of each class is inversely related to the importance of 

the journals in this class is proved in a general mathematical context in which we have an 

arbitrary number of classes and where the threshold values of n in each class are defined 

according to the natural law of Weber-Fechner. 

 

I.  Introduction 

 

Classifying papers (journal articles, articles in conference proceedings,…) according to their 

importance for a scientific discipline is an extremely difficult task. Of course, visibility can be 

measured according to the number of citations a paper receives in the time t (years) after its 

publication. Often, visibility, as measured by citations received, is used as a substitute for the 

measurement of its importance. 

 

In this paper we will use the above mentioned measurement technique for developing a 

mathematical model for importance classes of papers. More specifically we will use the 

models of the cumulative thn  citation distribution, developed earlier in Egghe (2000) and 

Egghe and Rao (2001) (n = 1,2,3,…). This is the distribution of times at which an article 

receives its thn  citation (diachronous model). It is clear that n in function of time t, used as 

variables, are important values in determining the degree of visibility of a paper, hence of its 

importance for the scientific community. 

 

Using the model (an assumption, being the basic aging distribution) 

 

 ( ) tc t ba=  (1) 

 

for the density function of citations to an article, t time (e.g. years) after its publication 

( t 0, 0 a 1, b 0, a,b> < < >  constants) and the Lotka distribution (again an assumption, 

being a basic size-frequency function – see Egghe (2005)) 
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 ( )
E

M
M

 =  (2) 

 

for the distribution of articles that (eventually) receive M citations ( M 1³ , hence amongst the 

evercited articles), we arrived in Egghe and Rao (2001), based on the theory developed in 

Egghe (2000), at the formula (for n = 1,2,3,…, t 0> ): 

 

 ( )

1
t

n

1 a
t

n





-
æ ö- ÷ç ÷= ç ÷ç ÷è ø

 (3) 

 

for the cumulative fraction of papers with n or more citations at time t, fraction with respect to 

the set of ever cited papers. For the sake of completeness, we will shortly repeat the proof of 

the above result in the Appendix. For more on the n
th

 (sometimes n 1= ) citation distribution, 

we refer to Glänzel (1992), Rousseau (1994) and Burrell (2001, 2002). 

 

The proof of the result (3) supposes that   and a are constants. This is reasonable for   since 

the size-frequency function describing the fraction of papers that (eventually) receive M 

citations (amongst the set of ever cited papers) can be supposed to be fixed for a fixed 

discipline (which we assume here). Of course, even within each fixed discipline, one has all 

kinds of papers (of the different importance or visibility degree as we want to describe in this 

paper), yielding different aging curves (1), hence different a s. In the next section we will 

extend (3), allowing for different a-values, hereby giving a formula for the cumulative thn  

citation dsitribution, incorporating the different types of articles (as e.g. expressed by different 

a values). 

 

The third section then generally presents the way to subdivide the total set of papers into 

different visibility or importance classes. An example can be given of 4 classes describing the 

classes of genius papers, basic papers, ordinary papers and insignificant papers (or at least 

little significant papers). The size of these classes can be calculated according to the 

probability for a paper to belong to one of such (disjoint) classes. Examples are given. 

 

The last section then proves some mathematical properties of these classes. Using the above 

mentioned models we can show that for 2 ³ , in all cases of i classes, the class of least 
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significant papers is always the largest. We furthermore prove the following result: If the 

importance classes are constructed using exponential thresholds for the value of n (i.e. 

dividing the set of ever cited articles according to citation levels that increase exponentially - 

a natural choice as we will explain in the sequel), then we show that the size of each class is 

inversely related to its importance level, i.e. the less important a paper is, this paper then 

belongs to the larger importance class and vice-versa: the most important papers belong to the 

smallest classes. This, at first sight, evident fact can be proved based on the aging law (1), the 

law of Lotka (2) and the law of Weber-Fechner and explains the elitary character of visibility 

or importance and gives exact probabilities for a paper to belong to one of such classes, 

solving the problem posed in this paper. 

 

II.  The n
th

 citation distribution for variable values of 

a 

 

Formula (3) denotes the probability (amongst the ever cited papers) that a paper has n or more 

citations at time t. Here a is given and fixed. Hence, in the extended environment where a is 

variable in the interval ] [0,1  we could also denote (3) as 

 

 ( ) ( )nP n, t | a t=  (4) 

 

being the conditional probability (amongst the ever cited papers) that a paper has n or more 

citations at time t, given the fixed value a of the aging rate. 

 

By definition of conditional probability we have 

 

 ( ) ( ) ( )P n, t,a P n, t | a P a=  (5) 

 

where ( )P n, t,a  is the joint probability in ( )n, t,a  and ( )P a  is the probability that a paper has 

aging rate a. We will assume that ( )P a 1=  for ] [a 0,1Î  expressing that all values of a are 

equally possible (and note that ( )
1

0
P a da 1=ò ). We use this as a first approximation noting 



 5 

that in each scientific discipline low values of a are common for ordinary papers which 

receive citations for a relatively short period of time and that high values of a are common for 

rather insignificant papers (with a relative low constant number of citations, e.g. one every 

year) but also for basic or genius papers which keep on attracting citations over a very long 

time period. 

 

Allowing in this way different values of a we have that 

 

 ( ) ( )
1

0
P n, t P n, t,a da= ò  (6) 

 

is the marginal probability (amonst the ever cited papers) that a paper has n or more citations 

at time t (averaged over the aging rate a). 

 

Combining (3), (4), (5) and the supposed ( )P a 1,=  ] [a 0,1 ," Î  we obtain 

 

 ( )

1
t1

0

1 a
P n, t da

n

-
æ ö- ÷ç ÷= ç ÷ç ÷è ø

ò  

 

 ( ) ( )
1 1

t

1
0

1
P n, t 1 a da

n





-

-
= -ò  (7) 

 

As remarked by one of the referees, the expression in (7) can be evaluated as follows: 

 

         ( )
1 1

t

0
I 1 a da

-

= -ò  

 

 ( )
1

1 11
t

0

1
1 y y dy

t

 --
= -ò  

 

upon substituting ty a= . This is the classical beta function and hence we can write 

 



 6 

 

( ) ( )
1 1

1
1 t t

I
1 1t

t t

     

   

æ ö æ ö÷ ÷ç ç +÷ ÷ç ç÷ ÷ç çè ø è ø
= =

æ ö æ ö÷ ÷ç ç+ +÷ ÷ç ç÷ ÷ç çè ø è ø

 (8) 

 

For 2= , the most common value for Lotka’s exponent (and a “turning” point in Lotkaian 

informetrics – see Egghe (2005)) we have for (8) 

 

 ( )
1 1

P n, t 1
n t 1

æ ö
÷ç= - ÷ç ÷çè ø+
 (9) 

 

Formula (9) is very simple and gives a good idea of the ( )n, t -dependencies: ( )P n, t  is 

naturally decreasing in n: it is linearly dependent on 
1

n
 while ( )P n, t  is naturally increasing in 

t: the functional relation being linear in 
1

1
t 1

-
+

. Note also that 

 

 ( ) ( )
t t

1
lim P n, t lim P n, t,a

n® ¥ ® ¥
= =  (10) 

 

since for t ® ¥ , the joint probability distribution (5) becomes independent of a (by (3), (4) 

and (5) and since 0 a 1< < ). For n 1= , we have 

 

 ( )
1

P 1, t 1
t 1

= -
+

 (11) 

 

and hence ( )
t
lim P 1, t 1
® ¥

=  as it should being a cumulative distribution function. 

 

For t very large we can, of course, use (7) and (8) to obtain the more general formula (than 

(10)): 

 

 ( )
1t

1
lim P n, t

n-® ¥
=  (12) 
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This is in agreement with (2) since (11) expresses the fraction (amonst the ever cited papers) 

of papers with, eventually (i.e. t = ¥ ), n or more citations, i.e. (use (2) and (A5)): 

 

 ( )
n n

1
M dM dM

M




¥ ¥ -
=ò ò  

 

1

1

n-
=  

 

( )
t
lim P n, t
® ¥

=  

 

It is now clear how to use (7) or (8) in the study of the different classes (of importance or 

visibility) of papers: the variables t and n allow for expressing how large or how small n is 

(the minimum number of received citations) and this for every time t selected. This clearly 

describes importance of papers at every measuring point t. We will make these intuitive ideas 

more clear in the next section. 

 

III.  Division of a set of papers into visibility or 

importance classes 

 

We have now a general device to define visibility or importance classes for a set of papers 

(e.g. papers in a certain (vast) scientific field). Using (8) (or, more generally (6) or (7)) and 

fixing a time t we can introduce a decreasing sequence of number of citations as delimiters 

(thresholds) for the different classes: 

 

 1 2 in n ... n 1> > > =   

 

yielding i classes: 

 

(1) The class of papers with 1n  or more citations at time t (i.e. the papers with a number 

of citations in the highest level: 1n  or more at t). The probability for a paper to belong 

to this class, hence its relative size equals, according to (7) 
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 ( ) ( )1 1 1

1

1
P : P n , t I , t

n


-
= =  (13) 

 

 where we denoted 

 

 

 ( ) ( )
1 1

t

0
I , t 1 a da




-

= -ò  (14) 

 

 Hence, in the special case (8) we have 

 

 1

1

1 1
P 1

n t 1

æ ö
÷ç= - ÷ç ÷çè ø+

 (15) 

 

(2) The class of papers with 2n  or more citations, but less than 1n  citations at time t (i.e. 

the papers in the second largest citation category). The probability for a paper to 

belong to this class, hence its relative size equals, according to (7) 

 

      ( ) ( )2 2 1P : P n , t P n , t= -  

 

 ( )
1 1

2 1

1 1
I , t

n n 


- -

æ ö
÷ç ÷= -ç ÷ç ÷çè ø

 (16) 

 

 which reduces, in the case (8), to 

 

 2

2 1

1 1 1
P 1

n n t 1

æ öæ ö÷ç ÷ç÷= - -ç ÷ç÷ ÷çç ÷ç è ø+è ø
 (17) 

 

(3) The next class has probability (hence relative size) 

 

      ( ) ( )3 3 2P : P n , t P n , t= -  
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 ( )
1 1

3 2

1 1
I , t

n n 


- -

æ ö
÷ç ÷= -ç ÷ç ÷çè ø

 (18) 

 

 or, in the special case (8): 

 

 3

3 2

1 1 1
P 1

n n t 1

æ öæ ö÷ç ÷ç÷= - -ç ÷ç÷ ÷çç ÷ç è ø+è ø
 (19) 

 

… 

 

(i) The class of papers with 1 or more citations, but less than i 1n -  citations at time t (i.e. 

the class of papers with the least citations at t, amongst the ever cited papers). The 

probability to belong to this class, hence its relative size equals 

 

 ( ) ( )i i i 1P : P n , t P n , t-= -  

 

 ( ) ( )i i 1P P 1, t P n , t-= -  

 

 ( )i 1

i 1

1
P 1 I , t

n


-

-

æ ö
÷ç ÷= -ç ÷ç ÷çè ø

 (20) 

 

 or, in the special case (8): 

 

 i

i 1

1 1
P 1 1

n t 1-

æ öæ ö÷ç ÷ç÷= - -ç ÷ç÷ ÷çç ÷ç è ø+è ø
 (21) 

 

Let us give an example of i 4= . If 1 2 3 4n n n n 1> > > =  are well-chosen (for this, see the 

next section), we could classify the set of papers as 

 

(1) The set of genius papers whose relative size is given by (13) or (15), 

(2) The set of basic papers whose relative size is given by (16) or (14), 

(3) The set of ordinary papers whose relative size is given by (18) or (19), 
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(4) The set of (almost) insignificant papers whose relative size is given by (20) or (21). 

 

As an example, take t 9,=  1 2 3 4n 200 n 50 n 10 n 1= > = > = > = . We will also use 2= . 

Of course these cut-off values are discutable and at least they are dependent of the subject. 

Here it is just an abstract example. 

 

We have 

 

1P 0.0045=  

2P 0.0135=  

3P 0.072=  

4P 0.81=  

 

So, clearly, 1 2 3 4P P P P< < = . 

 

Hence, if we look at papers that are 9 years old, we define genius papers as papers receiving 

200 or more citations in this period. They occur in 0.45% of the cases in this example (i.e. 

0.45% of the ever cited papers is a genius paper). Basic papers, having between 50 and 199 

citations in this 9-year period, comprise 1.35% of the total number of ever cited papers. 

Ordinary papers (number of citations between 10 and 49 in this 9-year period) comprise 7.2% 

of the ever cited papers and finally 81% of the ever cited papers have between 1 and 9 

citations in this period (the class of almost insignificant papers). This last class should be 

completed with the papers that had not yet a citation at t 9=  (fraction 

( )1 0.0045 0.0135 0.072 0.81 0.1- + + + =  of ever cited papers) and even with the papers 

without any citation ever, increasing the relative size of this last class (of rather invisible 

papers) to even more than 81%. Alternatively, the class of never cited papers could be 

handled as an extra class in the division of papers. In the next section, however, besides other 

results, we will show that, if 2 ³ , even the class (i) itself is always the largest amongst the i 

defined classes showing that the used model of citedness inequality (e.g. Lotka’s law (2)) 

mathematically implies that most papers are rather invisible (unimportant). 
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The choice of the values 1 i 1n ,...,n -  is of course not determined nor is the choice of the time t. 

This is the power of the model: For any choice of values 1 i 1n ... n -> > , t we can use (7), (8) 

and (13)-(21), where we are able to compare the relative sizes of the determined visibility 

(importance) classes of papers. 

 

Even without a fixed choice of the citation numbers jn  we are able to compare the class sizes. 

This will be done in the next section. 

 

IV.  Mathematical properties of the defined article 

classes 

 

It is clear that an interesting property to investigate is 

 

 1 2 i 1 iP P ... P P-< < < <  (22) 

 

Indeed, if (22) is true then we have the “logical” situation that importance classes increase in 

size if and only if the visibility (or importance) of the papers decreases. 

 

We have the following trivial result. 

 

Proposition IV.1: 

If (22) is satisfied for a certain 0t 0>  then (22) is valid for all t 0> . 

 

Proof: 

This follows readily from (13)-(21) since ( )I , t  
1

or 1
t 1

æ ö
÷ç - ÷ç ÷çè ø+
 is independent of the choices 

of 1 i 1n ,...,n - .                                    

 

From the above it also follows that (22) (for any t) is valid if and only if we have the 

following inequalities 
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1 1 2

i 1 i 1 i 2

1 1 1
1

n n n  - - -

- - -

- > -  (23) 

 

 
1 1 1 1

i 1 i 2 i 2 i 3

1 1 1 1

n n n n   - - - -

- - - -

- > -  (24) 

 

… 

 

 
1 1 1 1

3 2 2 1

1 1 1 1

n n n n   - - - -
- > -  (25) 

 

 
1 1 1

2 1 1

1 1 1

n n n  - - -
- >  (26) 

 

We have the following results. 

 

Proposition IV.2: 

Independent of the choices of the values 1 i 1n ,...,n - , we always have, if 2 ³ , that 

 

 i 1 iP P- <  (27) 

 

In other words, the class of least cited papers is always larger than the class containing the 

second-to-least cited papers. 

 

Proof: 

We have to show, by (23), that 

 

 1

i 1

1

i 2

2
n

1
1

n





-

-

-

-

>

+

 (28) 

 

But the right hand side of (28) is strictly smaller than 2 while i 1 in n 1- > =  hence i 1n 2- ³ . If 

2 ³  we have that 1

i 1n 2-

- ³ , whence the result.                       
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The following theorem treats all inequalities and gives a sufficient condition for (22) to be 

true. 

 

Theorem IV.3: 

If 

 

 
1

1
j j 1n 2 n-

+>  (29) 

 

for all j 1,..., i 1= - , then (22) is valid. 

 

Proof: 

(26) requires 

 

 
1 1

2 1

1 2

n n - -
>  

 

hence 

 

 
1

1
1 2n 2 n->  (30) 

 

(in fact (30) is necessary and sufficient in order to have that 1 2P P< ). 

 

To have the validity of one of the inequalities (24)-(25) we must have that (for 

{ }j 2,..., i 2Î - ) 

 

 
1 1 1 1

j 1 j j j 1

1 1 1 1

n n n n   - - - -

+ -

- > -  

 

hence 
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1 1 1

j 1 j j 1

1 2 1

n n n  - - -

+ -

> -  

 

It suffices to require 

 

 
1 1

j 1 j

1 2

n n - -

+

>  

 

hence (29). Finally (23) is valid if and only if 

 

 
1 1

i 1 i 2

2 1
1

n n - -

- -

> -  

 

It suffices to require 

 

 
1

i 1

2
1

n-

-

>  

 

hence 

 

 
1 1

1 1
i 1 in 2 2 n - -
- > = .            

 

This leads to the following important corollary. 

 

Corollary IV.4: 

If, for all j 1,..., i=  

 

 
i j

jn q -=  (31) 

 

with 

 

 
1

1q 2->  (32) 
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then (22) is valid. 

 

Proof: 

It suffices to prove (29). We have, for j 1,..., i 1= - : 

 

 i j

jn q -=  

 

 i j 1q.q - -=  

 

 j 1q.n +=  

 

1

1
j j 1n 2 n-

+>  

 

proving (29).                                    

 

Requirement (31) is very natural: it states that the sequence i i 1 11 n ,n ,...,n-=  must be 

exponentially increasing, i.e. that ( )jlog n  ( )j i,...,1=  (any log can be used) is linearly 

increasing. This is related with the well-known law of Weber-Fechner (see e.g. Egghe (2005)) 

stating that the sensation is proportional to the logarithm of the stimulus, i.e. that the sensation 

is linearly related to the logarithm of the stimulus. Here we need linearity in ( )jlog n  in 

function of the class numbers j i,...,1= . It is indeed logical, in the construction of the 

importance classes, to allow for an exponential increase of number of citations when going 

from the classes of low number if citations to the ones with higher number of citations, so that 

the class index i j 1- +  ( )j i,...,1=  is linearly related with the logarithm of the (lower bound) 

of number of citations in this class (comparable with Weber-Fechner’s law). 

 

A similar construction is done when expressing distances from a certain point, e.g. in 

calculating the distance that library users live from e.g. a public library: one might start with 

classes with small distances from the library (say in the order of 500 meters) but for users 

living further away from the library it is best to construct classes, grouping users over several 
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kilometers (it does not make sense to group users linearly in function of their distance to the 

library: constructing groups in a range [ ]0,500m , [ ]500m,1km  seems reasonable but not in a 

range [ ]30km,30.5km  and so on). In the same way it is reasonable to define classes of not-so-

important papers by using a small number of citations ( )n 1,2,3,...=  but for basic or genius 

papers we need more citations than there are classes defined (see e.g. the example in Section 

III). 

 

Note that, if 2=  (the most common value of Lotka’s exponent) we have the requirement 

(in Corollary IV.4) q 2>  in order to have the validity of (22). In this case one could also use 

q e 2= > , yielding the classical exponential function xx e®  in (31). This function can be 

used whenever 

 

 
1

1e 2->  

 

or 

 

 1.693>  

 

which is true in most cases. 

 

Note also that, in order to have natural numbers for the treshold values jn  we need to round 

off the numbers i jx q -=  (in Corollary IV.4) to the next higher entire number xé ùê ú ( xé ùê ú denotes 

the smallest entire number larger than or equal to x, also called the floor function) and to 

check for (29). 

 

V.  Conclusions and open problems 

 

In this paper we extended the model for the cumulative thn  citation distribution, developed in 

Egghe (2000) and Egghe and Rao (2001) to the universe of ever cited papers and allowing for 

variable aging rate a. 
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This new model is then used to define different classes of importance or visibility of papers 

going from genius papers to (almost) insignificant papers. The role played by Lotka’s 

distribution in the model for the cumulative thn  citation distribution is extended here so that 

we are able to prove that, if class limits of n are choosen exponentially (in function of the 

class number), i.e. adopting a form of the law of Weber-Fechner, we always have that the 

class sizes increase with decreasing citedness of the papers. In this way we give a 

mathematical explanation of this “natural” and well-known phenomenon. 

 

These results are also a mathematical support for the experimental result in Glänzel, 

Schlemmer and Thijs (2003) on genius papers (described there as papers with a high number 

of citations for t high, where the number of citations for t low are low). 

 

As remarked by one of the referees such papers could also be called “Sleeping Beauties”, cf. 

van Raan (2004), Burrell (2005). 

 

We leave open to find similar (or analogous) mathematical results based on the characteristics 

of highly cited papers (here the distinction between t low or high as in Glänzel, Schlemmer 

and Thijs (2003) is not made) as described in Aksnes (2003). 
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Appendix 

 

Proof of formula (3) 

The cumulative distribution C of citations at time t 0>  is given by (using (1)): 

 

 ( ) ( )
t

0
C t c s ds= ò  

 

 ( )
t

s

0
C t ba ds= ò  

 

 ( ) ( )tb
C t a 1

lna
= -  (A1) 

 

Since ( )
t
limC t
® ¥

 must be 1 we have, since 0 a 1< < , 

 

 ( ) tC t 1 a= -  (A2) 

 

A paper with M citations in total has n 1,2,3,...=  citations at time t if 

 

 ( )MC t n=  (A3) 

 

Here we make the (simple) assumption that citations are spread out over papers proportional 

to their number of citations at t = ¥  (deterministic argument). 

 

For all values M' M>  we evidently have 

 

 ( )M'C t n>  

 

hence these documents belong to the ones that receive their thn  citation before t. Their 

cumulative fraction is, according to (2), 
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  ( )
M M

E
M' dM' dM'

M'


¥ ¥

=ò ò  

 

 1M -=  (A4) 

 

noting the fact that, since   is a distribution, we have 

 

 ( )
1

M' dM' 1
¥

=ò  

 

and hence (supposing 1>  which can always be supposed for Lotka’s law – see Egghe 

(2005)) 

 

 E 1= -  (A5) 

 

Formulae (A2), (A3) and (A5) combined yield 
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n
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æ ö- ÷ç ÷= ç ÷ç ÷è ø

 (A6) 

 

But this is nothing but the cumulative thn  citation distribution (amongst the ever cited articles, 

since M 1³  in (2)), denoted n . Hence 
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 (A7) 

 

for n 1,2,3,...=  .  


