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Abstract

Similarity between objects (documents, persons, answers fo a quastionnaire, efc.)
is generally determined through relations between representations of thesa
abjects. In the case of binary representations the presence of a property (g.g.. an
index term) carmries a weight of one, the absence a weight of zero. In many
similarity studies commaon zeros are ignored. This situation is called the zero
insensitive case. In this article, however, we study the zero sensitive case.
Clearly, answers to binary questionnaires (yes-no, encoded as 1-0) are zero
sensitive, as people who answer 'no’' to the same questions are mare similar. We
present a wish list for such a zero sensitive approach fo smilanty. Making a
difference between common zeros and common ones leads to an ‘identity-
similarity’ theory. Hence, we move beyond a pure sgimilarity theory. Three
approaches to the problem of similarity measurement of presence-absence data,
wheare common zeros matter are presenfed. In each case a coding approach is
used, leading to new representations, which then lead to a similarity ranking.

Examples of functions respacting these rankings are given.

Keywords: Zero-sensitive similarity, absence-presence data, differences

between identical represeniations,



1. Introduction

In & previous article [1] we studied similarity measurement for absence-presence
data. Similarity between documenis is determined by comparing document
representations, In the case of binary representations the presence of an index
term (keywords or phrases) carries a weight of one, the absence a weight of zero.
In information retrieval and in overap studies it is customary nol 1o consider
common zeros when determining the similary between documents, or more
precisely, document represaentations [2]. Indeed, keywords or phrases that do not
occur in the two documents under consideration have no influence on the
similarity between thesa two documents. Economic articles are not more similar if

the term “Big Bang" is absent in both. This situation is called the zero insensitive

case. That was the case studied in our previous article. In this article we will
study the zero sensitive case. Clearly, answers to binary questionnaires (yes-no,
encoded as 1-0) are zero sensitive, as people who answer ‘no’ to the same
questions are more similar. Probably. two authors warking in the same field. who
are naver co-cited. or never collaborated with a third colleague are more similar
than in the case one had been co-cited and the other not. Further, when doing a
search in a binary-indexed database using the NOT-operator declares two
documents to be more similar if they do not contain the NOT-ed term. As in [1]
we emphasize the fact that it is irrelevant in which order document
representations r and s for similarity studies are considered by referring 10 D =

{r,s} as a duo, a word that has no “rank” connotations.



2. Awish list
In the zero sensitive case we would like to construct a similarity theory with the

following properties:

P1 Adding two common 15 makes two non-identical arrays (strictly) more
similar;

(%X (W Y0 =2 {0, 1)) increases similarity

P2 Adding two common 0s makes wo non-identical arrays (strictly) more

similar;

[0, b ) 2 %0 00,0, .y 0)) increases similarity

P3 Adding a {0-1) to a duo makes it (strictly) less similar:

[0, oo XDV ¥ =2 {0 X000y y0 1) decreases similarity

P4 Replacing a (0-1) by a (0-0) makes the arrays (strictly) mare similar:

[(x,....0x)00y..... 1.9} == {(x.....0.%).{y.....0.¥)} increases similarity

P5 Replacing a (0-0) by a (1-1) makes the arrays (strictly) more similar:
{(x,....0.%)04y,....0¥1 = {{x,.... 1.x){y.....,1.¥]} increases similarity

or the weaker version:



P5a: Replacing a (0-0) by a (1-1) does not alter the similarity between the two
arrays:

(%, 0.0, 000 =2 {1,300, 1,90 does not alter similarity

Prefaerably, we would like 1o represent this similarity theory using a Lorenz curve
approach. Mote that the difference between PS5 and P5a is that in P3a common
0s and common 15 are considered to have the same impact on the similarity of
the duo under consideration: the occurrence of a commen 0 or a commeon 1
makes the items in & dug in the same way more similar. According to P3,
however, common 15 make a duo more similar than common 0s (intreducing a
kind of property weighting). We think that both considerations are meaningful,
depending on the application one has in mind. Note that PS5 implies that identical
arrays with at least one sel of cormasponding Os are not considered perfectly
similar anymore, because otherwise repiacing a (0-0) by (1-1) would not lead to a
strict increase in similarity. This means that introducing weights brings the theory
beyond a pure similarnty theory. [t becomes an Sidentily-similarity’ theory. Note
also that requirements P4 and PS5 (and hence certainly P5a) imply that replacing

a {0-1) by (1-1) should maka two arrays more simitar.

We consider our wish list as a set of logical requirements. We admit though that
ather requireaments ara possible [3]. One could also imagine a similarity theory
where not all of these requirements are salisfied (it is just a wish list). The main

point is that when discussing similarity in general terms authors should clearly
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and the number of common symbols, d = p+m, (here d = 3) contain all
intermation. In this situation there is one obwvious similarity measure, namely d/M,

although applying any monotone increasing function would (at least in theory)

also be acceptable. Mote that d/N is the fraction of ones in the encoded form, |.e.,

as the simple matching coefficient. K is not difficull to introduce a Lorenz curve
and a Lorenz similarity partial crder corresponding to the simple binary model. [t
suffices to use the classical Lorenz curve tor the encoded array. This is illustrated

in Fig.1 for D = {r = (1,1,1,1,0,0), s = (0.0,1,1,0,1)}, encoded as [1 1 1 0 0 0].

Insert Fig.1 about here

Definition: SB-equivalent duos

Two duos are said to be SB-equivalent, i.e. equivalent for the simple binary

model, if and only if the Lorenz curves derved from their SB-encoded form

coincide.

From now on, equivalent duos will be considered to be the same. Hence, a

symbol such as D = {r,s} will rapresent the equivalence class of {r.s]. In the set of

equivalent duos we say that D1 <, D2, meaning that D1 is a less similar duo than
D2, if the Lorenz curve of D1 is situated above the Lorenz curve of D2. The
relation D1 =, D2 then means thal D1 and D2 may also be equivalent, The order

relation <. is a total order for equivalence classes, because Lorenz curves of the
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The reciprocal of the coefficient of variation, another acceplable measure, is

| i B 1
Vw-d | 4

(the second formula clearly shows that this is just a monotone

transtormation of d/N), while the similarity-normalized length of the Lorenz curve

J_ {here L denotes the length of the Lorenz curva). Dna should wonder,

however, why using measures like this, when there exists a measure that is both
simple and exact in its description of similarity according to the simple binary
model. Generally, any monolone increasing function of d'N is again an
acceptable similarity measure. Exampies of such increasing functions are the T-
indices:

4
d+ BN-d)

with B = 0. This family of functions includes the Sokal & Sneath coeflicient (B =
2), and the Rogers & Tanimoto coefficient (B =2) [6]. A proof is given in the

appendix.

4. A second approach: reduction to the zero-insensitive case

In thiz approach we again declare common zeros to be completely equivalent to
common ones {as we did in the previous ong). Commaon zeros are first rowritten
as commen ones, and then the approach taken for the zero-insensitive case is
applied. For example D = {r = (1,1,1,1,0,0), s = (0,0,1,1,0,1}}, is first rewritten as:

D*={r =(1,1,1,1.1.0), s* = (0,0.1,1,1,1}}, and then represented by the similarity



10

Lorenz curve joining the points (0,0) — (2'6,8/20) - (5/6,5/20) — (1,0} (see Fig.2).

This approach will be called {in short) the reduction approach.

Insert Fig. 2 about hare

Definition: Zl-equivalent duos

Two duas are ZI-equivalent if their Lorenz zero-insensilive curves coincide.

We know. from [1] that the reduction approach leads 1o a partial order, which we
will denote by =.. We further already know [1] that also these Lorenz curves are

replication invariant.

It D1 =2 D2 then D1 =4 D2. Indeed D1 <: D2 implies that the Jaccard index of D1,
denoted as J(D1). is strictly smaller than J{D2). Hence div/MNy = de/M3, which is
equivalent to D1 <; D2. For the same reason equivalent duos according to the
reduction approach correspond to eguivalent duos according to the simple binary
model. The opposite, though, is not true. Consider, for instance, D1 = [ =
{1.1,1,0,0,0), 5, = (1,0,0,1,1,1)} and D2 = {rz = {1,1,1,1,1.0), 5z = (1,0,0,0,0,1}}.
According to the simple binary modal D1 and D2 are both represented as (1000
0 0], hence are SB-equivalent. Yet, D1 and D2 are incomparable in the reduction

model, as illustrated in Fig.3.

Insert Fig.3 about here



il

Examples of acceplable similarity measures

As this approach reduces the problem to the zero-insensitive case, we may use
those measures known to be applicable in this case [1]. Examples of acceptable
measures are the classical similarity measures such as the Jaccard index [egual
to the Gini similarity index), Dice's coefficient, Salton's cosine measure, and the
adapted Simpson index, Expressed in the notation of this article they have the

following mathematical expressions.

The Jaccard index of & duo D is defined here as:

o
J ==
[ L¥) vy

Dice’s coefiicient of the duo D = {r.s} is:

24_
pro

Dice( D)=

where p = p+m+l is the number of 1s in r* and o =p+m«+k is the number of 15in

W

- g

Salton's cosme meaasura of O becomes:
d
e ) = ———

Tic

where p and @ have the same meaning as for the Dice coalficient.



Finally the adapted Simpson indax of D is:

2
Mip+o-=24)

S(0) =
Any strictly increasing function of these measures is again an acceptable

measure in the reduction approach.

Tha attentive reader may have noticed that we have nol yet discussed if the
reduction approach satisfies the reguirements P1-P5{a}. The reason is that it
does not, at least it does not meet all the requirements. Let us discuss them one
by one. First, because common Os are encoded as common 18, we note that
requiremants P1 and P2 coincide. These reguirements are satisfied by the
reduction approach, as shown in our previous aricle [1]. Clearly, PS5 cannot be
met, and P5a is trivially satisfied. This leaves P3, about adding a (0-1) and P4
about changing a (0-1) by common 0s (here common 1s). P3 is not mat as
shown by the following example: we transtorm D1 = [r = (1,1,1,0,0,0), 51 =
(1,0.0,1,1,1)} to D3 = {r3 = {1,1,1,0,0,0,0), 53 = (1,0,0,1,1,1,1}}. Then the Lorenz
curvas of D1 and D3 cross, showing that D1 and D3 are not intrinsically

comparable (see Fig. 4).

Ingert Fig.4 hare

Finally, P4 is salisfied in this approach. Replacing a (0-1) by common 15 always

leads to an intrinsically more similar situation. A proof is provided in the appendix.
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5. Third approach: using radix 4 encoding

symbols as Os followed by one 1. A duo is then encoded as the number ‘zero
point’ followed by the code numbers aranged in decreasing order, such as

0.3..32..20..01. All codes of the form 0.3...3 {(any number of 3s) are declared

equivalent (corresponding to perfect similarity). Similarly, all codes beginning with
0.0 are declared equivalent (corresponding o the case that nat a single symbaol
comresponds). For example: D = {r = {1,1,1,1,0.0), 5 = (0.0,1,1.0,1)} is encoded as:

0.3320001, because there are two 1s in common, ong 0 in common and thrae

symbols which are different in the two arrays.

As in the other approaches we declare two duos to be equivalent if thay lead to

eg. D = {r = (1,1,1,1,0,0), s = {0,0,1,1,0,1)}, and D'= {r' = {1.,1,1,1,0,1), & =
{0,0,1,1,0,0)}. This approach again leads o a complete order on eguivalence

classes, denoted as =,

Far similarity considered in this way, the requirements P1, P2, P3, P4 and PS5 are
all satisfied: adding common 05 (and certainly 15) yields a larger code number,

adding 0 -1 decraasas the similarity, replacing 0-1 by common 0s yields a langer

code number, replacing common 0s by common 15 also vields a larger code

number. A drawback of this approach is that two identical arrays with at least one
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0 are not considered to be completely similar anymore. i they were then

requirament PS, slating that replacing a (0-0) by a (1-1) makas the arrays more

similar, would not satisfied anymaora,

Because only the symbols 3, 2 and 1 and 0 are used these codes can be
considered as numbers in the base or radix 4 number system. In this system,

similar to the better known, binary number system, the number 0.31 corresponds

to the decimal number %+4'—=={1-R1:'5 . Similarly 0.2201 comesponds 1o

n 1

"
% 4—",+-4—J+F=I].623%525. Mote however that if two duos have at least one

symbol in common, their decimal representation is at least 0.5. Hence as a
similarity measure we propose the decimal representalion minus 0.5, and the

result multiplied by 2. In this way 1 stays 1, namely (1-0.5).2 = 1, while 0.5

becomes (0.5 — 0.3).2 = 0. This proposal has onea small inconveniance, namely
that the theory cannot be applied to arrays of length cne, because then the duo

{10),{0%} would have measure 0. But who wants to study the similarity of arrays of

length ane?

This encoding, and hence this approach to similarity, is not duplication invariant,

and duplication increasas similarity. In this sense one may say that the radix 4
approach is an approach based on absolute numbers, not on relative proportions

as in the replication invariant cases. Indeed, DS = {(0,0),(0,0)} is encoded as

0.22; D5 = {{0,0),(1.0)] is encoded as 0.201. Hence D6 s; D5. However,
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replicating D6 twice leads to DY = {(0,0,0,0),(1,1,0.0)}, which 5 encoded as

0.22001, so that D6 53 D5 =5 D7.

We were not able to find a non-trivial Lorenz curve represeniation corresponding
to the radix 4 approach. This is not surprising as traditional Lorenz curves are

duplication invariant. Yet. connecting the origin to the point with as abscissa the

decimal representation of the duo’s code, and as ordinate the value one, yields —
in a trivial way — a kind of Lorenz curve comesponding with this encoding. As for
the first approach the encoding — in decimal form - coresponds to the Gini

similarity index of this Lorenz curve, bul it is possible to consider other

acceplable similarily measures, using the similarity equivalents of the coefficient
of vanation, the length of the Lorenz curve, the entropy measure and 5o on. As
for the lirst approach, we do not consider these other measures of real practical

value

6. Different shades of identity

In the previpus approach we crossed the thin line between a pure similarity

theory and what we would like to call an ‘identity-similarity’ theory, as we made a
distinclion between different identical duos. From that point of view it certainly

seems anificial 1o declare all arays coded as “zero point any number of 35" io be

represents jdentical arrays, so they are as similar as possible. The second type

represents completely dissimilar arrays. Yel, taken these codes as they are,
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form) seems a reasonable candidate similarity measure. Yel, this approach

violates requirement P2. Adding two common zeros reduces the similarity from

N -to-d i joct thi h

d) The zero-insensitive case

Requirements P3 and P4 were not studied in our previous article covering the

Zero-insensitive case. The countarexample and proof given here show that also

in the zero-insansitive case P3 is not satisfied, while P4 always is.

&) Lorenz curves

We were able to extend the Lorenz curve approach (as in the reduction to the

msansitive case), but than at least one of the requirements P1-P5 was not

always satisfied. Details can be abtained from the authors. Anyhow, the Lorenz

common 0s to such a Lorenz curve lifis the curve. This is an unwanted property
as we want to lower this curve in a similarity theory. This shows that the Lorenz

curva approach (at least withoul alterations) cannot be used for a similarity

theory where commaon zeras are possible,

fi The idea of the radix 4 approach may also be applied to the case that commaon

0s and common 15 are considered to be perfectly equal. It sulfices to give the

same encoading, e.9. 2, to both (making it a radix 3 approach).




.
o
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Ultimately, any similarity theory is only useful when it helps to understand real-life
examples. We invile our collkeagues, not only in the information sciences, but also
in the fields of ecology, sociology and computer sciences, to try out the approach

presented in this article.
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Appendix

Proposition 1

. d ; s £ 3
The function T= m . B =0, i5 a monotona ingreasing function of d/M.

d i
dIN+B{1-dIN}

Proof. The T-index can be rewritten as: . Writing x for d™N

X
x+ - x)

o B
{x+ Bil=x})

gives: T = . Taking the derivative of T with respect to x gives:

. This expression is always positive, proving that T is a

manotone increasing function of diN.

Froposition 2
Replacing a {0-1) by common 1s leads to & Lorenz curve representing an

intrinsically mare similar situation.
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Fig.2 D={r=(1,1,1,1,0,0), s = (0,0,1,1,0,1}}, is first rewritten as:

D =fr = {111,110}, 5" = (0.01.1,1,1}}, and then represented by the similarity
Lorenz curve joining the points (0,0) - (2/6,8/20) — (5/6,520) — (1,0).
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Fig.3 D1 = {r, =(1,1,1,0,0,0), 5, = {1,0,0,1,1,1}} and
D2 = {ra = {1,1,1,1.1,0), 5z = {1,0,0,0,0,1}] are incomparable in the reduction
model, bacause their Lorenz curves cross
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curves cross, showing that D1 and D3 are nol intrinsically comparable.
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Fig.5 Transiormation of D1 = [r, = (1,1,1,0,0,0], 8+ = {1,0,0,1,1,1)} to

D4 ={ry =9{1.1,1,0,0,1), 54 = (1,0,0,1.1,1}}, illustrating that the reduction approach
satisfies requiremeant P4



