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Abstract 

Similarity between objects (documents, persons, answers to a questionnaire, etc.) 

is generally determined through relations between representations of these 

objects. In the case of binary representations the presence of a properly (e.g., an 

index term) carries a weight of one, the absence a weight of zero. In many 

similarity studies common zeros are ignored. This situation is called the zero 

insensitive case. In this article, however, we study the zero sensitive case. 

Clearly, answers to binary questionnaires (yes-no, encoded as 1-0) are zero 

sensitive, as people who answer 'no' to the same questions are more similar. We 

present a wish list for such a zero sensitive approach to similarity. Making a 

difference between common zeros and common ones leads to an 'identity- 

similarity' theory. Hence, we move beyond a pure similarity theory. Three 

approaches to the problem of similarity measurement of presence-absence data, 

where common zeros matter are presented. In each case a coding approach is 

used, leading to new representations, which then lead to a similarity ranking. 

Examples of functions respecting these rankings are given. 

Keywords: Zero-sensitive similarity, absence-presence data, differences 

between identical representations, 



1. Introduction 

In a previous article [ I ]  we studied similarity measurement for absence-presence 

data. Similarity between documents is determined by comparing document 

representations. In the case of binary representations the presence of an index 

term (keywords or phrases) carries a weight of one, the absence a weight of zero. 

In information retrieval and in overlap studies it is customary not to consider 

common zeros when determining the similarly between documents, or more 

precisely, document representations [2]. Indeed, keywords or phrases that do not 

occur in the two documents under consideration have no influence on the 

similarity between these two documents. Economic articles are not more similar if 

the term "Big Bang" is absent in both. This situation is called the zero insensitive 

case. That was the case studied in our previous article. In this article we will 

study the zero sensitive case. Clearly, answers to binary questionnaires (yes-no, 

encoded as 1-0) are zero sensitive, as people who answer 'no' to the same 

questions are more similar. Probably, two authors working in the same field, who 

are never co-cited, or never collaborated with a third colleague are more similar 

than in the case one had been co-cited and the other not. Further, when doing a 

search in a binary-indexed database using the NOT-operator declares two 

documents to be more similar if they do not contain the NOT-ed term. As in [ I ]  

we emphasize the fact that it is irrelevant in which order document 

representations r and s for similarity studies are considered by referring to D = 

{r,s) as a duo, a word that has no "rank connotations. 



2. A wish list 

In the zero sensitive case we would like to construct a similarity theory with the 

following properties: 

P i  Adding two common i s  makes two non-identical arrays (strictly) more 

similar: 

{(x,. ..,x),(y,. . .,y)} 3 ((x,. . .,x,l ),(y,. . .,y,l )} increases similarity 

P2 Adding two common 0s makes two non-identical arrays (strictly) more 

similar: 

((x..  x ) ( y  y ) }  3 ( x .  ..,x,O),(y,.. y 0 increases similarity 

P3 Adding a (0-1) to a duo makes it (strictly) less similar: 

((x,. . . ,x),(y,. . . ,y)} 3 ((x,. . .,x,O),(y,. . .,y,I)} decreases similarity 

P4 Replacing a (0-1) by a (0-0) makes the arrays (strictly) more similar: 

{(x,.. .,O,x),(y,. . .,I ,y)} 3 {(x,. . .,O,x),(y,. . ..O,y)} increases similarity 

P5 Replacing a (0-0) by a (1 -1) makes the arrays (strictly) more similar: 

( x .  O x ) ( y  . . O y )  3 ( x , . .  1 x ) , ( y  1 y) }  increases similarity 

or the weaker version: 



P5a: Replacing a (0-0) by a (1 -1) does not alter the similarity between the two 

arrays: 

((x ,..., O,x),(y ,..., 0,y)) 3 ((x ...., 1 ,x),(y ,... ,I ,y)) does not alter similarity 

Preferably, we would like to represent this similarity theory using a Lorenz curve 

approach. Note that the difference between P5 and P5a is that in P5a common 

0s and common i s  are considered to have the same impact on the similarity of 

the duo under consideration: the occurrence of a common 0 or a common 1 

makes the items in a duo in the same way more similar. According to P5, 

however, common I s  make a duo more similar than common 0s (introducing a 

kind of property weighting). We think that both considerations are meaningful, 

depending on the application one has in mind. Note that P5 implies that identical 

arrays with at least one set of corresponding 0s are not considered perfectly 

similar anymore, because otherwise replacing a (0-0) by (1 -1) would not lead to a 

strict increase in similarity. This means that introducing weights brings the theory 

beyond a pure similarity theory. It becomes an 'identity-similarity' theory. Note 

also that requirements P4 and P5 (and hence certainly P5a) imply that replacing 

a (0-1) by (1-1) should make two arrays more similar. 

We consider our wish list as a set of logical requirements. We admit though that 

other requirements are possible [3]. One could also imagine a similarity theory 

where not all of these requirements are satisfied (it is just a wish list). The main 

point is that when discussing similarity in general terms authors should clearly 



state which requirements they imply. It is only then that the problem of the best 

measure for a given study can be brought up for discussion in a meaningful way. 

We present three approaches to the problem of similarity measurement of 

presence-absence data, where common zeros matter. In each case the duo will 

be encoded, i.e., a new representation is used, and then these new 

representations lead to a similarity ranking. Examples of functions respecting 

these rankings will be given. 

The following standard contingency table is used. 

[Array r / presence / absence 

3. A first approach: the simple binary model 

In the simple binary model we only take into account if zeros or ones correspond 

or not. Concretely: if zeros or ones correspond this is encoded as a 1, if they do 

not it is encoded as a 0. For example, if the duo D = {r,s) consists of r = 

(1,1,1,1,0,0) and s = (0,0,1,1,0,1) Then D is encoded as [0 0 1 1 1 0 1. As the 

order in which properties are considered should not matter, this coding is 

equivalent to [I 1 1 0 0 01. In other words: the length of the array, N, (here N = 6) 

Arrays 
presence 

absence 

p : number of matches in which a 
given property is present 

I: number of cases for which a 
properly is present in array r, and 
absent in arrays 

k: number of cases for which a 
property is present in array r, and 
absent in arrays 
m: number of matches in which a 
given property is absent 



and the number of common symbols, d = p+m, (here d = 3) contain all 

information. In this situation there is one obvious similarity measure, namely d/N, 

although applying any monotone increasing function would (at least in theory) 

also be acceptable. Note that d/N is the fraction of ones in the encoded form, i.e., 

the fraction of common symbols (zeros or ones). The fraction diN is also known 

as the simple matching coefficient. It is not difficult to introduce a Lorenz curve 

and a Lorenz similarity partial order corresponding to the simple binary model. It 

suffices to use the classical Lorenz curve for the encoded array. This is illustrated 

in Fig.1 for D = {r = (1,1,1,1,0,0), s = (0,0,1,1,0,1)), encoded as [ I  1 1 0 0 01. 

Insert Fig.1 about here 

Definition: SB-equivalent duos 

Two duos are said to be SB-equivalent, i.e. equivalent for the simple binary 

model, if and only if the Lorenz curves derived from their SB-encoded form 

coincide. 

From now on, equivalent duos will be considered to be the same. Hence, a 

symbol such as D = (r,s} will represent the equivalence class of {r,s}. In the set of 

equivalent duos we say that D l  <, D2, meaning that D l  is a less similar duo than 

D2, if the Lorenz curve of D l  is situated above the Lorenz curve of D2. The 

relation D l  5,  D2 then means that D l  and D2 may also be equivalent. The order 

relation 51 is a total order for equivalence classes, because Lorenz curves of the 



type studied here, never cross. Indeed, the Lorenz curve is completely 

determined by the point with coordinates (d/N,l). 

How does the simple binary approach fare with respect to the wish list? Adding 

two common ones or two common zeros makes arrays more similar: d/N 

becomes (d+l)/(N+l), which is strictly larger. So the simple binary model 

satisfies P I  and P2. Adding a (0-1) decreases the similarity as dlN > d/(N+l). 

Replacing a (0,l) by a (0,O) makes arrays more similar, as d/N becomes (d+l)/N. 

Hence also P4 is satisfied. Further, only the weaker version P5a is satisfied, as 

zeros and ones play equivalent roles. Finally, we already introduced a Lorenz 

curve associated with the simple binary model. 

Recall that a classical Lorenz curve is replication invariant, i.e. replicated duos 

are equivalent [4]. The case where no two symbols coincide, encoded as an all- 

zero array, does not lead to a regular Lorenz curve, yet it can be represented by 

the line segment connecting the origin with the left upper corner, followed by the 

line segment connecting the left upper corner with the right upper corner. 

The Gini similarity measure corresponding to this Lorenz curve is nothing but 

twice the area above the curve. This is equal to d/N, leading to a convenient 

interpretation of this measure. Interpreted otherwise, this measure is nothing but 

the normalized complement of the Hamming distance (the number of symbols 

that disagree) between two arrays [5]. 



The reciprocal of the coefficient of variation, another acceptable measure, is 

I (the second formula clearly shows that this is just a monotone 
N - d  L T  

transformation of d/N), while the similarity-normalized length of the Lorenz curve 

2 - L  
is -- (here L denotes the length of the Lorenz curve). One should wonder, 

2 - J Z  

however, why using measures like this, when there exists a measure that is both 

simple and exact in its description of similarity according to the simple binary 

model. Generally, any monotone increasing function of dlN is again an 

acceptable similarity measure. Examples of such increasing functions are the T- 

indices: 

with p > 0. This family of functions includes the Sokal & Sneath coefficient (P = 

%), and the Rogers & Tanimoto coefficient (p =2) 161. A proof is given in the 

appendix. 

4. A second approach: reduction to the zero-insensitive case 

In this approach we again declare common zeros to be completely equivalent to 

common ones (as we did in the previous one). Common zeros are first rewritten 

as common ones, and then the approach taken for the zero-insensitive case is 

applied. For example D = (r = (1 ,I ,I ,I ,0,0), s = (0,0,1 , I  ,0,1)), is first rewritten as: 

D* = (r' = ( I  , I  , I  , I  . I  ,O), s* = (O,O,l, 1 ,I ,I)], and then represented by the similarity 



Lorenz curve joining the points (0,O) - (216,8120) - (5/6,5/20) - (1,O) (see Fig.2). 

This approach will be called (in short) the reduction approach. 

Insert Fig. 2 about here 

Definition: ZI-equivalent duos 

Two duos are ZI-equivalent if their Lorenz zero-insensitive curves coincide. 

We know, from [ I ]  that the reduction approach leads to a partial order, which we 

will denote by 2,. We further already know [ I ]  that also these Lorenz curves are 

replication invariant. 

If D l  q2 D2 then D l  <I D2. Indeed D l  <2 D2 implies that the Jaccard index of D l ,  

denoted as J(DI), is s!rictly smaller than J(D2). Hence ddNl < d21N2, which is 

equivalent to D l  <, D2. For the same reason equivalent duos according to the 

reduction approach correspond to equivalent duos according to the simple binary 

model. The opposite, though, is not true. Consider, for instance, D l  = {ri = 

(1,1,1,0,0,0), sl = (1,0,0,1,1,1)} and D2 = {r2 = (1,1,1,1,1,0), s2 = (1,0,0,0,0,1)]. 

According to the simple binary model D l  and D2 are both represented as [ I  0 0 0 

0 01, hence are SB-equivalent. Yet, D l  and D2 are incomparable in the reduction 

model, as illustrated in Fig.3. 

Insert Fig.3 about here 



Examples of acceptable similarity measures 

As this approach reduces the problem to the zero-insensitive case, we may use 

those measures known to be applicable in this case [I ] .  Examples of acceptable 

measures are the classical similarity measures such as the Jaccard index (equal 

to the Gini similarity index), Dice's coefficient, Salton's cosine measure, and the 

adapted Simpson index. Expressed in the notation of this article they have the 

following mathematical expressions. 

The Jaccard index of a duo D is defined here as: 

Dice's coefficient of the duo D = {r,s) is: 

where p = p+m+l is the number of I s  in r* and o =p+m+k is the number of I s  in 

s*. 

Salton's cosine measure of D becomes: 

where p and o have the same meaning as for the Dice coefficient. 



Finally the adapted Simpson index of D is: 

Any strictly increasing function of these measures is again an acceptable 

measure in the reduction approach. 

The attentive reader may have noticed that we have not yet discussed if the 

reduction approach satisfies the requirements PI-P5(a). The reason is that it 

does not, at least it does not meet all the requirements. Let us discuss them one 

by one. First, because common 0s are encoded as common is ,  we note that 

requirements P I  and P2 coincide. These requirements are satisfied by the 

reduction approach, as shown in our previous article [I]. Clearly, P5 cannot be 

met, and P5a is trivially satisfied. This leaves P3, about adding a (0-1) and P4 

about changing a (0-1) by common 0s (here common 1s). P3 is not met as 

shown by the following example: we transform D l  = {rl = (1,1,1,0,0,0), s, = 

(1,0,0,1,1,1)) to D3 = {r3 = (1,1,1,0,0,0,0), s3 = (1,0,0,1,1,1,1)). Then the Lorenz 

curves of D l  and D3 cross, showing that D l  and D3 are not intrinsically 

comparable (see Fig. 4). 

Insert Fig.4 here 

Finally, P4 is satisfied in this approach. Replacing a (0-1) by common 1s always 

leads to an intrinsically more similar situation. A proof is provided in the appendix. 



5. Third approach: using radix 4 encoding 

In this approach common I s  are encoded as 3, common 0s as 2, different 

symbols as 0s followed by one 1. A duo is then encoded as the number 'zero 

point' followed by the code numbers arranged in decreasing order, such as 

0.3..32..20..01. All codes of the form 0.3 ... 3 (any number of 3s) are declared 

equivalent (corresponding to perfect similarity). Similarly, all codes beginning with 

0.0 are declared equivalent (corresponding to the case that not a single symbol 

corresponds). For example: D = {r = (1 ,I ,I ,I ,0,0), s = (0,0,1,1,0,l)) is encoded as: 

0.3320001, because there are two 1s in common, one 0 in common and three 

symbols which are different in the two arrays. 

As in the other approaches we declare two duos to be equivalent if they lead to 

the same code. This is true for all duos consisting of identical items, but also for, 

e.g., D = {r = (1,1,1,1,0,0), s = (0,0,1,1,0,1)), and D'= {r' = (1,1,1,1,0,1), s' = 

(0,0,1,1,0,0)). This approach again leads to a complete order on equivalence 

classes, denoted as s3. 

For similarity considered in this way, the requirements P I ,  P2, P3, P4 and P5 are 

all satisfied: adding common 0s (and certainly Is )  yields a larger code number, 

adding 0 -1 decreases the similarity, replacing 0-1 by common 0s yields a larger 

code number, replacing common 0s by common 1s also yields a larger code 

number. A drawback of this approach is that two identical arrays with at least one 



0 are not considered to be completely similar anymore. If they were then 

requirement P5, stating that replacing a (0-0) by a (1 -1) makes the arrays more 

similar, would not satisfied anymore. 

Because only the symbols 3, 2 and 1 and 0 are used these codes can be 

considered as numbers in the base or radix 4 number system. In this system, 

similar to the better known, binary number system, the number 0.31 corresponds 

3 1 
to the decimal number -+,=0.8125 , similarly 0.2201 corresponds to 

4' 4- 

2 2 0 1  
-+,+-+-=0.62890625. Note however that if two duos have at least one 
4' 4- 4' 44 

symbol in common, their decimal representation is at least 0.5. Hence as a 

similarity measure we propose the decimal representation minus 0.5, and the 

result multiplied by 2. In this way 1 stays 1, namely (1-0.5).2 = 1, while 0.5 

becomes (0.5 - 0.5).2 = 0. This proposal has one small inconvenience, namely 

that the theory cannot be applied to arrays of length one, because then the duo 

{(O),(O)} would have measure 0. But who wants to study the similarity of arrays of 

length one? 

This encodiny, and hence this approach to similarity, is not duplication invariant, 

and duplication increases similarity. In this sense one may say that the radix 4 

approach is an approach based on absolute numbers, not on relative proportions 

as in the replication invariant cases. Indeed, D5 = {(0,0),(0,0)) is encoded as 

0.22; D5 = {(0,0),(1,0)} is encoded as 0.201. Hence D6 s3 D5. However, 



replicating D6 twice leads to D7 = ((0,0,0,0),(1 ,I ,0,0)}, which is encoded as 

0.22001, so that D6 53 D5 53 D7. 

We were not able to find a non-trivial Lorenz curve representation corresponding 

to the radix 4 approach. This is not surprising as traditional Lorenz curves are 

duplication invariant. Yet, connecting the origin to the point with as abscissa the 

decimal representation of the duo's code, and as ordinate the value one, yields - 

in a trivial way - a kind of Lorenz curve corresponding with this encoding. As for 

the first approach the encoding - in decimal form - corresponds to the Gini 

similarity index of this Lorenz curve, but it is possible to consider other 

acceptable similarity measures, using the similarity equivalents of the coefficient 

of variation, the length of the Lorenz curve, the entropy measure and so on. As 

for the first approach, we do not consider these other measures of real practical 

value. 

6. Different shades of identity 

In the previous approach we crossed the thin line between a pure similarity 

theory and what we would like to call an 'identity-similarity' theory, as we made a 

distinction between different identical duos. From that point of view it certainly 

seems artificial to declare all arrays coded as "zero point any number of 3s" to be 

'identical'. The same is true for the 0.0 ... 01 case. Of course, the first type of code 

represents identical arrays, so they are as similar as possible. The second type 

represents completely dissimilar arrays. Yet, taken these codes as they are, 



without the extra correction, makes it possible to say that identical arrays with 

more i s  are more similar than identical arrays with less Is. A similar remark goes 

for the dissimilar arrays. We will not go further here into the issue of 'different 

shades of identity', as this is not a pure similarity theory anymore. 

Notes 

a) A generalization 

I f  the data are not 0 -1 data but categorical data, with no relation at all between 

the categories, then the similarity of such a duo can be reduced to the first case, 

where a 1 represents the case that categories coincide, and a zero when they do 

not. An example: D = { (6, 6 ,  6, 6, 6, 6, o), (6, 6, 6 ,6, 6, 6, 6)) is then represented 

as[OOOOl 1 O ] = [ l  1 OOOOO]. 

b) Dichotomizing 

Any set of numerical data can be dichotomized in a low and high category. Then 

the absence-presence similarity theory presented here can be applied. 

c) Another look at the binary case. 

In the simple binary model that we presented corresponding zeros as well as 

ones were encoded as is .  One could imagine an encoding in which only 

common ones are encoded as I s. Common zeros are then treated as dissimilar 

symbols. The duo D = {r,s) consisting of r = (1 ,I ,I  ,I  ,0,0) and s = (0,0,1 ,I  ,0,1) is 

then encoded as [0 0 1 1 0 01 = [I 1 0 0 0 01. As before, d/N (in the encoded 



form) seems a reasonable candidate similarity measure. Yet, this approach 

violates requirement P2. Adding two common zeros reduces the similarity from 

d/N to d/(N+l). For this reason we reject this approach. 

d) The zero-insensitive case 

Requirements P3 and P4 were not studied in our previous article covering the 

zero-insensitive case. The counterexample and proof given here show that also 

in the zero-insensitive case P3 is not satisfied, while P4 always is. 

e) Lorenz curves 

We were able to extend the Lorenz curve approach (as in the reduction to the 

insensitive case), but then at least one of the requirements PI-P5 was not 

always satisfied. Details can be obtained from the authors. Anyhow, the Lorenz 

curves of the second approach must be altered as it is easy to see that adding 

common 0s to such a Lorenz curve lifts the curve. This is an unwanted property 

as we want to lower this curve in a similarity theory. This shows that the Lorenz 

curve approach (at least without alterations) cannot be used for a similarity 

theory where common zeros are possible. 

f )  The idea of the radix 4 approach may also be applied to the case that common 

0s and common I s  are considered to be perfectly equal. It suffices to give the 

same encoding, e.g. 2, to both (making it a radix 3 approach). 



7. Conclusion 

In this article we studied similarity for the zero sensitive case of absence- 

presence data. A wish list for such a zero-sensitive approach to similarity was 

drawn: 

P I  Adding two common 1s makes two non-identical arrays (strictly) more 

similar. 

P2 Adding two common 0s makes two non-identical arrays (strictly) more 

similar. 

P3 Adding a (0-1 ) to a duo makes it (strictly) less similar. 

P4 Replacing a (0-1) by a (0-0) makes the arrays (strictly) more similar. 

P5 Replacing a (0-0) by a (1 -1) makes the arrays (strictly) more similar, 

or the weaker version: 

P5a: Replacing a (0-0) by a (1-1) does not alter the similarity between the two 

arrays. 

Two approaches were given where common 1s and common 0s are treated in 

the same way, having the same impact on the similarity of the duo under 

consideration. The simple binary case leads to a similarity theory respecting 

requirements P1 to P4 of the wish list and P5a. Introducing different weights for 

common I s  and common Os, leads to an identity-similarity theory. Such a theory 

respects all requirements (PI to P5) of the wish list. Examples of functions 

respecting the corresponding similarity rankings are given. 



Ultimately, any similarity theory is only useful when it helps to understand real-life 

examples. We invite our colleagues, not only in the information sciences, but also 

in the fields of ecology, sociology and computer sciences, to try out the approach 

presented in this article. 
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Appendix 

Proposition 1 

The function T= 
d  

, p > 0, is a monotone increasing function of d/N. 
d + p ( N - d )  

Proof. The T-index can be rewritten as: 
d l N  . Writing x for d/N 

d l ~ + ~ ( l - d / ~ )  

.x 
gives: T = . Taking the derivative of T with respect to x gives: 

.x + p(l - x) 

T ' =  P , . This expression is always positive, proving that T is a 
( x + , ~ x ) ) -  

monotone increasing function of dIN. 

Proposition 2 

Replacing a (0-1) by common I s  leads to a Lorenz curve representing an 

intrinsically more similar situation. 



Proof. 

The similarity Lorenz curve is determined by the points with coordinates 

S =(?.?] (this point is called the sub-top) and T =  (g  - . - "i" (the top). 

Here d = p+m, p = p+m+l, 0 =p+m+k, and N = p+m+k+l. Replacing (0-1) by 

common I s  leads either to a situation where d' = p+m+l, p' = p+m+l, a' 

=p+m+k+l, and N' = p+m+k+l; or d' = p+m+l , p' = p+m+l+l , a' =p+m+k, and N' 

= p+m+k+l. In the first case the new sub-top and top are: 

T =  -- p - d - l  p - d - ' ) ,  , ( P ,  G - d )  , and the second case they become: 
P N a+l 

p - d  p - d  p + l  o - d - l  
S? = [ ----- N ' p + l ) ' i = ( N '  - . Clearly, T ,  is situated under T, while S 

a 

and S1 are situated on the same line through the origin. Similarly, S, is situated 

under S, while T and T2 are on the same line through the endpoint E with 

coordinates (1,O). This shows that the new Lorenz curve depicts an intrinsically 

more similar situation than the original one. The proof is illustrated by the 

transformation of D l  = {rl = (1,1,1,0,0,0), sl = (1,0,0,1,1,l)] to D4 = (r4 = 

~1,1!1>0,0,1~, 5.4 = ~1,0,0,1,1!1~~. 

Insert Fig.5 about here 



Fig.1 Lorenz curve for the simple binary model 
D = ( r =  (1,1,1,1,0,0), s =  (O,O,l,l,O,l)), 

encoded as [ I  1 1 0 0 01 



Fig.2 D = {r = (1,1,1,1,0,0), s = (0,0,1,1 ,O,l)}, is first rewritten as: 
D' = {r* = ( I  , l  , l  , l  , l  ,O), s* = (O,O,l ,l  , I  , I ) } ,  and then represented by the similarity 

Lorenz curve joining the points (0,O) - (216,8120) - (516,5120) - (1,O). 



Fig.3 Dl = {rl = (1,1,1,0,0,0), sl = (1,0,0,1,1.1)} and 
D2 = {r2 = (1 . I  ,I  , I  ,I ,0), s2 = (1,0,0,0,0,1)} are incomparable in the reduction 

model, because their Lorenz curves cross 



Fig. 4 The transformation of Dl = {r, = (1 , I  ,I ,0,0,0), s, = (1,0,0,1 ,I ,I)] to 
D3 = {r3 = (1,1,1,0,0,0,0), s2 = (1,0,0;1,1,1,1)] (i.e. adding a (0-1)); their Lorenz 

curves cross, showing that Dl and D3 are not intrinsically comparable. 



Fig.5 Transformation of Dl = {r, = (1 ,I ,I ,0,0,0), sl = (1,0,0,1,1 ,I)} to 
D4 = {r4 = (1 , I  , I  ,0,0,1), s4 = (1,0,0,1 ,I , I)},  illustrating that the reduction approach 

satisfies requirement P4 


