Made available by Hasselt University Library in https://documentserver.uhasselt.be

Type/Token-Taken informetrics

Non Peer-reviewed author version

EGGHE, Leo (2003) Type/Token-Taken informetrics. In: Journal of the American
Society for Information Science and Technology, 54(7). p. 603-610.

DOI: 10.1002/asi.10247
Handle: http://hdl.handle.net/1942/761



TYPE/TOKEN-TAKEN INFORMETRICS

by

L. Egghe,  LUC, Universitaire Campus, B-3590 Diepenbeek, Belgium'
and

UIA, Universiteitsplein 1, B-2610 Wilrijk, Belgium

ABSTRACT

Type/Token-Taken informetrics is a new part of informetrics that studies the use of items
rather than the items itself. Here items are the objects that are produced by the sources (e.g.
journals producing articles, authors producing papers etc.). In linguistics a source is also
called a type (e.g. a word) and an item a token (e.g. the use of words in texts). In
informetrics, types that occur often e.g. in a database will also be requested often e.g. in
information retrieval. The relative use of these occurrences will be higher than their relative

occurences itself, hence the name Type/Token-Taken informetrics.

This paper studies the frequency distribution of Type/Token-Taken informetrics, starting
from the one of Type/Token informetrics (i.e. source-item relationships). We are also
studying the average number p’ of item uses in Type/Token-Taken informetrics and
compare this with the classical average number p in Type/Token informetrics. We show
that p">p always and that p” is an increasing function of x. A method is presented to
actually calculate p’ from p and a given o« which is the exponent in Lotka’s frequency
distribution of Type/Token informetrics. We leave open the problem of developing non-

Lotkaian Type/Token-Taken informetrics.

Key words and phrases : Type/Token, Type/Token-Taken, Lotka, frequency distribution,

average.

! Permanent address.



I. Introduction

The dual approach of informetrics is very well-known nowadays and forms the basis of the
classical informetric laws. Since we will rely heavily on this dual approach, we will briefly
present the main aspects of it. We can start with a bibliography consisting of journals that
contain articles on a certain topic. We could also say that journals are sources that
"produce” articles, generally called items. Using this terminology we go back to the
original formulation by Bradford (Bradford (1934) but see also Egghe and Rousseau (1990)
for a more complete treatment of dual informetrics). We are hence dealing with what can be
called source/item informetrics. Indeed, journals/articles are not the only interpretation of
the concept source/item. Lotka (1926) described the author/paper relationships leading to

his celebrated frequency law

) = —
n

(D

where f(n) denotes the number of authors with n papers, n=1,2,3,... . Most classically,

o =2 but, in general, & can take "any" value superior to 1.

In this article we restrict ourselves to the Lotka-type frequency law (1), although some
results (such as Theorem III.1) are more generally valid. The reason is that the new
informetrics model (Type/Token-Taken) is best (first) applied to the simplest possible
functions f (for reasons of calculation). The power law (1) clearly is a very simple function,
certainly when compared to other frequency functions that have been in use in informetrics
the last decade (see e.g. Egghe and Rousseau (1990)). It is a widely used law and has
historical roots. Furthermore it is the unique function with the scale-free property
expressing that, if n is multiplied with a constant (say C, another "scale" for the variable
n), we still have, up to a constant, the same function f as in (1). Finally, as shown in many
publications, Lotka’s law is the basis for derived informetric results giving also an idea
what these derived results could be in case we have other frequency functions for which the
similar results are too intricate to be calculated. In this way, Lotka’s law can be considered

as the basis for informetrics with non-Lotkaian frequency functions f (or at least as a first
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approximation). Also for comparison reasons of Type/Token informetrics with

Type/Token-Taken informetrics it is necessary that a simple concrete function (as the power

function) is used.

Other examples of source/item informetrics are

- Key words (amongst which search keys or N-grams) and their occurrence in a
database (see e.g. Egghe (1992,2000), Kilgour, Long and Leiderman (1970)),

- Articles and the references they give (synchronous citation analysis) or the citations
they receive (diachronous citation analysis) (see e.g. Stinson (1981) and Stinson and
Lancaster (1987)),

- Books in a library and their borrowings in a certain time period (see e.g. Burrell and
Cane (1982)),

- Services (e.g. at a library circulation or information desk) and their duration
(measured e.g. in seconds).

- Words and their occurrences in a text (e.g. a book) (see e.g. Zipf (1949), Herdan
(1960,1964)).

For more source/item examples - even beyond the field of informetrics - we refer the reader
to Egghe and Rousseau (1990).

The last example is found in quantitative linguistics. Sources (words) are there called
"types" and the occurrences of these words are called "tokens" (see e.g. Herdan (1960)).
They hence talk about Type/Token linguistics. Generalizing, all the above examples of dual
informetrics (i.e. source/item relations) could be called Type/Token informetrics. We will
use this terminology henceforth since it will be more handy to describe the purpose of this

paper : the introduction of what we can call Type/Token-Taken informetrics.

The problem with Type/Token (T/T) informetrics is that we only describe sources and the
items in these sources. In other words : sources and their production. T/T informetrics
(important in itself of course) does not study the use of these items, hence these items as
they are encountered by information professionals or other information users. Let us give

some examples.
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- Search keys (e.g. N-grams) are used by cataloguers in a library network to quickly
find out if a newly arrived book (hence that must be catalogued) is already in the
database. For a description of search keys (or N-grams as a special case) see e.g.
Egghe (1992, 2000), Kilgour, Long and Leiderman (1970). The distribution of the
occurrences (tokens) of the N-grams (types) in the catalogue will be different from
the distribution of the occurrences of these N-grams as experienced by the
cataloguer. Indeed the more an N-gram occurs in the catalogue, the more this N-
gram will also be used by the cataloguer. This will lead to larger (this will be shown
in the sequel) average screen lengths than what would be expected from the
occurrences of the N-grams in the database itself. Cataloguers are using ("taking")
the occurrences (token) of the N-grams (type), hence this is an example of a
Type/Token-Taken (T/TT) informetrics.

- Generalizing the above example : every user seeking information from a database,
using a key-word, will use more a "popular” (i.e. heavily used) key-word than a less
popular one and these popular key-words give rise to more hits in the database.
Averaged over the users, the number of hits per search will be longer (again this
will be proved in the sequel) than the average number of documents containing this
key-word (and, of course, the same for their distributions from which these averages
are derived). This is, hence, another example of T/TT informetrics.

- Some books in a library are borrowed heavily but many books are borrowed
seldomly. But a library user will seek these popular books more frequently than the
other ones. So, on the average, the user will encounter more borrowed cases than
the average number of borrowings per book. Also this is an example of T/TT
informetrics.

- Service times at a desk. Since long service times have a higher probability to be
encountered by a person seeking service, an average such person will experience
longer service times (i.e. waiting times) than what could be expected from the

average service time itself. Again a T/TT informetrics example.

It is clear that the reader can add several other examples of the difference between T/T

informetrics and T/TT informetrics. Surprisingly, T/TT informetrics has never been
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studied. The only attempts this author could find in the literature is the description of
Rousseau (1990,1992) of positive reinforcement (indeed also the effect of use of items
(there called : availability)) but only in the context of its effect on Lorenz curves (i.e.

concentration theory) and not in the general informetrics laws context (as we will do in this

paper).

T/TT informetrics studies the laws of informetrics as experienced by a user and is in this

sense more important than T/T informetrics.

In the next section the T/TT frequency distribution will be derived from the one in T/T
informetrics. The third section proves results on the average of these distributions (p" for
T/TT and p for T/T), namely that always p'>pu and that ¢* is an increasing function of . In
fact, using Lotka’s law (1) in T/T informetrics we will show that p” is a function of u and
o, increasing in p (o fixed) and we conjecture that p” is an increasing function of o {u
fixed).

It is not easy to determine the function p"=p'(et,p). In the fourth section a (numeric)
method to do so is explained and an explicite table of u’(a,u) is presented. We leave open
for further study non-Lotkaian T/TT informetric developments (hence replacing o by

another (other) parameter (s)).

II. Type/Token-Taken informetrics

We start from Lotkaian T/T informetrics where we adopt the continuous setting as was also
done in Egghe (1989,1990). We denote by A the total number of items and by T the total
number of sources. Classical Lotkaian T/T informetrics is given by the law of Lotka
(continuous setting) : for a > 1

D

a

fG) = 2)

L—



6

for je[1,p(A)]. Here f(j) denotes the density of the number of sources (types) with a density

of j items (tokens) (compare with the discrete setting (1)). Note that, by definition,

[[td =T 3)

and

[TX30d) = A. )

This is the only formalism of the dual theory of informetrics as developed in Egghe
(1989,1990) that we need. The function f describes the occurrence of items in sources,
otherwise stated, the Type-Token relationship, hence T/T informetrics. Note that the

average number of items per source (tokens per type) is given by

plAY: o2 2
n o= A m (5)
T [*®g5ds
1
Type/Token-Taken informetrics is obtained by replacing the function f by the function g :
g() = jtG) (6)

jel1,p(A)] describing token densities instead of type densities : g(j) denotes the density of
the tokens in the types with token-density j. In the discrete setting this would mean

(replacing j by neN) : the fraction of the items that belong to sources with n items.

Rationale of formula (6)

Formula (6) is basic for Type/Token-Taken informetrics: it is the defining function and
requires explanation. We go back, to fix the ideas, to the example (given in the previous
section) on search keys as used by cataloguers. Of course this explanation can be given for

any application. So suppose that f is the frequency law of search keys in a catalogue, i.e.
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f(n) is the number of search keys that occur neN times in the catalogue. Now, the
cataloguer used these search keys and here we come on the third level (the "Taken" level).
Each time the cataloguer wants to make a catalogue description of a new book the search
key of this book is checked against the already existing catalogue {expressed in terms of
search keys) i.e. the items are used here as sources (hence the name "taken"): in the
catalogue we have that nf(n) is the number of used keys that appear n times. In other words

our third level informetrics has the function g (formula (6)) as frequency function and not f,

The average use u” is obtained as follows : denote by

Py - B 0

= = 7
[MPelodk [ *Pkfldk 7

the probability of these tokens (in the types with token-density j). So, such a type has a

token-density of j. Hence the average number u" of used tokens per type equals
n= [P G ®

which hence leads to the formula

o [P [* 50
[[Ped [*ifi)d

)

Formulae (6), (7) and (9) form the basis for Type/Token-Taken informetrics (T/TT
informetrics). It measures the observed average number of items per source by users, rather

than the average number u of items per source in the sense of occurrence.

We will close this section by giving concrete formulae for the underlying distributions of f

and g. Since (3) implies (since o > 1)



D, 1 ) _
w1 ) T (10)

[FPRod -

we have that the probability distribution of f is given by

P(]) N Af(]) _ 1'1'(1 _1_ . (11)
f PDftydk  p(A)' -1 j*
1
Since
g e g D -
A= [" gy = [ it = s-(p(AY 1) (122)
1 1 2-a
if «=2 and
A = ["PgG)di = [*if)di = D In p(a) (12b)
if =2 we have for the probability distribution P* of g the following formula (by (7)) :
if g=2 :
D
sa-t
P'G) = = J
5 (p(8) 1)
-a
and if a=2
D
jtl—l
P(G) = —— .
0 D In p(A)
Hence,
PG = —— 1 (132)
p(Ay -1 j*
if =2 and
PG - In ;;(A) (13b)

ife=2, foralle>1.
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T/T informetrics describes the source-item relationship as such while T/TT informetrics
describes the source-item relationship as it is experienced by users (information
professionals as well as information seekers). It is clear that a further elaboration of the
above model is important. In the next section we will investigate relations between p" and

p. The fourth section then shows how u” can be calculated from g (numerically).

II1. Relations between p and p’

In this section, T/T and T/TT informetrics wiil be compared using the important T/T and

T/TT averages p and p” respectively. We have the following results.
Theorem III.1 : p">p in all cases.

Proof : One proof can be given by expressing that the variance of the distribution P

(equation (11)) is positive :
776w’ PG = 0 .

Another simple proof, suggested by one of the referees, goes as follows: express that the

next quadratic form (in x) is always positive:
0 < [*Vxj+1)? )i
= x? fl M 5 28G)dj + 2xfl"(A)jf(i)dj + T, (14)
hence the discriminant of (14) must be negative, yielding that p* > u. O
The result of Theorem III.1 can be evaluated in informetrics terms as follows (cf. the

examples in the previous section) : the average number of items per source, as observed by

the user is larger than the real existing average number of items per source. Following the
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given examples, the cataloguer will find larger screen lengths (on average) than the average

number in the database (a negative constatation). The library user, seeking information

from a database, using a key word will find more hits than could be expected from the

database itself (according to the IR evaluation criteria "recall" and "precision” - see e.g.

Salton and Mc Gill (1987) - this could be interpreted as a positive resp. negative statement).

The other two examples given in section II obviously give a negative interpretation : the

user will encounter more borrowed books (hence unavailable) than could be expected and

the same goes for the waiting times at a service desk !

We will now continue with the evaluation of the exact values of u and p”. From (10) and

(12) we have

A _l-o p(AY -1

T 270 pa)™-1

u2

if 0+2 (as always we take o> 1). If & =2 we have

p:

A _ In p(A)
T 1

p(A)

For 1" we evaluate :

pA) s2gm s - ey Do
[ iod - [ di

jo‘.—2

Suppose a#2, o+3. Then (17) equals

i

[ 6

If =2 we have

1§

[ 3*G)di = Dlp(A)-1)

S (A D).
o

(15)

(16)

(17)

(18)

(19)
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and if oo=3 we have
fl M j24G)dj = D Inp(A). (20)

This gives for p” : if a#2, a#3

. _ 270 p(A)y -l
3-a

! " @1
p(AY -1
(by (9), (12) and (18)). If ¢=2 we find (using now also (19)) :
. P "
BT e®) (22)
and, finally, if =3 (using (20)) we have
L @
ED)

From the formulae for u and " we see that a direct relation between p and g’ is not
derivable (since (15) cannot be solved exactly for p(A) - it can be done numerically and this
will be the topic of the next section, giving concrete values of ¢" in function of p and «).

However, from the above, we are able to prove the following result :

Theorem II1.2 : For each ¢ fixed we have that x” is an increasing function of u.

The proof is given in the Appendix.

As will become clear from the next section we can conjecture the following, but we are not

able to find a proof for it.

Conjecture I11.3 : For each fixed u we have that p” is an increasing function of .

We also state the following
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Problem 1I1.4 : In the above T/TT informetrics theory we used Lotka’s law as the basic
frequency law. Develop a T/TT informetrics theory for other acceptable frequency
distributions (continuous or not) such as the Poisson distribution, the Negative Binomial

distribution, the Lognormal distribution,... .

IV. Concrete calculations of the T/TT average g* in function of

the T/T average p and Lotka’s o

The calculation of x” in function of y and « requires the solution of the following equation

in x=p(A) - see (15) : if a=#2

x 2 1 a1 —x"“+1——1— a1l | 0 (24)
noa-2 poa-2
and if a=2 (see (16))
In x+.;i—p = 0. (25)

Once x is found we have then x” using the formulae (cf. (21), (22), (23)) : if 0#2, o #3

=3 x2 %1 (26)
and if =2

W= 2 @7)
and if a=3

. In x _ (28)

[
|
M| -
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From (24), (25) it is clear that determining a direct functional relationship g’ =p"(x,e) is
not possible : given o and g, we can only solve (24), (25) in a numerical way. This we
have done, using the MATHCAD 4.0 software package. One important remark must be
made : a and p cannot be taken fully independent from each other : there is a lot of

freedom but the following restrictions must be respected :

— [Py 1
A = [ Pifijdj

J
« D .
< fl o dj . (29)
j2—u B
The last integral equals Dz—a if a#2 and Dlnj]‘;“ if ®=2. Hence we have « if a<2 and
1
D ifa>2.
a-2

If we approximate T by (since > 1 and p(A) is large)
T = [*®fG)dj
1

= [fG)i

D
a-1

(30)

we find, combining (29) and (30) that there are no restrictions for u, given a>2 but that, if

o <2 we must have that

a-1
A<T —,
a-2

hence
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a-1
<,
p<—s 31
For the table of u” in function of p and & (which will be given in the sequel) we hence have

the following restrictions

6e=25=p<3
a=3 =p<2
¢ =35=pu < 1.6667.

This explains the empty parts in the following table.
The following table is obtained by solving (24), (25) for x and then putting x in (26), (27),

(28).

Table : Values of ¢” in function of y and o

¢=1.5 =2 =25 =3 a=3.5

p=1.2 1.2148 1.2151 1.2157 1.2164 1.2178

p=1.35 1.5838 1.5984 1.6177 1.6479 1.7010
p=2 2.3317 2.4612 2.7320 - -
u=2.5 3.2492 3.7279 5.8541 - -
p=3 4.3333 5.5996 - - -
p=3.5 5.5894 8.3955 - - -

Note that x'>p and that p" increases in u and «. Note also that the difference p'-p

increases with u. Other values of x° in function of given us and as can be calculated

similarly.
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Appendix

- Proof of Theorem III.2 : Denoting x=p(A)>1 in (15) and (21) we have the following

equations :
2-a_ _
x> 11leol (@#2) (A.1)
x!®-1 u a2
- 3-a_
gt = 2oex -l (@#2,0#3) (A.2)
B S|
letl<a<2
. oo 1 a1l o -
Then p increasing implies T a2 increasing since -———<0. Hence, by (A.1),
2-a 1
l-(l__l

decreases. By the Lemma (below) (since 1-o and 2-a have opposite sign) we have that x

increases. Again by the same Lemima we have that



17
x3%-1

increases (since 3-& and 2-a have the same sign), hence, by (A.2), i increases.

2<u0<3

On the same lines as the above proof, using the same Lemma and (A.1) and (A.2) we now
have

_ 2-0__ 3-o_
AW L AV Faxr = I L
p o= . | %2701
>3
Now
_ 2-a_ 3-a_
T AR AV Sl I N I Ly
H oa- xl'u_l X2*D‘._1
o=2
From (16) and (22) we have
In x
b=— (A.3)
1-—
X
. x-1
w = (A.4)
n x
1 - i(1+ln X)
dp X  x?

since In x <x-1 always (since €*>x+1, for all x>1). Also
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, In x—1+l
dp _ X 0
dx (In xy’

since In x> 1-%. This follows from the fact that the function @(x)=In x+ l-1 is minimal
X

in x=1 and @(1)=0. Hence u/ = p" .

o=3

From (15) and (23) we have

pe2 (A.5)
s _
e (A.6)
1-=
X

Obviously p increases in x and by the above ((A.3)) p” increases in x. So u /= u’ 7.

O

Lemma : The function

a+l_1
fix) = (A.7)

x*-1

increases if a and a1 have the same sign and decreases if a and a+ 1 have opposite sign.

Proof :

atl _

x*{x*!-ax-x+a)

fx) =
w0 x*-1y’

So f'(x) has the same sign as

@(x) = x**l-ax-x+a .
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Now

0o x) = (a+1)x*-@a+1)

which is zero in x=1. Furthermore

¢ (x) = a(a+1)x*',

50

@ (1) = a(a+1).

So if a(a+1) <0 then ¢ has a maximum in 1 and ¢(1)=0. So @(x) <0 for all x and hence f
decreases. If a(a+1)>0 then ¢ has a minimum in 1. So @(x)>0 for all x and hence f

increases. ]



