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ABSTRACT 

The paper shows that the present evaluation methods in information retrieval (basically 

recall R and precision P and in some cases fallout F) lack universal comparability in the 

sense that their values depend on the generality of the IR problem. A solution is given by 

using all "parts" of the database, including the non-relevant documents and also the not- 

retrieved documents. It turns out that the solution is given by introducing the measure M 

being the fraction of the not-retrieved documents that are relevant (hence the "miss" 

measure). We prove that - independent of the IR problem or of the IR action - the 

quadruple (P,R,F,M) belongs to a universal IR surface, being the same for &l IR-activities. 

This universality is then exploited by defining a new measure for evaluation in IR allowing 

for unbiased comparisons of all IR results. We also show that only using 1, 2 or even 3 

measures from the set {P,R,F,M} necessary leads to evaluation measures that are non- 

universal and hence not capable of comparing different IR situations. 

Key words : Universal IR surface, miss measure, precision, recall, fallout, silence, 

evaluation. 
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I. Introduction 

Quantitative evaluation in information retrieval is performed - very classically - by means 

of the measures precision (P) and recall (R), defined as follows. Let Q denote the database 

(universe) in which an IR search (based on a given problem) is executed. As usual we 

suppose that we can determine in a unique, dichotomous way whether a document is 

relevant for the problem (transformed into a query according to the IR system's rules) or 

not. Let us denote by re1 the set of relevant documents and by ret the set of retrieved 

documents. Then we have the following definitions : 

where I .  I denotes the cardinality of the set, i.e. the number of documents in it. Denote 

briefly iret=Q\ret and -rel=Q\rel, the set of not-retrieved documents and the set of non- 

relevant documents respectively. Sometimes (see below for references) also the following 

measure is considered, called fallout (F) : 

The following formula is easily derived from (I), (2) and (3) and appears e.g. in Salton and 

Mc Gill (1987) (p. 175) and Van Rijsbergen (1979) ( p. 149) 

where G denotes the "generality" of the problem : 
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the fraction of relevant documents (describing indeed the degree of generality of the 

problem). 

A simple, but important remark of S. Dominich (see Dominich (2001)), which is not more 

than a reformulation of (4), was the starting point for the results of the present paper. It 

goes as follows : from (4) and (5) it is easy to see that 

Formula (6) is interpreted in Dominich (2001), p. 226-227 as the effectiveness surface of 

IR, corresponding to a given problem or query q. He rightly points out that the shape of 

this surface is the same for every IR system. Keeping the problem fixed (hence fixed G), 

different IR techniques (e.g. relevance feedback but this is only an example) can give 

different values of P, R and F but they are constraint to the surface (6). 

The starting observation of this paper is that, as long as we are on the same effectiveness 

surface, we can perfectly compare, say, two sets of IR results : (PI, R,, F,) and (P,, R,, 

F,). In other words, within the limitation of a given G (a given problem) we can compare 

the above triplets. Rephrased in a "negative" way, comparing two triplets as above is not 

possible if G varies, e.g. for different problems, since we are on different effectiveness 

surfaces. 

Based on the above observations we can, formally, define the concepts of "surface", "semi- 

universal surface" and "universal surface" as follows. The concept of surface (in k- 

dimensional space Itk, here k=4) is well-known and is described by an equation of the form 

where f is a real valued function on 3-dimensional space JR3 and C is a constant w.r.t. x,y 

and z. Surface (7) will be called semi-universal for IR if this constant depends on G (as in 

(5)) or on (its dual interpretation, see e.g. Egghe and Rousseau (1997)) 



the fraction of retrieved documents (describing the degree of generality of the retrieval 

result). This means that, as in (6) ,  any triplet (x,y,z), given G (or G') fixed, belongs to this 

surface and, hence, any two such triplets can be compared (on this surface). If this constant 

is independent of G & G', hence if C is a universal constant (independent on the IR 

problem or IR system) we say that (7) is a universal surface for IR. 

In this paper we want to discuss the following question : 

: Can one construct a surface such that  an^ two IR results (independent of a 

problem or of the IR system) remain on this surface? In short, can one construct a universal 

surface for IR? 

We firstly note that the measures P, R and F only use the sets ret, rel, i r e1  and also in G 

only re1 is appearing. Hence i r e t ,  the set of not-retrieved documents is not taken into 

account. Already for purely principal or formal reasons, this is not acceptable. The 

dichotomous situation rell lrel  versus ret l lret  gives rise to a 2x2 contingency table, hence 

4 cells from which only 3 are used in the above measures. Using all 4 cells is similar to the 

approach in Heaps (1978) where, for the determination of the entropy of a retrieval system, 

one also uses the information (entropy) coming from all 4 cells as mentioned above. 

Another (principal) reason why also i r e t  should be used (if one also uses i re l )  is the 

duality principle in IR as explained in Egghe and Rousseau (1997), namely the duality 

between documents and queries, between indexing and search formulation, between re1 and 

ret. In the vector space model (see e.g. Salton and Mc Gill (1987)) there is even equality 

between documents and queries (namely a vector with a certain fixed number of 

coordinates). 

These remarks and the fact that the effectiveness surface (6) has the constant Gl(1-G), 

which is only referring to the problem (to re1 and not to ret) shows that this theory should 



be completed. This will be done in the next section, where the "missing" measure M (miss) 

will be (re-)introduced and where its properties are proved. "Re-introduced" refers to the 

fact that in LISA as well as in ISA no English language publication defines this measure 

and that the "origin" of the use of this measure in a Danish, French and two Russian 

articles (all of them more than 25 years ago) is not traceable. We will find 3 new efficiency 

surfaces, hence 4 together with (6). All of these surfaces are not completely universal : two 

of them (as (6))  depend on the problem (on rel) and the other two depend on the IR action 

(on ret) so that only IR results can be compared if 1 re1 1 is constant (first two surfaces) or if 

/ ret I is fixed (the other two surfaces). 

We however deduct from these ("semi-universal") surfaces a totally universal surface, 

where the four measures P, R, F and M are involved (and nothing else). In other words, 

 an^ two IR results (no matter what re1 or ret is) are on this surface and hence can be 

compared. We will show that this surface has the equation 

and we call it the universal IR surface. This finishes the next section. 

The third section studies properties of this surface exploiting the universality of it by 

defining a uniform distance between any search result (P, R, F, M) and the vector (in IR4) 

representing the perfect search : (1, 1, 0, 0). Properties of this distance are given and the 

paper closes with some examples and an open problem. 

11. The "missing" measure miss (M) and the universal IR surface 

11.1 The measure M 

In order to complete the measures derivable from the 2x2 contingence table (retliret 

versus rel l lrel)  we write down all four possibilities : 1 re1 n ret 1 , I i r e 1  n ret 1 , 1 re1 n 
Tret 1 , I i r e 1  n i r e t  1 . We can generally denote this by I A n B I . In each case we derive 



relative measures, by dividing by I A 1 or I B I . This leads to the following complete set of 8 

measures (being nothing else than P, 1-P, R, 1-R, F, 1-F and the new measure M and its 

complement 1-M): see (I), (2). (3) and then 

The measure M is the fraction of not-retrieved documents that are relevant, hence it 

measures the relative quantity of the missed documents. Therefore we call this measure 

miss. 

We looked into the monograph literature, searching for measures, involving M (or at least) 

-vet. We failed. We present the following overview. As mentioned, in Dominich (2001), 

only P, R, F (and G) is used. Boyce, Meadow and Kraft (1995) (from p. 180 on) are in 

search for other measures than P, R and F but only give 1-P, 1-R and 1-F (respectively 

called N (noise), 0 (omission factor) and S (specificity)). Losee (1998), Tague-Sutcliffe 

(1995), Van Rijsbergen (1979) and Salton and Mc Gill (1987) only use P, R, F (and G) and 

Frants, Shapiro and Voiskunskii (1997), Losee (1990) and Heaps (1978) only use P and R. 



In Grossman and Frieder (1998) other very interesting subjects than evaluation measures 

are discussed. 

Many of the above mentioned books also use (or define) derived measures (mainly from P 

and R) such as the measure of Dice, but this does not help in the coverage of i r e t ,  of 

course. 

As to the journal literature, we performed a LISA and ISA search. LISA contains one 

Danish article (von Cotta Schoenberg (1976)) where the measure M is called "silence" 

(there fallout F is called "noise") and ISA contains the articles Levery (1968), Shneiderman 

(1969), Logunov and Shneiderman (1969) and Pushkarskaya (1968) also using "silence". 

We were not able to trace the origin of this measure and we are, in any case, to the best of 

our knowledge, surprised that no reference to "silence" or "miss" is given the last 25 years 

and that we even lack one reference in English (American) language (except for 

Shneiderman (1969) being a translation of Logunov and Shneiderman (1969)) ! For this 

reason and also, as mentioned by one of the referees, since sometimes "silence" is used for 

the measure 1-R, we will not use this ambiguous name and keep on using the term "miss". 

Of course, M cannot be derived directly from an IR result but this is the same problem with 

F and R (only P is directly calculable). It is well-known (see e.g. Egghe and Rousseau 

(2001)) that R (in fact re]) can be determined using statistical sampling (yielding also the 

necessary confidence intervals for the fraction of relevant documents) in which case also F 

and M are known. So the new measure M is not more complicated than F or R. It is clear 

from the above that M is the "missing" measure. We also feel that it is a measure at least as 

interesting as F since, in M, we are talking about relevant documents that are missed (F 

only deals with non-relevant, retrieved documents). 

Since the effectiveness surface of IR (6) contains the 3 measures P, R and F it is intuitively 

clear that, with the 4 measures P, R, F and M we should be able to determine 

IR-surfaces (including (6)). This will be done in the next subsection. 
(:) = 



11.2 Four semi-universal IR surfaces 

We have the following easy result. 

Theorem 11.2.1 : Let 

Then we have the following 4 surfaces 

The proofs of the four equations are essentially the same. The first equation is already 

known and the proof is elementary (using elementary set theory). 

Note 11.2.2. 

These 4 surfaces are clearly defined for all values of P, R, F, M E ]0,1[. Hence, by 

continuous extension, these surfaces can he considered for the values P, R, F, M E [0,1]. 

Note that for the values P, R, F, M E {0,1} we can easily define this extension since, in all 
0 

cases we arrive at the undetermined form -. This follows generally from the above 
0 

theorem. Let us examine the first equation in (17). Indeed, if P=O then also R=O (and 

vice-versa) and 
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0 
takes the form - and hence can be defined (as a continuous extension of the surface (17)) 

C 
0 

to be - for all c t  1 (what we suppose). If F=O then P= 1 necessarily and again (19) is of 
1 -co 0 

the form - . If finally, P= 1 then F=O yielding again - for (19). This shows that the same 
0 0 

is true for the other 3 surfaces in (17) and (18). From now on we will consider these 

surfaces on the values P, R, F, M E [O,l]. 

Note 11.2.3. 

It is important to remark that all these IR surfaces are "semi-universal" in the sense defined 

in the introduction. Indeed the two surfaces (17) only depend on G, the generality of the 

problem (the input, say) and they are independent of the IR process (system, command,...). 

So on these surfaces, keeping G constant (say we keep the same problem) different IR- 

results can be compared by using the appearing 3 measures ((P,R,F) or (R,F,M)). The two 

surfaces (IS), on the other hand, only depend on G', the generality of the retrieval result 

(the output). Again, if G' remains constant, different situations can be compared by using 

the appearing 3 measures (P,R,M) or (P,F,M). Of course, in (17) one cannot compare the 3 

parameter's values if G is not the same and the same for (18) w.r.t. G'. That explains the 

semi-universality. 

It is now clear how to construct a universal IR surface. 

Corollarv 11.2.4. 

Independent of the given problem or IR system or command (hence independent of G or G') 

we have that the measures (P,R,F,M) always belong to the surface (in IR4) : 

&f : This follows directly from (17) or (18). 0 

The above theorem and corollary show the value of the miss measure M. 
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Remark 11.2.5. 

A simpler surface, using all 4 measures P,R,F,M can be given but this is not a universal 

surface : it contains the values ( ret 1 , 1 re1 1 , I i r e t  1 , I i re1  1 : 

The result follows readily from (I), (2), (13) and (14). Result (21) is interesting but cannot 

be used in universal IR comparisons because the surface is dependent on both the problem 

(rel) and the IR result (ret). Surface (20) has the property that cases of P, R, F, M are 

on this surface, independent of the problem or the IR result. This means that two such 

situations are universally comparable. This is universal IR evaluation which will be 

explained in the next section. 

111. Universal IR evaluation. 

Note that also for the universal IR surface (20) we can take (P,R,F,M) E [0,114, 0 and 1 

included by continuous extension of the surface on ]0,1[4, as was also the case for the 

surfaces (17) and (18). For this reason, the perfect IR result, being (P,R,F,M)=(1,1,0,0) 
0 belongs to the surface (20) since the left hand side gives - and hence can be defined to be 
0 

1 as a continuous extension. 

It is now clear that, since any quadruple (P,R,F,M) belongs to this surface, we can measure 

the square of the distance between (P,R,F,M) and the vector (1,1,0,0) of the perfect 

situation. 

Since the "worst" result, (0,0,1,1) can occur (at least theoretically) the maximum value of 

this squared distance is 4. Therefore we define the normalized square of the distance of 

(P,R,F,M) to (1,1,0,0) as 
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d itself is then, of course, the normalized distance. Since d~[0,1] ,  the measure 

is a normalized similarity measure and hence measures how close (P,R,F,M) is to the 

perfect result (1,1,0,0). Note again that all similarity measures are universal and hence 

comparable. All aspects of the problem and of the IR result are taken into account in the 

above measures : ret, rel, i r e t ,  i re l ,  their mutual intersections and even the size 161 1 of 

the database. 

Note the natural properties that s increases with P and R and decreases with F and M. Of 

course, for d the opposite is true. 

On our way to a theorem on d and s, we formulate the following definitions. 

Definitions 111.1. 

Let &%represent a certain IR situation, i.e. given by ret, rel, i r e t ,  i re1  in a fixed database 

a. 

1. We say that @&@ is the dual IR situation of &% if their sets %et of retrieved 

documents, %el of relevant documents, 9mret of not retrieved documents and 

9 i r e l  of non relevant documents are given by : 9ret=rel, %el=ret. 

2. We say that @(&@ is the complementary IR situation of &%if their sets @ret of 

retrieved documents, @re1 of relevant documents, @ i r e t  of not retrieved 

documents and @ i re1  of non relevant documents are given by : @ret= -vet, 

@ rel= i r e l .  

Note that 9%(5@= %@&@ as is easily seen. We have the following theorem. 



Theorem 111.2. 

Let s and d as in (22) and (23) for with P,R,F,M defined via ret, rel, i r e t ,  i r e l .  

Denote by s, and d, the corresponding similarity and distance measure of @&I?), by s, 

and d, the corresponding similarity and distance measure of %'(@a) and by s,, and d,, the 

corresponding similarity and distance measure of 9+3(&%9= @9 (s%%?). Then : 

m f  : If we denote by @P), a R ) ,  @F) and q M )  the corresponding Precision, Recall, 

Fallout and Miss measures of @A@ it is easy to see that @P) =R, @R) = P, @F) = M and 

@M) =F. Hence, by (22), d=d, and hence also s=s, by (23). 

If we denote by %'(P), @(R), g(F)  and g(M) the corresponding Precision, Recall, Fallout 

and Miss measures of @3 (A?@ it is easy to see that @ (P) = 1-M, @ (R) = 1-F, @? (F) = 1-R 

and g(M)=l-P.  Hence, by (22), d=d,and hence also s=s, by (23). 

That d=d,, and s=s,, follows by application of the above proved results. 0 

This theorem shows that the similarity and distance measure fully comply with duality and 

with complements of sets. In a sense, the 4 IR situations #%, @@a), @3 ($a) and 9% 

(LA.) are equivalent IR situations, at least from a theoretical point of view. It is also logical 

that IR-evaluation does not evaluate the type of problem given to the system (as expressed 

by rel, @el, %' rel, 9g rel) but the combination of the problem with the IR result, in 

connection with 10 I . In this sense, the above theorem is natural. 

Examdes 111.3. 

1. 1 0 I = lo5 (example: a documentary system in a relatively small discipline such as 

1 1 mathematics), 1 re1 1 = 100, 1 ret 1 =200, 1 ret n re1 1 = 50. Then P =- , R=- 
4 2 '  



150 F=- 50 M=- yielding d =O.4506946 and s =O.5493054 for the distance, 
99,900 ' 99,800 

resp. similarity of (P,R,F,M) versus (1,1,0,0). 

2. This example is identical with the first one except for Q : 1 Q 1 = lo3. Now 

d=0.4594018 and s=0.5405982. Notice the small influence of IOI when the rest 

remains the same. But example 2 is less similar to (1,1,0,0) due to the fact that the 

absolute fallout (150) and the absolute miss (50) are the same as in example 1 but in 

a smaller database. 

3. 1 Q1 =lo4, 1 re1 1 =500, 1 retl = 100, 1 ret n re1 1 =50. Now we have d=0.5152897 

and s=0.4847103. Although 1 Q 1 is the same as in example 2 and the same is true 

with lret n re11 =50, this IR situation is less similar to (1,1,0,0) (than example 2) 

due to the high values of 1 re1 1 and 1 ret 1 (not yielding a higher value of 

~ r e t  n r e l l ) .  

4. The following examples were suggested by one of the referees (with thanks). It 

gives 6 rather extreme IR cases describable as follows in 4 categories (see Table I). 

Table 1. Example of 6 different IR cases of I re1 1 versus I ret I 

C, : Cases (1.2) and (1,3): the system does not filter enough 

C, : Cases (2,l) and (3,l): the system filters too much 

C, : Case (2,3) : non-filtering system 

C, : Case (3,2) : widest possible problem 

Again, notice the duality between C, and C, and between C3 and C, (cf. Egghe and 

Rousseau (1997)). We have the following values for d and s in these 6 cases, 

assuming relnret = re1 in case 1 re1 1 < I ret I and relnret =ret in case 1 ret I < I re1 1 . 



d(1,2) = d(2.1) = 0.484596 

s(,,~, = so,,, = 0.515404 

do,,, = do,,, = 0.7035801 

s,,,,, = s,,,, = 0.2964199 

d,,,, = doz, = 0.6403124 

s ( ~ . ~ )  = s ( ~ , ~ )  = 0.3596876 

Note the equality of the measures in case of dual systems, in agreement with 

Theorem 111.2. Notice the weakest performance of the most extreme cases in the 

table: (1,3) and (3,l) (also situated in the corners of the table, expressing the largest 

difference between 1 re1 1 and 1 ret I ). 
5. We close with a theoretical example : random retrieval. Let I !2 I , 1 re1 1 = P ,  1 ret I =t 

be given. Random retrieval means that we take a random sample of size t in !2 and 
Q 

each document in this sample has a chance of - to be relevant. Consequently, 

random retrieval is expressed by 
IRI 

Pt I ret n re1 1 = - 
P I  

We have the following results : 



From this it follows that 

for such a random retrieval. 

Problem 111.4 

Formula (22) expresses the (square of the) distance of (P,R,F,M) to (1,1,0,0) both on the 

universal IR surface (20). It expresses, of course, the linear distance between the two points 

and not the geodetic distance of (P,R,O,O) to (1,1,0,0) over the surface (20), i.e. the length 

of the shortest curve between (P,R,F,M) and (1,1,0,0) on surface (20). It would be 

interesting to investigate the properties of such a distance, where one does not "leave" the 

surface (20), which is the case for any IR result. 

IV. Conclusions. 

We (re-)introduced the measure miss (M) completing the set of evaluation measures P, R, F 

and M. We show that no 3 of these measures form a universal IR surface (they form a 

surface but universality is only obtained if 1 ret I or 1 re1 1 is kept constant, which is almost 

never true). 

We show, however, that the four measures P, R, F, M together form the universal IR 

surface (20), yielding also the possibility to compare any two IR results, since obtained 

set (R,P,F,M) belongs to this surface. 

This universal IR evaluation technique is then exploited by considering the distance between 

any (P,R,F,M) and the vector (1,1,0,0) of the perfect search. If this distance d is 

normalized then the measure s=l-d yields a similarity measure between (P,R,F,M) and 

(1,1,0,0), being a universal IR evaluation tool. 
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