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Abstract 

Power laws, such as Zipf s law, and exponential relations, leading to straight lines in 

logarithmic or semi-logarithmic scales, are presented in a unified setting. It is shown 

that the class of size-frequency power laws is larger than the class of rank-frequency 

power laws. Their ubiquity in all fields of science is illustrated. 
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Introduction 

A handful of scientists produces most innovations in research and development; the 

ten most populous countries contain more than 50% of the total population in the 

world; a small group of words are spoken very often, many words are rarely used; 

small numbers of large firms co-exist with a large number of smaller companies [I]. 

All these examples illustrate the fact that productivity, in the widest possible 

interpretation of a relation between sources and items, is highly skewed. In recent 

times it has been shown that the distribution of in and out-links on the Internet, the 

distribution of web site sizes (number of pages), and web site use, all are skewed 

phenomenon [2-61. 

Distributions such as the ones hinted at above, can be described, at least, in two ways: 

using a size-frequency and using a rank-frequency approach. Using size-frequencies 

means giving a functional relation, f(n), n = 1,2,3,. . . , between the number of sources 

and the number of items they produce. In the rank-frequency approach one first ranks 

the sources in decreasing order of production, and then finds a functional relation 

between the rank and the production of the source at that rank. 

The classical expression for the size-frequency approach is a power law, often 

referred to as Lotka's law [7 ] :  

where C and a > 0 are constants. Although other functions have been proposed, the 

power law is the only one that is scale-free [S]. This means that if the measurement 



scale is changed (say n becomes Dn) then, up to a constant, the same power law is 

obtained. The term 'self-similarity' is often used in this context. 

For rank-frequency distributions scientists usually prefer Zipf s law [9 ] .  This relation 

is given as: 

where r denotes a rank. This relation is named after George K. Zipf, but goes back to 

Estoup and Auerbach in the beginning of the 20" century. Equation (2) has been 

generalized by Mandelbrot [lo], the inventor of fractals, leading to: 

In informetrics, the field where scientists mathematically model regularities in the 

information sciences, both approaches are routinely considered, while in most other 

fields one of the two - usually the rank-frequency form - is preferred. In practical 

investigations the relations (2) or (3) are usually confirmed, at least as a general trend. 

Studying the literature on rank-frequency distributions, the question came up as what 

would happen if the power function were replaced by a decreasing exponential: 

g(r)=Ge-Or, G > O , a > O  (4) 

It will be shown that the exponential form is just a limiting case of the power relation. 

More precisely, the exponential rank-frequency distribution corresponds to a size- 

frequency power relation with exponent a = 1, while the other cases corresponds to 

exponents strictly larger than 1 (exponents between 0 and 1 are also possible, but of 

no interest here). 



A continuous setting 

A manageable mathematical theory of rank and size frequencies can only be 

considered in a continuous framework. Consider, for instance, the defining relation 

between the functions f and g: 

The function g-' is the inverse function of g, and n,, denotes the production of the 

most productive source (the source at rank 1). Many sums like the one in equation (5) 

cannot be evaluated (exactly, or even approximately), while it is in most cases feasible 

to evaluate the corresponding integrals. This is particularly true in the case at hand. 

Such a continuous theory has been developed a decade ago by Egghe [l  11, but is little 

known outside the field of informetrics. Notations and main results are briefly 

reviewed here. 

The discrete functions f and g are replaced by continuous density functions cp and X. 

The symbol cp denotes a density of items per source, while the function x refers to a 

density of sources per item. These functions play a dual role. The function cp (the 

continuous analogue of the size-frequency function f) is defined as: 

p:[l ,p] +n + :  x +  q(x) (6 )  

where p denotes the maximum density (corresponding to n,,,, the production of the 

most productive source). The defining relation (5) becomes now: 

It can be shown that the following assertions (i) and (ii) are equivalent: 



C 
(i) q(x) =-, x ~ [ l , p ] , C > O ,  a > 1 with C and a constants; 

xu 

E 
( 4  X(Y) = , y€[O,T], E , F >  0, p>O with E,F and P constants. Here T 

(1 + F Y ) ~  

corresponds to the total number of sources, being equal to the largest value of y. From 

equation (7) is follows that 

Furthermore, the exponents a and 0 are related as: 

Zipf s law (equation (2)) may be considered as a special case of Mandelbrot's 

(equation (3)), by the substitution of r by r'= r+l (discrete case). In the continuous 

case such a shift transforms the domain [O,T] into [l,T+l]. 

It can even be shown [ I  I] that the above result is also valid for O < a < 1. Of course, 

equation (9) is not valid for a = 1. This is studied next. 

The relation between cp and x for a = 1 is given in the following theorem. 

Theorem If a = 1 the following equivalence holds: 

L 
(i) p(x)=- , X G  [l,p],C>O o (ii) , y (y)=Ge-oy,y~[O,T] ,G>I,  O<a<+m 

X 

with C, G and a constants. This shows that a size-frequency power law with a = 1 is 

equivalent with an exponentially decreasing rank-frequency function. 



Proof. First part: ( i )  3 (i i )  . By equation (7) it is clear that 

P C  P 
f l ( t ) = r ( t ) =  I- dw = Cln(-). Hence: t = ~ ( y )  = pe-Y1",  where p = G > 1, and 0 

I 
t  

< l / C = a < + o o .  

Second part: ( i i )  3 ( i ) .  Since X (  y )  = G e - O y  it follows that 

X ' ( y ) = - a ~ e - a y  and t = X - ' ( x ) = -  . Finally, equation (6)  leads to: 
a 

1 - 1 
P ( X )  = I"'"";' 

-- . This is the required relation with C = l /a  > 0. 
a x  

This result demonstrates that the class of size-frequency power laws is larger than the 

class of rank-frequency power laws. The fact that Lotka's power law with a = 1 leads 

to an exponentially decreasing rank-frequency relation has been observed before [12], 

but no special attention has been paid to it. 

Returning to the afore-mentioned examples, it is concluded that Lotka's size- 

frequency power law is even more ubiquitous than previously thought. Examples of 

exponential rank-frequency relations are indeed also examples of power law size- 

frequency relations (with a = 1). 

More exponentials 

A rank-frequency power law leads to a straight line when represented using double- 

logarithmic scales. Similarly, an exponential rank-frequency relation, when 

represented using semi-logarithmic scales with a logarithmic scale on the vertical axis: 



(a so-called log-linear plot) leads to a straight line. Clearly, one may wonder what 

happens if a straight line is observed using semi-logarithmic scales, this time with the 

logarithmic scale on the horizontal axis (a linear-log plot). More interestingly, it is 

studied if such a relation has been observed in reality, and how it can be related to a 

power law. 

A straight line in semi-logarithmic scales, logarithm on the horizontal axis can be 

expressed as: 

,y(y)=-aln(y)+b, a >O,b>O 

It is, moreover, assumed that y E [I, T+1]. This corresponds to a shifted distribution, 

a b-r - 
as explained before. Under these circumstances, ,yl(y)=-- and ,y-'(t)=e " . 

Y 

Consequently, the corresponding size-frequency law is: 

where b can be interpreted as the production of the source with highest production. 

Such an exponential size-frequency relation has been observed in artificial or 

restricted circumstances. Seglen [13], for instance, found such a relation when 

studying citations to one particular journal (and not to a whole field, or another larger 

group). Amaral et al. [14] show figures of different small-world networks. The 

connectivity of the electric power grid of Southern California clearly has an 

exponential size-frequency distribution, and so does the incoming and outgoing 

neuronal links in the worm Caenorhabditis elegans. Huber [15] and Huber & 

Wagner-Dobler [16] find exponential size-frequency relations for the production of 

authors with the same career duration (another case of a restricted circumstance) and 

for career duration themselves. Finally, it is well-known that also the tail of the link 



distribution in a random network decreases exponentially [17]. This proves that such 

special cases do happen in real situations. 

Conclusion 

It is shown how a unified approach, including size-frequency and rank-frequency 

distributions, relates power laws and exponential relations occurring in all fields of 

science. The ubiquity of these relations in all fields of science is illustrated. 
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