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Abstract
To faithfully display objects consisting of translucent

materials such as milk, fruit, wax and marble, one needs
to take into account subsurface scattering of light. Ac-
curate renderings require expensive simulation of light
transport. Alternatively, the widely-used fast dipole ap-
proximation [15] cannot deal with internal visibility is-
sues, and has limited applicability (only homogeneous
materials).

We present a novel algorithm to plausibly reproduce
subsurface scattering based on the diffusion approxima-
tion. This yields a relatively simple partial differential
equation, which we propose to solve numerically using
the multigrid method. The main difficulty in this ap-
proach consists of accurately representing interactions
near the object’s surface, for which we employ the em-
bedded boundary discretization [5, 16]. Also, our method
allows us to refine the simulation hierarchically where
needed in order to optimize performance and memory
usage. The resulting approach is capable of rapidly and
accurately computing subsurface scattering in polygonal
meshes for both homogeneous and heterogeneous mate-
rials. The amount of time spent computing subsurface
scattering in a complex object is generally a few minutes.

Key words: Rendering, subsurface scattering, heteroge-
neous materials, embedded boundary, multigrid

1 Introduction
In our daily life, we are surrounded by many translu-
cent objects, such as milk, marble, wax, skin, paper, and
so on. The translucency is caused by light entering the
material, scattering inside it, and eventually exiting at a
seemingly arbitrary location. The diffusive character of
this phenomenon yields a distinct appearance, typically
smoothing and concealing small surface detail. Further-
more, light may scatter through an object, which lights
up thin geometric detail if illuminated from behind. Also,
chromatic changes may appear due to wavelength depen-
dent scattering. Traditional reflection models cannot rep-

resent such effects since they assume light does not enter
the material; it is only scattered or reflected directly at the
surface.

Subsurface scattering is a difficult global illumination
problem, which aims at solving the (volume) rendering
equation for participating media. Direct numerical solu-
tions have proven to be accurate, but slow.

A breakthrough was achieved with the popular dipole
model [15] based on the diffusion approximation. Al-
though it generates plausible results at a fraction of the
computational cost of numerical methods, it is inher-
ently limited to homogeneous media (material properties
do not vary spatially) and lacks accuracy for arbitrarily
shaped objects, due to the semi-infinite plane approxima-
tion. We wish to deal with these problems.

We restrict ourselves to optically thick (or highly scat-
tering) materials, where multiple scattering (cfr. inter-
reflection in global illumination) is dominant. Under this
condition it makes sense to apply the diffusion approx-
imation [28, 11]. This significantly simplifies the vol-
ume rendering equation to the so-called diffusion equa-
tion (see appendix A). For moderately scattering materi-
als, light transport can be approximated efficiently by the
sum of a single scattering and multiple scattering term
[15], thus our diffusion solution can be easily extended to
also treat this case.

The diffusion equation is essentially a linear partial
differential equation (PDE) with mixed boundary condi-
tions. We show that it can be solved using a multigrid-
based approach in arbitrarily shaped domains. Stam [28]
was the first to suggest the multigrid method for solving
the diffusion PDE. However, his paper only discusses an
illustrative case in 2 dimensions for a simple homoge-
neous square slab. This paper can be seen as an extension
of this work, in order to render the multigrid method fit
for practical use.

To summarize, the contributions described in this pa-
per are:

• We propose to use the embedded boundary dis-



Figure 1: Solutions of the diffusion equation in 2D on
a 100×100 grid, for the geometry of a circle (outlined
in red). The source term is a 2×2 block at the midpoint
of the circle. Only the lower left side is shown for il-
lustration purposes. Left: Discretization using finite dif-
ferences yields instabilities near the boundary. Similar
artifacts occur in the upper right part. Right: Discretiza-
tion using the embedded boundary results in a consistent
solution.

cretization (EBD) [5, 16] for accurately representing
the object’s complex surface. It is essential to retain
numerical stability for the multigrid algorithm and
to obtain an accurate solution near the locations of
interest for subsurface scattering.

• To increase performance and to keep memory re-
quirements feasible, we describe an extension for hi-
erarchical refinement [1, 6, 12] of the solution where
needed. This is highly recommended, as volumetric
representations tend to be large.

2 Related Work
Simulating subsurface light transport is a special case of
global illumination in participating media, also referred
to as the volume rendering problem. Here, one tries to
solve the general volume rendering equation, for which
several solutions have been proposed, including finite el-
ement methods [27], (bidirectional) path tracing [9, 17],
metropolis light transport [21], photon mapping [13, 7],
and scattering equations [22]. In recent work, Premože et
al. [24] presented a mathematical framework for path in-
tegration, which led to an efficient algorithm [25] capable
of accurately rendering multiple scattering effects. Al-
though volume rendering techniques can be applied to the
problem of subsurface scattering, they are generally too
expensive to generate images within a reasonable amount
of time.

The diffusion equation is a sound approximation to the
general volume rendering equation in the case of highly
scattering media, which significantly reduces the com-
plexity of the problem. Stam [28] was the first to intro-
duce the diffusion approximation in the context of render-
ing. He applied a finite element method and the multigrid

method to solve the diffusion equation. This was demon-
strated with simple, illustrative examples. As we will
show in this paper, readily applying multigrid is not suf-
ficient, as numerical and efficiency problems may arise
when applying it to arbitrary objects.

Jensen et al. [15] introduced the dipole BSSRDF
model, which does not require a numerical solution of the
volume rendering or diffusion equation. Instead, an ap-
proximate analytical solution to the diffusion equation for
a semi-infinite homogeneous slab is used directly on arbi-
trary 3D objects. This crude approximation yields highly
plausible renderings and served as the basis for an effi-
cient hierarchical technique [14], and several interactive
methods [18, 4, 20, 19, 2, 10]. Although the practical
use of this model is clear, it is far from accurate (see fig-
ure 5) and is inherently limited to homogeneous materi-
als. Also, it cannot deal with internal visibility caused by
voids and concavities.

Gösele et al. [8] and Chen et al. [3] presented
data-driven methods capable of rendering heterogeneous
translucent objects. Our method is also capable of render-
ing heterogeneities, and will not require real world data
[8] or many hours of precomputation [3].

3 Outline
In this section, we outline a hierarchical approach to solve
the diffusion approximation efficiently and accurately. As
will be detailed in the following sections, we discretize
the diffusion PDE using the EBD, in order to translate it
to a linear system of equations. We will briefly review
the EBD method as described by Johansen et al. [16]
and Day et al. [5], and explain how it is applied to our
problem.

3.1 Discretization of the Diffusion Equation
Before going into the mathematical background, we re-
fer the reader to the appendix A for a brief review of
the diffusion equation. It can be skipped safely — we
will formulate the diffusion equation (1) and its bound-
ary conditions (5) shortly, although in a slightly modified
form.

The EBD builds on an approximation of the divergence
found in the diffusion equation. Therefore, let us define
an auxiliary vector function ~F = 1

3σtr

~∇Ud. The diffu-
sion equation now becomes:

~∇ · ~F − 4πσaUd = S (1)

The solution of this PDE will be represented on a 3D
uniform cartesian grid, in which its function variables are
discretized at the center of each cubical cell. However,
our domain boundary, the object’s surface, does not nec-
essarily align with the boundaries of the cells, so care
must be taken to consistently represent the information



in these cells. We will refer to cells that intersect with
the surface as “boundary cells”. The part of a boundary
cell that is split by the surface is dubbed “cut cell”. Non-
boundary cells are either “full” or “empty”.

Let’s call Ûd the discretization of the unknown func-
tion Ud (fluence). The differential operator in equation 1
can be represented in the grid by a weighted summation
over its values Ûd, for instance, using finite differences
[26]. One calls the arrangement of the weights “sten-
cil”, and is akin to the kernel of a convolution filter. The
number of terms is very low; typically, only the values
in the 4-connected neighborhood are taken into account,
and can thus be written as a sparse linear system of equa-
tions:

AÛd = Ŝ (2)

Here, Ŝ is the discretized version of the source term in
equation 1, and A contains the stencil. Note that in equa-
tion 2, all the Ûd and Ŝ values from the 3D grid have been
enumerated as vector.

We will now describe the EBD in detail. Consider ~∇· ~F
in a single full cell C of width h and approximate this
term by averaging it over the cell. Using the divergence
theorem, we can relate the resulting volume intergral to a
surface integral:

~∇ · ~F ≈
1

h3

∫
C

~∇ · ~FdV =
1

h3

∮
∂C

~F · ~ndA

Applying the midpoint integration rule for each cell face
yields:

~∇ · ~F ≈
1

h

∑
facef

~nf · ~F (xf ) (3)

where xf represents the center of face f . Equation 3 can
be translated to a stencil using central differences. Note
that the same result can be achieved by direct finite dif-
ferencing of ~∇ · ~F .

The strength of the EBD is the way boundary cells are
treated. A first order approximation of the surface is in-
troduced in order to generalize the integration scheme in
equation 3:

~∇ · ~F ≈

∑
facef αf~nf · ~F (xf ) + αB~nB · ~F (xB)

κh
(4)

Here xB is the center of the boundary surface and nB
i

the normal at this location. Let us clarify the ratio vari-
ables (see figure 2):

• κ: volume ratio of cut cell to full cell;

• αf : ratio of cut face area to full face area;

• αB : ratio of the (first order approximation) bound-
ary area to face area.

a

b

h

c

full boundary
αf=l 1 1
αf=r 1 0
αf=t 1 a

h

αf=b 1 b
h

αB 0 c
h

Figure 2: Left: Geometry of cells in the 2D case for clar-
ity (3D case is analogous). Dark, light and white cells
represent full, boundary and empty cells, respectively.
The domain’s geometry is indicated by the darkening
overlay. The arrows indicate normals at the face center
xf used to evaluate the midpoint integration scheme (see
equation 3). Right: Face weights used in the discretiza-
tion of the diffusion PDE into cubic cells of width h (see
equation 4). Face indices are written as (l)eft, (r)ight,
(t)op and (b)ottom.

Again using central differences, one can construct a
single stencil that can be used on both full and boundary
cells. Note that for the case of ordinary finite differences,
a different and less accurate stencil needs to be employed
in boundary cells. Figure 1 illustrates the problems that
might occur with the use of finite differencing [26]. These
problems occur because finite differencing requires that
any boundaries present in the domain are aligned with
the cell faces. “Irregular” boundaries need to be approx-
imated, leading to inconsistencies. The consequences of
such inconsistencies are possible failure of the multigrid
algorithm (no convergence) and an inaccurate solution of
the radiance where it is of utmost importance for subsur-
face scattering. The EBD solves these problems.

The EBD method allows us to naturally incorporate the
necessary boundary conditions. Day et al. [5] mention
that homogeneous Neumann conditions can be enforced
by setting the flux vector at the boundary to zero (i.e. by
cancelling the second term in equation 4). In our case we
have mixed Neumann and Dirichlet conditions (see A):

~n · ~F =
1

2A
Ud −

1

3σtr

~n · ~Q1 (5)

In the same spirit, our condition can be easily enforced by
substituting ~nB · ~F (xB) in the second term of equation 4,
by equation 5. As a result, this stencil can now be applied
to both full and boundary cells.

Technically, equation 4 is only valid at the center of
mass of the cut cells. We use the data-centering scheme
by Johansen and Colella [16] to solve this problem; it
essentially moves the cell data to the geometric center of
the full cell.
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Figure 3: Three cell arrangements that can occur when
computing the gradient on a cell face: (left) cells at
the same level, (middle) fine-coarse boundary and (right)
coarse-fine boundary.

3.2 Multigrid Method
Using the EBD, we apply the multigrid method [29] to
rapidly solve the linear system in equation 2. Multigrid
solves the system on hierarchical grids, which commu-
nicate via a set of operators. First, an approximate so-
lution is computed by removing high-frequencies in the
error, a process known as “smoothing”. The residual
r = AÛd − Ŝ is then projected onto the next coarser grid
and a correction is obtained by solving the equation with
the restricted residual as right-handed side. These steps
are repeated until the coarsest level is reached. Afterward
the direction is reversed and the corrections at each level
are interpolated to the next finer grid. The whole process
is called a “V-cycle” and is iterated until convergence is
reached (determined by ‖r‖ < ε).

In our implementation, smoothing is carried out by
Gauss-Seidel relaxation [26]. This is a fairly common
technique, yielding adequate performance on most prob-
lems. The residual is projected by volume-weighted av-
eraging. This seems to be the best choice considering the
irregular nature of the boundary cells. For interpolation
of the correction, we adopted a straightforward operator
which simply replicates the value to the 4 child cells.

3.3 Adaptive Refinement
As a result of the linear approximation of the embed-
ded boundary, high curvature regions may not be faith-
fully represented in the grid. Also, sudden changes in
illumination and material properties require the appro-
priate amount of detail. Naively increasing resolution
solves this problem, albeit at a substantial performance
and memory cost. We alleviate these problems by only
refining the grid when necessary.

As refinement criteria, we observe the divergence of
the source term S and the effective transport coefficient
σtr, to account for changes in illumination and material
properties, respectively. The refinement stops when these
values drop below a specified threshold.

When neighbouring cells are not the same size, the gra-
dient at the face can no longer be computed using central
differencing. A more involved scheme must be applied

A

E

CD

B

Dp

Figure 4: Second-order interpolation scheme used for
face gradient (Dp) calculation at a fine-coarse cell bound-
ary.

across these coarse-fine and fine-coarse boundaries (see
figure 3). A three-point interpolation scheme [23] is used
to compute these gradients with second-order accuracy.

Consider the point Dp in figure 4 at a fine-coarse
boundary. The gradient at this point is computed by fit-
ting a parabola through points p, p6 and either p5 or p7.
If E is a leaf cell, the gradient can be expressed as

hDp = −
Ud(p6)

3
−

Ud(p5)

5
+

8Ud(p)
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If E is not a leaf, the value of Ud at p7 needs to be in-
terpolated from the closest children (indicated by a ◦ in
the figure). The value at p in turn is evaluated in the same
way using the values from cells C and D. Due to refine-
ment constraints, these two cells are at the same level as
A.

The coarse-fine gradient is constructed as minus the
average of gradients constructed from the children of the
fine cell. Those gradients are all at a fine-coarse boundary
and can be computed using the scheme defined above.
This approach results in consistent gradients.

The use of this three-point scheme implies that the lev-
els of all neighboring cells (direct or diagonal) cannot
differ by more than one level and all cells neighbouring
a cut-cell must all be at the same level. The first con-
straint has little impact on the refinement operation but
the second is more restrictive as it forces all cells cut by
the boundary to be at the same level.

4 Results
We implemented our algorithm in C++ on a Pentium 4
1.7Ghz 512 MB RAM configuration.

In Table 1 we illustrate the performance of our appli-
cation with different models. The memory requirements
include both the mesh and the octree. The preprocess-
ing time is the time needed to load the mesh and build
the octree. For large meshes, this step can be quite time



consuming. The “source” column has the amount of time
required to compute the source term (right hand side of
equation 1). This involves casting shadow rays to the
light source from the center of each cell and computing
the attenuation along these rays.

Table 2 illustrates the performance with different ma-
terials. We see that as the object becomes more opaque,
the rendering time decreases. This is contrary to the be-
havior of the fast hierarchical dipole solution [14], where
the number of required samples increases dramatically
w.r.t. opaqueness. This increase is due to the behav-
ior of the Green’s function used in the dipole model. It
peaks strongly for more opaque materials, and therefore
requires many samples to guarantee a smooth reconstruc-
tion. Also, in the case of our diffusion simulation, light
has to travel over a smaller distance, which reduces the
number required of iterations. All timings were gath-
ered on the dragon model under the same lighting condi-
tions. The last four rows represent heterogeneous mate-
rials, constructed by interpolating between two different
materials with Perlin noise (Figure 6.1 shows a screen-
shots of one such rendering).

All images in figure 6 were rendered using OpenGL
after interpolating the colors at the vertices from the grid
solution. In figures 6.1-2-3, the venus, dragon and bud-
dha models are rendered with a mixture of marble with a
ratio of minimum and maximum density of 1:10. The
scales of the objects are 10cm, 2cm and 4cm respec-
tively. Note that, with “scale” we refer to the length of
the longest side of the object’s bounding box. In figure
6.4 a marble dragon at a scale of 2cm is backlit. Fig-
ures 6.5-6-7 shows a sculpture with skim milk and whole
milk. The last image is backlit: the scattering of light is
very obvious for the thin geometric features. Also, notice
the chromatic shifts and shadowing. In figures 6.8-9-10
the marble dragon is rendered using varying anisotropy
g: from left to right, 0.0, 0.5 and 0.9. For small values
of g (more isotropic), interactions are localized near the
surface, while for higher values light penetrates deeper
inside, yielding a more translucent effect.

model #tris mem pre src mgrid tot
dragon 200K 38.3 16.1 5.0 29.8 50.9
buddha 800K 61.0 72.8 8.2 16.0 97
venus 31K 32.4 3.1 1.8 83.1 88

Table 1: Overview of performance with different mod-
els. Timings are in seconds and memory usage is in MB.
“#tris”, “mem”, “pre”, “src”, “mgrid” and “tot” refer to
number of triangles, memory usage, preprocess, source
term computation, multigrid simulation and total render
time, respectively. Material was marble scaled at 6mm.

material scale simulation
marble 5mm 444.69
marble 10mm 295.9
marble 20mm 214.97

skim milk 6mm 605.95
milk mix 1cm 105.15
milk mix 2cm 62.57

marble mix 10cm 85.55
marble mix 2cm 205.55

Table 2: Overview of performance with different ma-
terials and scales. Timings are in seconds. We used
the dragon model for all results except for the last three
where we used the venus model.

Figure 5 shows a comparison of the fast dipole approx-
imation (FDA) [15] and our approach. Several visual dif-
ferences are noticeable. Most importantly, our solution
seems to be more dependent on the geometry, causing
strong varieties in brightness. The same variations are
seen in the reference solution. The dipole solution how-
ever, remains smooth regardless of the geometry. One
of the causes is the complex internal visibility in this
model, which the FDA cannot take into account due to
the semi-infinite slab approximation. Note that the FDA
rendering is more accurate in terms of chromatic shift-
ing. The brownish tint in our solution can be explained
by the attenuation of incoming radiance by e−σtd (with
d the traveled distance inside the object). This function
is evaluated at the midpoint of each cell, hence d > 0,
causing a “chromatic bias”. This problem can be allevi-
ated easily by further refinement (see next section). Note
that both the FDA and our method lack high frequency
shading details caused by low order scattering, esp

5 Discussion and Conclusion
We have presented a flexible method for the simulation of
subsurface scattering based on the diffusion approxima-
tion. In particular, we showed that a combination of an
octree discretisation, a multigrid solver and an embedded
boundary stencil proves to be a feasible and efficient tech-
nique for the numerical solution of the diffusion equation
in complex objects within a reasonable amount of time
(typically a few minutes). The approach differs from the
previous attempt with multigrid [28] by employing a bet-
ter representation of the boundaries, and a simple refine-
ment strategy. Compared to the popular dipole approxi-
mation [15], our method is able to resolve visibility cor-
rectly, and can deal with heterogeneous materials.

Cell subdivision may reach practical limits in terms of
memory consumption, causing aliasing artifacts. When
scattering is too local w.r.t. cell size (e.g. at large scales



Figure 5: Comparison figure. The dragon model is lit by a point source placed directly above the model, and rendered
for scales 20mm (top) and 40mm (bottom). Left: fast dipole approximation [15]. Middle: our method. Right:
reference Monte Carlo solution. Our method is capable of resolving internal visibility, contrary to the dipole solution.
For instance, the darkening at the lower half of the mouth is caused by visibility issues.

or for dense materials), the response to incident light
cannot be represented faithfully. To deal with this case,
a more efficient subdivision scheme is required. Aside
from aliasing, such a scheme will also avoid the chro-
matic bias in the source term (see figure 5).

The method is limited by the assumptions inherent to
the diffusion equation. Most importantly, low order scat-
tering is important in certain cases, currently ignored by
our model (see figure 5).
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A Diffusion Approximation

The diffusion approximation is based on the observation
that, in highly-scattering optically thick media, the an-
gular dependence light distribution tends to be smoothed
out due to the large number of scattering events [28]. Be-
cause of the weak dependence on direction, the diffuse

intensity can be accurately approximated using 0th and
1st order spherical harmonics:

Ld(x, ~ω) = Ud(x) +
3

4π
~Fd(x)~ω (6)

where Ud(x) = (1/4π)
∫

S2 Ld(x, ω)dω is the radiant flu-
ence and ~Fd(x) =

∫
S2 Ld(x, ~ω)~ωdω the vector irradi-

ance.
The diffusion equation follows from this approxima-

tion (details Ishimaru’s book [11]). The resulting equa-
tion is:

~∇ · [
1

3σtr

~∇Ud] = 4πσaUd − S (7)

With the incident radiance term S defined as (assuming
no internal sources):

S(x) = 4πσsUri(x) − ~∇ · [
1

3σtr

~Qri(x)]

At each location in the medium, the reduced incident
radiance is defined as the attenuated radiance coming
from external light sources, and is incorporated in the
equation by its 0th and 1st order spherical harmonics pro-
jections Uri and ~Qri, respectively. The absorption and
scattering transport coefficients (σa and σs respectively)
characterize the medium and vary spatially for heteroge-
neous materials. The effective transport coefficient σtr is



defined as σa +(1−g)σs where g controls the anisotropy
of the scattering (g < 0, g > 0 and g = 0 corresponds to
backward, forward and isotropic scattering, respectively).

The boundary condition is formulated as: [30, 11]

Ud −
2A

3σtr

~n · ~∇Ud +
2A

3σtr

~n · ~Q1 = 0 (8)

where n is the inward-pointing surface normal.
A is a constant that depends on the indices of refraction

at both sides of the surface.
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Figure 6: Rendering results. 1-2-3: Venus, dragon and Buddha models with a mixture of marble; the ratio of minimum
and maximum density is 1:10. 4: Backlit dragon model. 5: Chromatic shift for skim milk. 6-7: Sculpture model with
skim and whole milk. 8-9-10: Marble dragon with varying anisotropy (g = 0, g = .5 and g = .9, respectively).


