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ABSTRACT 

A generalization of both the Botafogo-Rivlin-Shneiderman compactness measure and 

the Wiener index is presented. These new measures for the cohesion of networks 

can be used in case a dissimilarity value is given between nodes in a network or a 

graph. It is illustrated how a set of weights between connected nodes can be 

transformed into a set of dissimilarity measures for all nodes. The new compactness 

measure for the cohesion of weighted graphs has several desirable properties related 

to the disjoint union of two networks. Finally, an example is presented of the 

calculation of the new compactness measures for a co-citation and a bibliographic 

coupling network. 
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1. Introduction 

Graph theory pervades both the theoretical and the practical domains of many 

sciences, including the information sciences. Indeed, pages and hyperlinks of the 

World Wide Web may be viewed as nodes and edges in a directed graph. Similarly, 

citations lead to another graph, namely a citation graph or network (Garner, 1967). 

The degree of interconnectedness of a hypertext or similar graph-like entities, such 

as citation networks, can be expressed using cohesion measures. One of these is 

compactness as introduced by Botafogo, Rivlin and Shneiderman (Botafogo et al., 

1992). As the word 'compactness' has several meanings in mathematics and graph 

theory we will refer to the compactness notion as introduced by the fore-mentioned 

authors as BRS-compactness. An exact definition follows later. 

BRS-compactness is a measure of cohesion which tries to capture how well- 

connected a hyperdocument or a network is. As a measure of cohesion its value can 

be used as a guideline for hypertext authoring systems (Johnson, 1995). It has been 

studied and discussed in many other works, see e.g. (De Vocht, 1994; Rivlin et al., 

1994; Mendes et al., 1998; Fang & Rousseau, 2001; Egghe & Rousseau, 2001; 

Egghe, 2001). The cohesion of a hypermedia environment influences the retrieval 

efficiency of users, as was shown e.g, by Khan & Locatis (1998). Leazer & Furner 

(1999) study compactness in the context of textual identity networks, i.e. a set of 

documents that share a common semantic or linguistic form. In addition, they 

compare BRS-compactness with other so-called topological indices such as the 

Wiener index, stratum and Randics index (RandiC ,1975). The notion of stratum was 

generalized recently by Leo Egghe in a study on hierarchies (Egghe, 2001). 



In informetric studies publications, citations, co-citations (Price, 1965; Garner 1967) 

as well as collaborations give rise to networks (Pritchard, 1984). A document citation 

network is not symmetric (if article A cites article B, B normally does not cite A), while 

a collaboration network definitely is: if author X has collaborated with author Y, 

automatically author Y has collaborated with X. Similarly, co-citation networks are 

clearly symmetric. Yet, links in author or country citation networks may or may not be 

bi-directional. Note that recently also other collaborations, such as actor 

collaborations have mspired fellow scientists (Barabasi & Albert, 1999). These 

authors and others link their research to the so-called small-world phenomenon 

(Milgram, 1967; Kochen, 1989; Watts, 1999; Newman & Watts, 1999, Newrnan, 

2000; Bjorneborn, 2001). Citation links have been inspirational to web search 

techniques such as those used by the Clever algorithm and by Google (Chakrabarti 

et al., 1999; Brin and Page, 1998; Henzinger, 2001; Ng et al. 2001). Moreover, the 

'hubs' and 'authorities' approach is related to the Pinski-Narin influence weight 

citation measure (Pinski and Narin, 1976) and mimics the idea of 'highly cited 

documents' (authorities) and reviews (hubs), see e.g. Kleinberg (1999). 

In this article, we study the compactness of a general network with general 

dissimilarity values between the nodes, and show how weights between nodes can 

be converted into such dissimilarity values. We present an example of such a 

calculation using a co-citation network and a network determined by bibliographic 

coupling. Applications of this measure abound. Indeed, De Bra (2000) observed that 

when studying the literature of a field large differences in the density of citations may 

be found. We sometimes see densely connected citation clusters with little or no links 

to other clusters, while occasionally a field seems rather loosely connected by citation 



or collaboration links. De Bra suggests that the BRS-compactness measure can be 

used to identify research fields with a similar citation behavior. This, in turn, could be 

a factor in research evaluation exercises, where it is important to compare 'like with 

like'. For all these reasons we think it is necessary to have a closer look at the notion 

of BRS-compactness, to study its properties, to construct examples, and to propose 

appropriate generalizations. 

2. Some notions from graph theory 

A directed graph G, in short: digraph, consists of a set of nodes, denoted as N(G), 

and a set of links (also called arcs or edges), denoted as L(G). In this text the words 

'network' and 'graph' are synonymous. A link e, is an ordered pair (a,b) representing 

a connection from node a to node b. Node a is called the initial node of link e, and 

node b is called the final node of the link. If there is an arc connecting nodes a and b, 

then we say that nodes a and b are directly connected. A path (or chain) from node a 

to node b is a sequence of distinct links (a, u,), (u,,u2), .. .  , (uk,b). The length of this 

path is the number of links (here k+l). Note that, in general, a path from a to b does 

not necessarily imply a path from b to a. We assume in this paper that there exists at 

most one direct link between two nodes. Further, nodes will often receive an index 

number and will be identified through this number. 

The distance from node a to node b (in an unweighted graph) is the smallest length 

of all the paths that join a to b. If such a path does not exist the length is infinity. A 

strongly connected component of a digraph is a set of nodes such that any two of 

them are joined by a path. Different strongly connected components in a network 

consist of disjoint sets of nodes. If a digraph consists of one strongly connected 



component it is said to be strongly connected. If no two nodes are connected, the 

graph is said to be totally disconnected. 

In many applications it is natural to assign a number to each arc of a graph. This 

number is called the weight of this arc, and the graph is then called a weighted 

graph. Weights can be distance expressed in km or miles (a road map), time needed 

to travel from point A to point B (a network of airplane connections, or a part of the 

Internet backbone), costs to move from situation S to situation T, the number of times 

author a cites author b (citation graph), number of times authors a and b are co-cited 

(a co-citation graph), etc. Note that weights can be subdivided into two categories: 

one related to graphs where high weights are considered unfavorable situations, and 

one related to graphs where high weights are rather favorable. The first category 

contains the distance, time and costs examples; the second one the (co)-citation 

examples. In this article we will only be concerned with the second category. 

An undirected graph consists of a set of nodes and a set of edges, each of which is 

an unordered pair of nodes. A collaboration network is an example of such a graph: 

if author A co-authored an article with author B, then author B co-authored an article 

with A. Also co-citation networks and networks weighted by bibliographic coupling 

strengths are examples of undirected (often weighted) graphs. 

For more information on graphs we refer the reader to (Gibbons, 1985; Harary, 1969; 

Trinajstic, 1992; Wilson, 1972). 



3. Compactness 

3.1 Definition: the BRS network matrix in the unweighted case 

Any (finite) network can be described by a matrix D such that the element on the i-th 

row and j-th column, denoted as d(i,j), is equal to the length of a shortest path 

between the i-th and the j-th node of the network. If node j cannot be reached from 

node i then d(i,,j) = -. Note that, in general, d is not symmetric (d(i,j) # d(j,i)), hence d 

is not a proper metric or distance function. It is a metric in the case of undirected 

graphs. In their analysis of hypertexts and hyperlinks Botafogo et al. (1992) 

introduced the following convention: if node j cannot be reached from node i then 

d(i,,j) is not put equal to -, but takes as its value the number of nodes in the analyzed 

network. This representation will be called the BRS representation. Botafogo, Rivlin 

and Shneiderman (1992) refer to this matrix as the converted distance matrix. 

3.2 Weighted networks 

Considering weighted graphs means that we allow an arc e = (i,j) to be characterized 

by a number, called the weight of this arc. In this article we agree that weights are 

least equal to one. In the case of a weighted network the new matrix (denoted as D,, 

and defined further on), playing a similar role as the converted distance matrix, is 

obtained using a dissimilarity measure, denoted by the symbol d (as in the 

unweighted case). The number d(i,j) is a non-negative number, denoting the 

dissimilarity between the nodes i and j (in that order!). Indeed, the dissimilarity 

measures we are going to use are not necessarily symmetric. A metric, on the other 

hand, is an example of a (symmetric) dissimilarity measure. The dissimilarity between 

a node and itself is always put equal to zero, i.e. for all j: d(j,j) = 0. The dissimilarity 

between two unconnected nodes is put equal to a well-chosen large number (as in 



the unweighted case). We will show that in our setting this number can be taken to be 

N, the number of nodes in the network. Hence, if nodes i and j are unconnected in a 

weighted network, then d(i,j) = N, the number of nodes in the network. 

3.3 Determining a dissimilarity value between connected nodes 

In this section we will give one - important - procedure of how to derive dissimilarity 

values for all nodes if weights between directly connected nodes are known. 

Assume we have a weighted digraph, with weights w given between directly 

connected nodes. Recall that weights mean: number of citations (from author A to 

author B; or from journal J to journal K); number of collaborations (co-authorships) 

between authors, links from site S to site T, hyperlinks in a local hypertext document, 

and so on. 

If two nodes i and j are connected through a chain, C, of length t, and with weights 

wk, k = I ,  ..., t, (where t can be one) then we propose as dissimilarity value dc(i,j) of 

this connection: 

The dissimilarity value between nodes i and j is then put equal to the minimum of the 

dc(i,j) values, where C denotes any chain connecting i with j: 

d (i, j) = min dc(i, j )  
C (2) 



Properties of this weighting and dissimilarity scheme 

- If all weights in the graph are equal to 1, then the dissimilarity value between any 

two connected nodes is just the length of a shortest path between these nodes. 

- If one weight wk in a path increases, the corresponding dc(i,j) decreases 

- If the path increases with one link (leaving the already existing links unchanged) 

then the dissimilarity value increases. 

Although many other schemes to convert weights to dissimilarity values were 

conceivable, we chose this particular procedure because of its interesting properties. 

In particular, as one is the smallest value for w, putting all weights equal to one (the 

associated unweighted network) yields the largest dissimilarity value for connected 

nodes. If d* denotes the dissimilarity value calculated for the associated unweighted 

graph, then clearly 

d i )  < d*(ij) (3) 

A direct link is very important. Yet, if weights are high enough it is possible that an 

indirect connection leads to a smaller dissimilarity than the direct link. Examples will 

be provided in the last section where we study a real-world co-citation and 

bibliographic coupling network. For a chain with length t the requirement (assuming 

equal weights in every link) for an indirect link to be more important than a direct one 

with weight one, is: 



Adopting this procedure gives a maximum dissimilarity value between any two 

connected nodes of N -1. Hence we will define the dissimilarity value between two 

unconnected nodes as N. 

In the applications studied here only the shortest path is of importance. In other 

applications it might be more natural to consider all paths (Rousseau, 1989; Egghe, 

2001). 

3.4 Definition: BRS-compactness for weighted networks 

We define the general form of the BRS-compactness measure of an N-node network 

as: 

,,,=I C = 
MAX - MIN 

(5) 

where d is a dissimilarity function. MIN and MAX denote the maximum and minimum 

values for the sum of dissimilarities. 

Although we have outlined a specific procedure of deriving dissimilarity values, if 

weights are given, from now on we only assume the following properties ford: 



I ") d is non-negative; 

2") for every two nodes, i and j, d(i,j) 5 d*(i,j), where d* denotes the dissimilarity of the 

associated unweighted network (this is property (2)); 

Note that when 2") holds we have the following property: 

if nodes i and j are connected then d(i,j) < N 

As weights can be arbitrarily high, the corresponding dissimilarity values can be 

arbitrarily small, hence MIN = 0. This means that we actually use the infimum of all 

possible values, not the minimum, which does not exist. For MAX we use N(N2-N) as 

in the unweighted case. This leads to the following definition for the BRS- 

compactness for weighted graphs. 

Definition: BRS-compactness for weighted graphs, denoted as C,: 

If N = 1, we leave C, undefined. Hence, we will always consider networks consisting 

of at least two nodes. 

A totally disconnected, weighted graph has BRS-compactness C, equal to 0. We 

note that any unweighted graph may be considered a weighted one, with all weights 

equal to one, and with all dissimilarities of connected nodes equal to one. 

Conversely, every weighted graph has an associated unweighted graph (put all 

weights equal to 1). The BRS-compactness value of the associated unweighted 



graph can be calculated using formula (6) for weighted graphs (this value will be 

denoted as C: ), as well as by the formula for unweighted graphs (then denoted as 

C") (Egghe-Rousseau, 2001). These formulae only differ in the value of the 

denominator. As the denominator for the weighted case is larger than that for the 

unweighted case (namely: N3-N2 versus N3-2N2 + N) the weighted BRS-compactness 

value of a graph with all weights equal to 1 is always smaller than the standard BRS- 

compactness value of this same graph. More precisely we have: 

We further note that by (2) 

c: 5 C>, (8) 

but clearly, 

lim C; = lim C" 
N - r m  N-.., 

One element in formula (6) deserves special attention and will be defined as the 

generalized Wiener index. 

Definition: the generalized Wiener index of a weighted graph 

We define the generalized Wiener index of a weighted digraph, denoted by Ww, as 

the sum of all elements of the dissimilarity matrix. In the case of an undirected, 

strongly connected unweighted graph this sum divided by two is known as the 

Wiener index, after the chemist Harold Wiener (Wiener, 1947). 



Introducing this notation in formula (6) yields: 

Definition: connection coefficient (Egghe-Rousseau, 2001) 

Let now p, p E [0,1], be the fraction of all pairs (i,j) (with i # j) that are connected and 

let Ali denote the set of those pairs (i,j) for which this happens, i.e. for which d(i,j) < N. 

The fraction p is called the connection coefficient of the network. Following Pritchard 

(1984) we may say that in a communication network a high value of the connection 

coefficient improves the level of accessibility between nodes, and hence the transfer 

of information. The connect~on coefficient is either zero (and then C, = 0) or it 

satisfies the following inequality: 

The connection coefficient of a weighted graph is clearly equal to that of its 

associated unweighted one. A connection coefficient p equal to one simply means 

that every two nodes have a dissimilarity value strictly smaller than N in the matrix 

Dw (this implies that the graph is strongly connected). 



4. Decomposition of the weighted BRS-compactness measure C, 

Consider a network with N nodes. Let P be the connection coefficient. This implies 

that (I-~)(N~ - N) pairs of nodes are unconnected. Their dissimilarities are put equal 

to N. Let A" denote the set of all pairs of nodes that are connected: 

A,={(;, j )  ;it j ,  i ,  j = 1,. . ., N, i and j are connected} 

Then: 

or: 

Consequently, the weighted BRS-compactness value consists of the connection 

coefficient minus a term involving the sum of the dissimilarity values of connected 

nodes. 

From now on we will abbreviate the expression 1 d(i ,  j )  by C .  Note that Z is 
ifl,,)d,, 

the generalized Wiener coefficient (W,) only if the network is totally connected 

If C *  denotes the value of Z for the associated unweighted network, then clearly (by 

our requirements on d) Z 5 X*. 

Note. For an unweighted graph we have the following property (Egghe & Rousseau, 

2001) 



This upper bound is not valid anymore, and neither is the inequality (N2-N) 5 Z. 

Indeed, consider a complete graph (every two nodes are connected, hence P = 1) 

where every arc has the same weight w > 1. Putting d(i,j) = l lw,  makes C equal to 

(N2-N)/w, which is clearly smaller than (N2-N), being here equal to 0 (N2-N). Further, 

N ( N  - 1 )  1 N - l  
C, is here equal to 1- = I--- > 1.- 

1 
=1 - - contradicting 

w N Z ( N  - 1 )  wN N  N 

expression (1 3). 

The following theorem gives a relation between the weighted compactness C, and 

the connection coefficient p. More precisely, it provides an upper bound for P as a 

function of C,. 

Theorem 

Proof. We know already that 

where C: denotes the BRS-compactness value of the associated unweighted graph, 

calculated using the formula for weighted graphs, and C" denotes the standard 

BRS-compactness value for the associated unweighted graph. 

We also know that for unweighted digraphs (Egghe & Rousseau, 2001): 



3(N - 1) 
ps  N + l  

C", 

hence : p 5 
3(N-1) N 3N 3N c, = --- C <- 
N + l  N- I  N + l  "-N+I'w 

(1 5) 

where we have used inequality (8). This proves the theorem 

I: < I: * and as, for every unweighted network X' s  p  ( N - I ) N ( 2 N - I )  
3 

: Rousseau, 2001), we also have: 

We next prove two results generalizing the corresponding results for unweighted 

graphs (and the corresponding BRS-compactness value). They show that also the 

weighted BRS-compactness measure behaves as expected. 

Proposition 

If we add one unconnected point to a weighted network then the weighted BRS- 

compactness value decreases. 

Proof. If P denotes the connection coefficient before this unconnected point is added, 

and P' denotes the connection coefficient after adding one unconnected point, then 

The weighted BRS-compactness of the new graph is: 

By definition (12) we see that 



c = N i ( N - l ) ( p - c ' - )  

and hence: 

N - l  N ( N  - I )  
= P + C', 

( N + I ) '  ( N + I ) '  

From this expression we see that C,' < C, if and only if 

By the previous theorem this inequality is always satisfied. 

What happens if we add a node that is 'strongly' connected to an existing network? 

We first observe that if the original network is totally disconnected, the addition of a 

new node that is at least connected to one node of the original one makes the 

compactness value strictly positive, and hence strictly larger than that of the original 

one. We now assume that the original network is not totally disconnected 

Proposition 

If we add to an N-node network, a new node, whose dissimilarity to all other nodes is 

smaller than or equal to min { d ( i ,  j ) ) , i t  j .  then the weighted BRS-compactness 
,./ 

value of this new network, denoted as C,', is strictly larger than C,, the weighted 

BRS-compactness value of the original network. 



Proof. 

If we denote min { d ( i ,  j ) } , i +  j ,  simply by m, then we have to show that 
8 . 1  

C,, = 1 - w, 21 - 
W<,, + 2 N m  s c;< 

N 2 ( N  - 1) ( N  +1)2N  

This is equivalent with: 

Because W, 2 m (N2-N), this expression is satisfied if: 

which is always true. This proves this result 

The compactness value of the disjoint union of two networks with known 

compactness. 

We assume that the first network contains M nodes, has connection coefficient p, 

and compactness value Cj .  The second one contains N nodes, has connection 

coefficient p2 and compactness value C2. Hence the disconnected union has M+N 

nodes. The connection coefficient p is: 



and Z = C, + C2 (as the two parts are unconnected) 

Now, 
-7 

Hence 

with 

M 2 -  M 
- 

M 2 ( M  - 1 )  

( M + N ) ( M + N - I )  ( M + N ) ' ( M + N - 1 )  1 

Hence: 



Corollary 1 

If M = N, D l  = fi2 = b and C, = C2 = C, then the compactness, C, of the weighted 

graph consisting of these two unconnected graphs (e.g. two copies of the same 

graph) is equal to: 

Corollary 2 

The BRS-compactness value of a disjoint copy of two identical weighted networks is 

strictly smaller than the BRS-compactness value of one component. Using the 

notation of Corollary 1 this means: 

C < c (1 9) 

Proof. 

By Corollary 1 we know that 

By Formula (15), this leads to: 



This result is, of course, not surprising, but it shows that the BRS-compactness value 

for weighted graphs has good properties. 

5. An example of the calculation of the weighted compactness value using the 

procedure outlined,in this paper 

We consider the undirected network of co-cited papers in particle physics studied by 

Small (1973) to introduce the notion of co-citation. We will also consider the 

undirected network of bibliographic coupling strengths between these papers. Data 

are given in Small's original publication but presented here for the reader's 

convenience. Small's article also contains the corresponding co-citation network (but 

co-citation links with a weight smaller than 7 are not shown). 

Table 1 Small's particle physics co-citation matrix 

where letters denote the following articles, 

A. Bjorken, J.D. (1966) Applications of the chiral U(6) 69 U(6) algebra of dens~ties 

Phys. Rev. 148, 1467 

B. Gasiorowicz, S. and Geffen, D.A. (1969). Effective Lagrangians and field algebras 
with chiral symmetry. Rev. Mod. Phys. 41, 531 



C .  Gell-Mann, M. (1962). Symmetries of baryons and mesons. Phys. Rev. 125, 1067 

D. Gell-Mann, M. (1964). The symmetry group of vector and axial vector currents, 
Physics 1, 63 

E. Gell-Mann, M., Oakes, R.J. and Renner, B. (1968). Behavior of current 
divergences under SU3 x SU3. Phys. Rev. 175, 2195 

F. Glashow, S.L. and Weinberg S. (1968). Breaking chiral symmetry. Phys. Rev. Lett. 
20.224 

G.  Lovelace, C. (1968). A novel application of Regge trajectories. Phys. Letters B, 28, 
264 

H. Veneziano, G. (1968). Construction of a crossing-symmetric Regge-behaved 
amplitude for linearly rising trajectories. Nuovo Cimento 57, 190 

I. Weinberg, S. (1966). Pion scattering lengths. Phys. Rev. Lett. 17, 616 

J. Wilson, K.G. (1969). Non-Lagrangian models of current algebra. Phys. Rev. 179, 
1499 

Next, dissimilarity values were calculated following the procedure outlined in this 

article. The results are shown in Table 2. Table 3 shows whether the dissimilarity 

value was obtained from a direct link (DIR) or not. In the latter case Table 3 shows 

the node (or nodes) used in the calculation. Observe that, if there is no direct link (as 

e.g. for C and H) then the dissimilarity value must be calculated using a connecting 

node. However, it also happens that an indirect link yields a smaller dissimilarity 

value than the direct link. This is, for instance, the case for A and B, which yields the 

smallest dissimilarity value if they are connected via E 



Table 2 Dissimilarity values of Table 1 

Table 3 Shortest paths in the particle physics co-citation network 

The generalized Wiener index of this weighted co-citation network is 9.388. As N = 

10, and the connection coefficient is 1, the weighted compactness value is 0.9896. 

For the associated unweighted network we find a generalized Wiener index of 98, 

and hence a weighted compactness value of 0.891. This compactness is smaller 

than that for the weighted network (as it should). 

Similarly, Tables 4, 5 and 6 show the bibliographic coupling strengths for the nodes 

of the bibliographic coupling network (see Fig.1 and Table 4), the dissimilarity values 

(Table 5) and the connecting nodes used to calculate these dissimilarity values 



(Table 6). Note that here we sometimes need four connecting nodes for a path 

leading to a smallest dissimilarity. 

Fig.1 The weighted bibliographic coupling values of Small's particle physics network 



Table 4. Network of bibliographic coupling strengths of Small's particle physics 
network 

Table 5 Dissimilarity values of Table 4 

Table 6 Shortest paths in the bibliographic coupling network 



The generalized Wiener index of this weighted bibliographic coupling network is 

48.0362. As N = 10, and the connection coefficient is I, the weighted compactness 

value is 0.9466. 

For the associated unweighted network we find a generalized Wiener index of 132, 

and hence a weighted compactness value of 0.8533. 

It is intuitively clear that the co-citation network is more compact than the 

bibliographic coupling network. The obtained compactness values reflect this fact. On 

the other hand, both networks are completely connected and are densely connected 

(in the intuitive sense of the word). This fact is reflected by the high compactness 

values we obtained. 

6. Conclusion 

The new measure for the cohesion of weighted networks introduced here generalizes 

the well-known BRS-compactness measure. It can be used in the case a dissimilarity 

value (possibly derived from weights) is given between nodes in a network or a 

graph. A procedure is outlined illustrating how a set of weights between connected 

nodes can be transformed into a set of dissimilarity measures for all nodes. The new 

measure for the cohesion of weighted graphs has several desirable properties, 

related to adding a new node or to the disjoint union of two networks. An example is 

presented, involving Small's co-citation and bibliographic coupling network, of the 

calculation of the new compactness measure. 

We suggest to test, using the new measure, De Bra's suggestion about research 

fields with a similar structure. It would also be interesting to test whether the new 



measure can distinguish between (real-world) random and so-called small-world 

networks. 
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