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A b s t r a c t - - W h e n  studying numerical properties of a population (technically: a conglomerate) it 
often happens that not all data are known. It might be that the total number of objects (persons) in 
the population is known, but that data on a number of them is missing. It even happens frequently 
that the total number of objects (N) is unknown. Referring to the population as 'sources' and to the 
property under investigation as 'items' or as ' the production', the whole dataset of this conglomerate 
can be represented as an N-vector. In this article N-vectors representing sources and their respective 
productions are studied from the point of view of concentration theory. Partial vectors (N is known, 
but data  concerning the least productive sources are missing) and truncated vectors (N is unknown) 
are compared in two ways. First-order comparisons study vectors, while second-order comparisons 
study differences between vectors. In the case of first-order comparisons, it is shown that truncated 
vectors may be incomparable, while partial ones are always completely comparable. Similarly for 
second-order comparisons, partial vectors can be compared and yield a totally ordered double se- 
quence, while truncated ones may be incomparable. Finally, we describe how to make second-order 
comparisons for vectors with a different number of sources. (~) 2005 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - T r u n c a t i o n ,  Partial conglomerates, Generalized bibliographies, Concentration. 

1. I N T R O D U C T I O N  

Consider a set ~t of sources. These sources may or may not have produced a number of items. As 

a generic name for this framework we use the term 'generalized bibliography' or conglomerate [1]. 
Examples are the members of a university department as sources and their publications (during 
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one year) as the corresponding items; or companies and the number of personnel; or journals, 
and their impact factors; and so on. 

If we have a conglomerate with N sources we will rank these depending on the number of items 
they have produced. This yields a row of N numbers. We will refer to such a row as an N-vector, 
or a vector of length (dimension) N,  or simply a vector. Next, we will consider the following 
question: what happens if you 'reduce' or 'cut' a vector? This happens when not all data are 
known. It might be that the total number of sources is known, but that data on a number of 
them is missing. It even happens frequently that the total number of sources (N) is unknown. 
This leads to a smaller vector. There are, of course, different ways of making a vector 'smaller', 
but we will consider only two cases. The first way is to keep the first/-components of the vector 
and replacing the other components by zeros (this is only possible if N is known). This yields a 
partial vector. A partial vector of an N-vector is again an N-vector. We will refer to the original 
N-vector as the parent vector. The second way is to keep only the first/-components (0 < i < N) 
and make no replacements. This operation is called truncation. The length of a truncated vector 
is always smaller than that of the parent vector. If we truncate after the i th component, the 
resulting vector is called the/-truncation of the parent vector. In practice we often encounter 
truncated vectors with unknown parent. 

We introduce the following mathematical notation for these notions. Let X be a vector, then 
X = ( x l , x 2 , . . . , x N ) ,  where xj denotes the number of items produced by the jth source, Sj, 
and Xl >_ x2 >_ . . .  >_ XN. We denote by Xi = (x l ,x2 , . . .  , x l ,0 , . . .  ,0) the i th partial N-vector. 
Similarly, Xi,t --- (xl, x2 , . . . ,  x~) denotes the/-truncation of X. 

Truncated and partial vectors will be studied using concentration theory. Recall that, basically, 
concentration can be described as the relative apportionment of items among the sources present. 
The study of concentration and its opposite, diversity, has many implications in fields such as 
economics (e.g., geographical concentration of firms), sociology (concentration of wealth), ecol- 
ogy (biodiversity), and informetrics (as a parameter to describe the unequal scientific production 
among countries, institutes, or authors). Concentration measures can be considered as sciento- 
metric indicators [2]. Concentration can best be studied by using Lorenz curves, or variations 
thereof [3-6]. We assume that the reader is familiar with the construction of a classical Lorenz 
curve and will not repeat it here. 

2. R E S E A R C H  P R O B L E M  

First, we will make so-called first-order comparisons. By this we mean the following: consider- 
ing two truncated conglomerates of the same parent: which of the two is the most concentrated? 
Similarly, considering two partial conglomerates of the same parent, can we say which of the two 
is the most concentrated? We will show that truncated ones may be incomparable, while partial 
ones are always completely comparable. 

Next, we will make second-order comparisons, applying relative concentration as introduced 
in [6]. By the term second-order comparison we mean that we will compare the difference between 
the (j - 1) th and the j th  partial vector, with the difference between the j t h  and the (j + 1) th 

partial vector. In a similar way, we will consider differences of truncated vectors. 
In practice, our results yield information about situations (or studies) where one 'forgets' or 

otherwise removes the least productive sources. What is the influence (on concentration) of this 
removal or reduction? Examples are: not considering 'unimportant' journals in citation studies; 
or not paying attention to one-man companies in a study of company sizes. 

3. A STRICT O R D E R  IN T H E  SET OF PARTIAL 
V E C T O R S  OF A F I X E D - P A R E N T  C O N G L O M E R A T E  

We have already shown in [7] that the partial vectors of a fixed-parent conglomerate form a 
completely ordered subset in the partially ordered set of all N-vectors with the same Lorenz 
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curves. We will not repeat the argument here, but will present a small adaptation for the case 
of weighted Lorenz curves. Weighted Lorenz curves occur when one is interested in how different 
the concentration is with respect to a standard• This standard can be an internal or an external 
standard [2]. This happens, e.g., if one wants to compare the publication output  of countries 
taking population (the standard) into account. Weighted Lorenz curves are constructed as fol- 
lows [2,8,9]. Let SV =- (sl, s2, . . . ,  sg) denote the standard vector and let X = (xl, x2, . . . ,  XN) 
denote the distribution vector that  we want to compare with this standard. Note that  now in- 
dices must correspond. If, e.g., X denotes numbers of publications and SV denotes population 
then xi and si must refer to the same country Ci. We assume, moreover, tha t  none of the com- 
ponents of SV is zero. In order to construct the Lorenz curve for comparisons with a standard, 
the components of both vectors are ordered in such a way that  

Xl X2 XN _> _> (1) 
81 82 8N 

Next we normalize the vectors X and SV, leading to vectors Ax  and W, where 

Xi Si 
and w~ = N (2) ai -~ N 

xj ~ sj 
j ~ l  j ~ l  

Note that  normalizing does not change the order. Finally, the weighted Lorenz curve is defined 
as the broken line connecting the origin (0, 0) and the points with components 

( ) 
\j----1 j----1 i----1 ..... N 

For a fixed standard these Lorenz curves again introduce a partial order in the set of equivalent 
N-vectors, i.e., those with the same Lorenz curve. 

Note that ,  when comparing with a standard and considering partial vectors, the vector SV, 
or W, does not change. It is only X, and hence Ax,  that  is changed. It is now not difficult 
to see that ,  for i = 1 , . . .  N - 1, L~+I (the weighted (i + 1) partial Lorenz curve) is at no point 
situated strictly above L~. Indeed, let Xi -- (xl, x 2 , . . . ,  x~, 0 , . . . ,  0) be the ith partial N-vector 
(with ( N - i )  zeros), and let X~+I = (xl, x 2 , . . . ,  xi, xi+l, 0 , . . . ,  0) be the ( i+  1) th partial N-vector 
(with ( N - i - l )  zeros), then the Lorenz curves Li and L~+I are constructed as follows. Li connects 
the points 

E 
X l  . ,  , = 

(0,0), w,,-7-Ex, '" \ , , . . . ,(1,1), 
n = l  n----1 / 

while Li+l connects the points 

(0 ,0 ) ,  w l ,  i + 5 -  " " '  w~, • ' , ( 1 , 1 )  

The point is that  considering partial vectors does not change the ranking of the first i components 
for the construction of a weighted Lorenz curve, while the ranking of the last ones plays no role 
(as they yield the same weighted Lorenz curve). Indeed, if for 0 < j < i 

j j+l  
E x n  E x n  a_2_j = 1 ~=1 > aj+ ! _ 1 n=l 

- -  - - ,  ( 4 )  
- -  N N w~+l w~+l ~ x~ w j  w j  ~ Xn 
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then also (for 0 < j < i) 
j j + l  

~ X n  ~ C n  
I n=l 1 n=l 

_ _  > 

n = l  n = l  

It is now clear tha t  for every i E {1 , . . . ,  N - 1}, L~+I is at no point situated strictly above Li. 
Hence, these partial vectors form a completely ordered subset. 

Truncated vectors, on the other hand, are not 'well behaved'. Truncation can make a vector 
intrinsically incomparable with its parent. A simple illustration is given by: X = (3, 1,1) and 
X 2 , t  = (3, 1). These two vectors are clearly incomparable. 

Recall tha t  it is shown in [10] that  adding a source only gives a smaller vector if the production 
of this source is equal to the average production. The relation between a vector and its truncation 
can be seen as tha t  of a vector and a vector with one source added, where this added source has 
a production at most equal to the smallest (and not the average) production. Hence, a truncated 
vector is never strictly larger than its parent, and only equal if the parent is the equality vector. 
Of course, besides being incomparable a truncated vector can be strictly smaller than its parent. 

One might wonder what would happen if we truncate the most productive sources. We will 
call such an operation a forward-truncation. An example would be the case that  one studies only 
rare birds and does not count birds that  occur in large flocks, or one does not consider rich and 
very rich people, but  only average and poor ones. This kind of truncation does not give nice 
results either: the parent Y = (4, 4, 1) and its forward-truncation y t  _ (4, 1) are incomparable. 

This ends the first-order comparison. Note that  the ' indeterminate'  case (truncation) occurs 
more often in practice tha t  the ~well-behaved' case (partial vectors). In the next sections we will 
s tudy second-order comparisons. 

4. S E C O N D - O R D E R  C O M P A R I S O N S :  
R E L A T I V E  C O N C E N T R A T I O N  

Partial N-vectors of the same parent, such as X i  and Xi+l,  have the same length (N), and 
hence we may apply the theory of symmetric relative concentration [6]. Recall [6] that  the 
Lorenz curve of symmetric relative concentration (referred to as the Egghe-Lorenz curve in [2]) 
is constructed as follows: let X = ( x ~ ) i = l  ..... N and Y = (Y i )~=l  ..... N be two N-vectors and let 
A x  = ( a i ) i = l  ..... N and B y  = (b~)~=l ..... N denote their relative vectors (sum of all components 
equal to one). Then the components of the difference vector D = (d~ ) i= l  ..... N with di = ai - b~ 
are ranked from largest to smallest. Next, we put 

k k 

sk = } 2  dj = - bj). (6) 
j = l  j = l  

The Lorenz curve for symmetric relative concentration is then obtained by joining the origin 
(0, 0) and the points with coordinates 

(7) (N' 
Such Lorenz curves will be denoted here by script £s. Let now 

AX~ ---- xl x2 x--A--i 0, ,0 / 
i ' i ' ' ' ' '  i ' " ' '  

k = l  k = l  k = l  
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and 

Then 

Ax,+l  = I Xl X2 Xi X i + I  O~ ,0 / 
i + 1  : i+1 ~ ' ' ' ~  i+1 ' i+1 ~ . . . .  

r n = l  m = l  rn= l  m = l  

Axi+l - Axi -- / - -X12:I+l  --XiXi+l 

(k~l Xm) Xk 

Xi+l 
' / i-{-I \ 

, 0 , . . . , 0 ) .  

Putting 
Bi = - - X i + l  

i+1 \ / 

~lXVn) (~1 xk) 

yields, after rearranging components in decreasing order, 

Ax~+I - Ax~ = ~i+1 / i+-~'-~' 0 , . . . ,  O, -x~Bi, - x i - l  Bi, . . . , -X l  Bi 

m~ l Xm 

whose jth component we further rewrite as 

(Ax,+, - Ax,) j  = ~ ,  j = 1, . . . ,  N. 

Egghe [4] has shown that any continuous, convex function ¢ yields a measure of symmetric 
relative concentration C¢, defined as 

1 N 

j = l  

(8) 

An example, cf. [6], is the relative weighted squared coefficient of variation, denoted as V~, 
where ¢(x) is the function x 2 - 1 

1 N N 
Vr2=-~ E ( N ~ j ) 2 - 1 =  N E / ~ 2 - 1 .  

j = l  j = l  

(9) 

A general continuous, convex function ¢ yields the following symmetric, relative concentration 
value: 1[ c~=~ ¢ NXi+l I 

i+i I 

m.-.~ l I 

+ ( N  - i - 1)¢(0) + ¢ I -x~x~+lN I 

• 
/] 
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If we denote 

then 

Xi+l  a' and xj i+-q--- as i+1 ~ as aj, 

m = l  k-----1 

j = 1 , . . . , i ,  

1 
C¢ = ~ (¢ (Na;+l)  + (N - i - 1)¢(0) + ¢ (-a~+laiN) + . . .  + ¢ ( -a~+lalN)) .  (10) 

In particular, the relative weighted squared coefficient of variation yields 

, 2 + Z  a 
V ? = Y ( a i + l )  1 - 1 .  (11) 

j = l  

We will next show that  the symmetric relative concentration of Xi+2 with respect to Xi+l is 
always smaller than tha t  of Xi+l with respect to Xi. 

Comparing Xi and Xi+l and applying the construction of the Egghe-Lorenz curve yields a 
curve denoted as Ei, with abscissa k / N  corresponding to ordinates sk where 

ai+l~ • . . ,  

i 

s} = a' 1 - ~ aj for k = N -  i + 1, ,N. i + 1  ~ " " " 
j=N-k+l 

We obtain a similar curve, denoted as £i+1, based on a vector with abscissas k/N, and ordi- 
nates s~, 

ai+2~ •.. 

[ ~+1 
s = r, 1 -  ~ a f o r k = N - i + 2 ,  ,N,  ai+2 ~ •.. 

j=N-k+l 

where  
x i + 2  a t! 

i + 2  = 14-2 

l---i 

THEOREM. f:i+l < ~i. 

PROOF. We first consider the first N - i - 1 ordinates 

Ir Xi+2 < Xi+l  a¢+~ = ~+-'-V-- ~+--"-Y--- ! 

= a i + l ~  

E Xl E Xm 
l=l m=l  

where the inequality holds because the (x~)~ are decreasing. Then we have for the (N - i) th 
coordinate 

" (1 - a~+l) " a' ai+2 < ai+2 < i+l  

leaving only the last i coordinates to check. The j (<_ i) last ones, i.e., the coordinates with index 
N - j + 1, i.e., with abscissas (N - j + 1)/N, have the following form: 

( ) tf a/ ~ t l/ / 

k=O 

~i+2 :~k X i+l  
= i+2 i+]'-- <: ~ Y - -  

, o,( 1 = ai+ 1 (al + . ' .  + aj-1) = i+1 1 -- a~-i • 
l = 0  / 
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This last expression is exactly the ordinate of £:i with the same index N - j + 1. This proves the 
theorem, 

We conclude from this result that  Xi+l and Xi+2 are more similar than Xi and Xi+l.  This 
corresponds with our intuition. We may say that  the double sequence (Xi,  Xi+I)i-_I ..... N-1 is 
completely ordered. 

5. T R U N C A T I O N  A N D  R E L A T I V E  C O N C E N T R A T I O N  

If X = (xi,  x 2 , . . . ,  xN), then we will call the vector ( x l , . . . ,  x~) the/ - t runcat ion of X,  denoted 
as Xi,v The vector ( x l , . . . ,  xi, 0) will be called the expanded/- t runcat ion of x, denoted as: X~,~. 

In this section, we will compare Xi+l,t = (Xl , . . . ,  xi+À) and X~,~ = ( x i , . . . ,  x~, 0) on the one 
hand, and Xi+2,t = ( x l , . . . ,  xi+2) and Xi+l,e = ( x l , . . . ,  xi+l, 0) on the other. Yet, similar to the 
first-order comparison, truncation destroys complete-ordering. We just present one example. 

Let X - (3, 1, 1), and take i = 1. Then Xi+l,t = (3, 1), Xi,e = (3, 0), Xi+2,t --- (3, 1, 1) = X, 
and Xi+i,e = (3, 1,0). Relative vectors are, respectively: (3/4, 1/4), (1,0), (3/5 ,1/5,1/5) ,  and 
(3/4, 1/4, 0). Taking differences yields the vectors ( -1 /4 ,  +1/4)  and ( - 3 / 2 0 , - 1 / 2 0 , 4 / 2 0 )  or 
after reordering from largest to smallest: ( 1 /4 , -1 /4 )  and ( 4 / 2 0 , - 1 / 2 0 , - 3 / 2 0 ) .  Corresponding 
Egghe-Lorenz curves cross, and hence, these two vectors are incomparable. 

6. V A R I A B L E  N U M B E R  OF S O U R C E S  

Let X = (Xl,X2,.. .  , x g )  and let Y = (Yl,Y2,... ,YM), with M in general different from N. 
In this section, we will explain how to study the relative symmetric concentration between an 
N-vector such as X and an M-vector such as Y. We present, in particular, the necessary formulae 
in order to make comparisons in the case of a variable number of sources. Such comparisons are 
necessary in dynamic studies of conglomerates. Indeed, in real applications the number of sources 
is usually not constant, but is time dependent. Our approach is essentially an application of the 
general theory of Lorenz curves (and similar curves) described in [4]. 

Consider L x  and L r ,  the classical Lorenz curves of X and Y. Recall that  any such curve 
can be identified with a function having this curve as its graph. This is usually done without 
mentioning it, but  we like to point out the fact that  we make this identification for these Lorenz 
curves. Form the difference function and its graph L r  - L x .  This graph is a polygonal curve 
that  goes up and down (possibly several times) and begins and ends at the value zero. Consider 
now the set of all slopes of this curve and rank these from highest to smallest (which is always 
negative, unless L x  = Ly) .  Use these slopes to draw a new curve, denoted as £ Y - x .  Note that  
/ : y - x  is different from L y  - L x .  The curve f- .Y-Z is a concave weighted (!) polygonal curve 
beginning in (0, 0) and ending in (1, 0). Consequently, Egghe's general theory for concentration 
measures [4] is applicable here. 

Considering the pairs of vectors (X, Y) and (X',  Y ' )  we can compare their difference curves 
/~Y-x and r-,y,-x, .  Assume now that  

f~Y-X < ff~Y'-X', 

then we know that  there exist measures C, such that  

C(Z.v_x) < C(Z.v,_x,). 

Indeed, if (ai)i=l ..... K denotes the normalized vector and W = (wi)i=l ..... K denotes the weight 
vector then, for any convex function ¢, 

/4 

= (i2) 
i----I 

is such a measure [4]. 
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LEMMA. Let D = (dl ,  . . . , dN ) be a vector  weighted by W = (wl ,  . . . , WN ), such that  ~ ; = l  dj = 0 
and assume that ( d j / w j ) j = l  ..... N is decreasing. Let ED be the corresponding Egghe-Lorenz  curve. 
Then  also (--dN_j+I/WN_j+i)j= 1 ..... N is decreasing. The corresponding Egghe-Lorenz  curve, 

denoted as £.D, is tha t  o l D '  = (d'l, . . . , d~N ) = (--dN,  . . . , - d l  ), weighted  by W '  = (wl ,  . . . , w~N ) = 

(WN,. . . ,  Wl). T h e  curve f-.D' is no th ing  but  the mirror image of  £.D wi th  respect  to the  line 

x = 1/2. 

PROOF. We first note that  ( - - d g - j + l / W N - j + l ) j = i  ..... N is decreasing, and hence, £.D' is an ac- 
ceptable Lorenz curve. It suffices now to prove symmetry for the vertices of the polygonal curve. 
Let ()-~-1 wj,  ~-~-I dj) be the i th vertex of / :D.  The symmetric point (with respect to x = 1/2) 

-~ N -- N - i - i  N - i - i  t • has abscissa )-~k=i+i wk = ~j=o WN-j = ~j=o wj. So all that m left to show is that 
EN =~i- I , i • = d j  = ~--~k=l dk"  Using the fact that  dj = - - d N - j  yields 

N-i-1 N-i-Â N i ( N ) 
5: d;= E E d :Ed  as E • 
j=O j=O k=' /+l  k= l  k= l  

The following corollaries generalize Proposition II.1.2 and Corollary II.1.3 of [6]. 

COROLLARY 1. T h e  Lorenz  curve f ~ x - Y  is the  m/rror image of f - .Y-X wi th  respec t  to the  line 
x = 1/2. Consequent ly ,  the area under f - . x - Y  is equal to the area under £ . Y - X .  

COROLLARY 2. ~ X - Y  "( EX,-y ,  if and only  i f  ff-Y-X < ~-.Y'-X'. 

THEOREM. Using the  notat ion  o f  the  preceding l e m m a  we have the  following equivalent  asser- 
tions: 

(i) ~ D  = ~ D ' .  

(ii) ~D and ED, are both  s y m m e t r i c  curves wi th  respect  to the  line x = 1/2. 
(iii) W is a s y m m e t r i c  weight  vector, i.e., for every  i = 1 , . . . , N  : wi = WN-i+l and D is an 

an t i s ymme t r i c  vector, i.e., for every  i = 1 , . . . ,  N : di = - - d N - i + l .  

PROOF. The equivalence between (i) and (ii) is trivial. We next show that  (i) implies (iii). 
If /~D --'-- /~D' then it is clear that  the weight vector W is symmetric. Moreover, 

dl = --dN, 

dl  q- d2 = --dN - dN-1 ,  

N N - I  

j:l j=O 

which implies the antisymmetry of the D-vector. Similarly, (iii) implies (i). 

We will now apply this lemma and the general theory of Lorenz curves [4] in the case of 
/-truncations, i.e., to vectors truncated after the i th component. 

Let Xi , t  = ( x l , . . . , x i )  and X~+l,t = (x l , . . . , x~+ l )  with, as always, components ranked in 
decreasing order. Note that  Lx , , ,  is a polygonal curve, unweighted on intervals of length 1/ i  

while Lx~+I,, is also an unweighted polygonal curve, but  this time on intervals of length 1/ ( i  + 1). 
Consequently, Lx~+I . , -x , . ,  is a weighted polygonal Lorenz curve. We will now describe this 
Lorenz curve. We know that  on the interval [j / i ,  ( j  + 1)/i] the first one is a line segment joining 

j + l  j+l  Xk A ~ + I / ,  
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• . . ,  j i+ l  for j = O, i - 1. The second one connects, for j = 0, . . . ,  i, (j/(i  + 1), y]~k=l(xa/(Y]~m=l xm))), 
with ( ( j+ l ) / ( i+ l ) ,  x -'j+l .~i+1 z..~a=l xa/(~..~m=l xm)) or in short, (j/(i  + 1), A~) with ((j + 1)/(i + 1), A~+ 1), 
and this on the interval [j/(i + 1), (j + 1)/(i + 1)]. 

We note that: Yj  -- 0 , . . . ,  i - 1: (j + 1)/i e ](j + 1)/(i + 1), (j  + 2)/(i  + 1)]. Considering Lx,., 
as a function we may write: Lx,.,((j + 1)/i) -- Aj+I while Lx,+,,,((j + 1)/i) belongs to the line 
segment connecting ((j + 1)/(i  + 1), A~+I) with ((j + 2)/(i  + 1), A~+2). The equation of this line 
is 

Hence, 

o r  

y -  Aj_{_ 1 = -~(~-.(_ ~y) x -  - iT 

, , , (  
y ---- Aj+ 1 + (i + 1) (Aj+ 2 - Aj+I) z i + 1 " 

- - : - .  = A j + ,  + ( i  + 1) ( j + ~  - A j + ~ )  , - 

l ! Aj+I + (Aj+~ A}+,) ~ + 1 
z +  

Put t ing AL = Lx,+I., - Lx,., we obtain 

A L ( j + l )  =A'  ' ' - - : - -  ~+1 Aj+I + (Aj+~ Aj+I) j + 1 (13) 

Similarly, Vj  _< i : ( j+ l ) / ( i+ l) c [j/i, ( j+ l)/i[. Hence, Lx~+,.,((j+ l ) / ( i+ l)) = A}+I, while 
Lx,., ((j + 1)/(i + 1)) belongs to the line segment connecting (j/i, Aj) with ((j + 1)/i, Aj+I). The 
equation of this line is 

A j + I - A ~  ( j + l )  
Y - A 1 + 1 =  ~F x -  z: 

o r  

Consequently, 

y = A j + I ÷ i ( A j + I - A j ) ( x  j + l )  
i " 

Lx,., k.T+'-l ) = A1+1 + i (A/+I - Aj) +1+ 1 

= A¢+1 - (A~+I - Aj) j + 1 • ~ 

J+'), 

and 
(J+l~= A' A,)J +1 AL k , / - - ~ )  j+l - Aj+I + (Aj+I - " ~ - ~ .  (14) 

Equations (13) and (14) determine all vertices of Lx,+I - Lx,. Next, we want to determine 
the slopes of all segments in Lx,+, - Lx, 

(I) 

(II) 

AL ((j + 1)/(i + 1)) - AL (j/i) 
(j + 1)/(i  + 1) - j l i  ' 

AL ((j + 1)/i) - AL ((j + 1)/(i + 1)) 
( j  + 1) / i  - (j  + 1) / ( i  + 1) ' 

with j = 0 , . . . , i -  1, 

with j = 0 , . . . , i -  1. 
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Again using (13) and (14) we find 

Then 

+,L = Aj - A~ + ( j+l- .4~)  ; 

A L ( J + I ~  A' A' ' ---r--. j+l - Aj+I + ( j+2 Aj+I) j ÷ 1 
\ z / 

AL (J+l  
\ / - - g - f ]  ~+~ - A~+~ + ( & + l  - & )  j + 1 

i + 1 "  

AL \ . ~ - - ~ ] - A L  = (Aj+I - A j ) - (A j+I  - Aj)+(A~+I - Aj) j ÷ 1 . , J (15) 

and 

( _ ~ _ )  ( j  + l  ~ A' A' J +  I - (Aj+I - Aj) J-C1 (16) AL j 1 - A L \ / - - ~ - ~ )  = (  ~+2-  ~+1) i i + l "  

In this way we can determine all slopes and rank them in decreasing order. This leads to 
f-(x~+l.~-x,.,). 

An Example  

Let Xi,t --- (5, 3, 2) and X~+i,t = (5, 3, 2, 1). Then Lx~,, consists of line segments connecting 
the points (0, 0) - (1/3, 5/10) - (2/3, 8/10) - (1,1), while Lx~+I,, consists of the line segments 
connecting (0, 0) - (1/4, 5/11) - (2/4, 8/11) - (3/4, 10/11) - (1, 1). At the points 

3 4 6 8 9 
0, 12' 12' 12' 12' 12'1 

the first Lorenz curve takes the values 

3 5 13 8 17 
0, 8' 10' 20' 10' 20'1 

while the second one takes the values 

5 6 8 28 10 
o, 11' 11' 11' 33' ~i' 1. 

In these points differences between the two Lorenz curves are (we are calculating now values of 

7 1 17 16 13 
0, 88' 22' 220' 330' 220' 0. 

Note that we knew already that all these differences must be positive. Consequently the slopes 
of the consecutive line segments of this difference curve are 

7/88 7 -3 /88  9 7/220 21 
3 / 1 2 = ~ ;  1/1----'~ = -2-2; 2/12 - 110; 

-19/660 57 7/660 7 -13/220 13 

2/12 =-33--6; 1/12 55' 3/12 55" 

Ranking these slopes from largest to smallest yields the following points of £:(x~+l,,-x~,,): 

The corresponding curve shows no symmetry whatsoever. 
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7. C O N C L U S I O N  

We have shown, in the case of first-order comparisons~ that truncated vectors may be in- 
comparable, while partial ones are always completely comparable. Similarly for second-order 
comparisons, partial vectors can be compared and yield a totally ordered double sequence, while 
truncated ones may be incomparable. Finally, we described how to make second-order compar- 
isons for vectors with a different number of sources. 
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