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ABSTRACT 

Fractional frequency distributions of e.g. authors with a certain (fractional) number of 

papers are very irregular and, therefore, not easy to model or to explain. This paper gives a 

first attempt to this by assuming two simple Lotka laws (with exponent 2) : one for the 

number of authors with n papers (total count here) and one for the number of papers with n 

authors, ncN. Based on an earlier made convolution model of Egghe, interpreted and 

reworked now for discrete scores, we are able to produce theoretical fractional frequency 
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distributions with only one parameter which are in very close agreement with the practical 

ones as found in a large dataset produced earlier by Rao. The paper hence also shows that 

(irregular) fractional frequency distributions are a consequence of Lotka's law and are not 

examples of breakdowns of this famous historical law. 

I. Introduction 

In Rousseau (1992), the discussion started on the fractional frequency distribution of e.g. 

authors and the distribution of their fractional scores in a bibliography. Fractional scores 

means that if an author has published a paper in which there are i (i=l,2,3, ...) authors in 
1 

total, then this author (and all the other authors in this paper) receives a score T. This is 
1 

different from the total scoring system in which every author receives a score 1 in such a 

paper, hence here scores are always entire numbers, as opposed to the fractional scoring 

system. One then wonders how the fractional frequency distribution of author scores looks 

like in a given bibliography. To be precisely clear about the score of an author in such a 

bibliography, let us give an example. Suppose an author in this bibliography has a paper 

where he/she is the only author, has another paper where there are 2 authors in total and 

has 3 other papers where there are 3 authors in total. Then the overall fractional score of 
1 1  this author is the sum of the fractional scores per paper, i.e. 1+-+3.-=2.5. Note that we 
2 3 

avoided to use the term "total fractional score" which could be confusing with the overall 

score in the total counting system of this author which would be 5 in this case. 

While Lotka's law (or distribution) very well applies to any scoring system where entire 

numbers are used - we can even go back to the historical paper Lotka (1926) for this - it is 

clear that this is not the case anymore for the fractional scoring system. As Rousseau (1992) 
1 points out, a fractional score of - probably will occur less frequently than a score -I since 
8 4 

we can assume that there are less 8-authored papers than 4-authored ones. Even if this 
1 1  would not be the case we can go further to -, -, ... scores which will not occur very 

1 16 32 
frequently. In addition to this, a score- need not only come from authorship in a 4- 

4 
authored paper but is also obtained in the case the author has 2 8-authored papers. To go 

back to the score of 2.5 above the number of possibilities is (theoretically) unlimited. 



Indeed, an overall score of 2.5 can also be reached via 2 1-authored papers and 1 2- 

authored paper, but also via 5 2-authored papers, but also via 3 2-authored papers and 4 4- 

authored papers and so on. 

Burrell and Rousseau (1995) present numerical simulations of fractional frequency 

distributions showing their irregular shapes. 

From this it is very clear that calculating the fractional frequency distribution is very 

difficult - if not impossible. Indeed, in any theoretical work, any positive rational number 

q=P (p,r~N) is a possible fractional frequency (indeed one of the many ways to obtain q as 
r 

an overall fractional score is by having p r-authored papers). So, if we want to determine 

the fractional frequency distribution one requires a formula for f(q), the probabilty (or 

fraction) to have an overall fractional score q€Q+, the positive rational numbers. This is 

virtually impossible since there are an infinite number of these and since we expect, due to 

the very irregular shape (see the examples above and also further, where we discuss the Rao 

data-set) of such a distribution, that, for each qeQ+, a different formula for f(q) is needed, 

i.e. we do not expect to be able to produce one analytical function for f(q) where q appears 

as a parameter. 

Therefore, in Egghe (1993) we decided to tackle the problem, where the rational number q 

is replaced by any real number ZER'. The argument - briefly - was as follows. Let q(i) 

denote Lotka's law (any exponent) being the fraction of authors with i papers in the total 

scoring system (i.e. independent of the number of co-authors in these papers), iEN. Let 
1 1 1  f,(z) be the fraction of authors with a fractional score z in 1 paper (hence z=l,-,-,- ). 
2 3 4'"' 

Then the overall fractional frequency distribution f is given by (zcQ+) 

where s denotes convolution, applied here i times in every term of the sum. Indeed, (1) 

follows from the Theorem of Total Probability (also called Partition Theorem) and the fact 



that (f,o ... of,)(z), where we have i times f,, is the distribution of the fractional frequencies 

of authors, given one has published i papers (see e.g. Chung (1974) or Blom (1989) or 

virtually any good text book on probability theory). 

As said, in Egghe (1993) we were unable to use (1) in the discrete case (zcQ+) but we 

studied the continuous case (zcB+). In Egghe (1993) we could indeed show that (1) is not a 

decreasing function anymore but is increasing up to z=1 from where it starts decreasing. 

This explained the "overall" view of a fractional frequency distribution but not at all its 

values for every rational z. We refer to the Table in the Appendix for a very large fractional 

data-set, collected earlier in Rao (1995), with accompanying graph (Figure I in the 

Appendix). There the "overall" view is clear but also the irregularity of the individual data 

is evident. The graph in the Appendix clearly shows that as fractions of papers (q) 

increases, f(q) tends to zero. Further f(q) is not a smooth curve and it moves up and down 

frequently even for large values of q. The mode of the distribution is 1 and also for q=0.5, 

f(q) is 11,673 indicating that the distribution has two modal values. The mean and median 

are 1.121 and 0.99252 respectively. The variance and standard deviation are 1,1721 and 

1.0826 respectively. 

We close this overview of existing results by remarking that the model (1) follows from a 

dual approach of informetrics (cf. Egghe (1989), (1990)), since f, is derived from the Lotka 

law $, the dual of the Lotka law cp : $6) denotes the fraction of papers with j authors 

(id). Hence model (1) involves (and & involves) the two dual Lotka laws cp and $. It 

is, therefore, that we argued in Egghe (1993) that modelling fractional counting does not 

prove a breakdown of Lotka's law (as argued in Rousseau (1992)) but, on the contrary, 

Lotka's laws cp and its dual $ exolain the fractional frequency distribution. We therefore 

consider (1) to have a high informetric explanatory value. 

For this reason, we continue to use (a variant of) model ( I ) ,  in the attack of the problem of 

explaining the irregular shape of the fractional frequency distribution f(q), qeQ+. As 

explained above, this is not possible for every qcQ+. In this paper, therefore, we apply a 

variant of (1) to grouped data, where we only allow for a few fractional scores q. Let us 
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explain this in more detail. Let i€N be fixed. A fractional scoring model which is between 

the classical one and the total scoring system is the following : 
1 

1. If we have a paper with j authors, j = 1,. . . ,i-1, each author receives a score of 7, 
Jl 

2. If we have a paper with j authors, j =i,i+ I,. .. , each author receives a score of 7. 
I 

Note that for i = l  we have the total scoring system, which we will not use here. If i 

increases we move closer and closer to the fractional scoring system. Since now, for each 
1 

fixed icN, only the scores 1,. .. , per paper are possible, we are in a position to calculate 
I 

all possible fractional frequency probabilities, where we will limit ourselves to total scores 

q12. One reason for this is that the most interesting part of scores is in the interval [0,2] 

(the highest values belong to that interval and, although irregularity persists after q=2, the 

overall tendency is a decreasing function). Another reason is the increased difficulty in 

calculating f(q) for higher q. Indeed, the higher q, the more possibilities there are of 

patterns of publications to reach this value. This will also be illustrated in the sequel. 

1 3  Section I11 will deal with i=2. Here the only possible values for q are -, 1, - ,2 and this 
2 2 

case is too rough in comparison with the detailed Rao data (Rao (1995)). Appropriate 

grouping in these data gives a first (rough) comparison between the theoretically obtained 

fractional frequency distribution and the experimental one. 

1 1 2 5  The fourth section deals with i=3. Here we have possible fractional scores q : - , - , - , - , 
7 4 3 5 1 1  3 2 3 6  

1, - , - , - , - , - ,2 (we stop at 2), and for each of them we present an analytical formula 
6 ' 3 2 ' 3  6  - - - .  . 

for its probability f(q). Corresponding groupings in the Rao data now gives a remarkable 

agreement between the theoretical and experimental fractional frequency distribution. 

1 1 1 7 2  The fifth section deals with i=4. Possible fractional scores q here are : - , - , - , - , - , 
3 5 1 1  1 3 7 5 4 1 7 3 1 9 5 7 1 1 2 3  4 3 2 1 2 3  
- -, -, 1, - , - , -, -, - , - , -, -, -, - , - ,2. Again, for each of them we give 
4 ' 6  12 12 6 4 3 12 2 12 3 4 6 12 

an analytical formula for its probability f(q) and corresponding groupings in the Rao data 

again gives a remarkable agreement between the theoretical and experimental fractional 

frequency distribution. 



The case i=5 is also elaborated (in section VI), now yielding formulae for not less than 83 

fractional scores q52. The model is very good but the only problem is that groupings in the 

Rao data often are not necessary since the obtained intervals are too small. In this way, 

many very low probabilities are compared. This phenomenon could be compared with the 

choice - in statistics - of how many bars one uses in a histogram : usually a computer 

program gives an optimal choice (see also Egghe and Rousseau (2001)). If we take less bars 

the graph becomes too rough ; if we use more bars, we risk to have too many intervals so 

that reasonable groupings are not possible anymore. 

For the Rao data the cases i=3 and 4 are the best but we stress the fact that the very 

detailed cases i=5 has its application in even larger data-sets, yet to be constructed. We 

therefore plead to construct very large fractional data-sets (i.e. fractional frequency scores 

of authors in vast domains) so that our model for i=5 is more suited. 

In the next section we present the general theoretical model which is a discrete (exact) 

version of the continuous (approximated) version in Egghe (1993). 

11. Exact, discrete. theoretical model for the fractional freauencv 

distribution, derived from two dual Lotka laws. 

Let q(n) denote the fraction of authors with n papers (ncN, total counts). Its dual analogue 

(cf. Egghe (1989), (1990)) is the function $ where $(n) denotes the fraction of papers with 

n authors (n&Y). In the sequel we will use concrete Lotka laws for these functions but the 

following important result is independent of the choice of function for cp and $. 

Lemma 11.1. Let f,(z) denote the fraction of the authorships (i.e. author occurences) with 

fractional score z in 1 paper. Then 



where p denotes the average number of authors per paper. 

Proof : 

total $ authorships with fractional score z in 1 paper 
fI(4 = total $ authorships 

1 1 -(total $ papers with - authors) 
z z 

f , (4  = total $ authorships 

1 
total $ papers with - authors 

1 total tl papers z f,(z) = - 
z total 11 authorships total papers 

1 1  1 f.(z\ = - - . fraction of papers with - authors 
z 

nal 1 Note that z=  -, E N ,  necessarily. This shows that the fractio of an author in 1 
n 

paper is directly derivable from $. Together with its dual function cp we will be able to 

derive the theoretical, discrete fractional frequency distribution. We thank one of the 

referees to complete our proof of an earlier version. 

Pro~osition 11.2. : Let f(z) denote the fractional frequency distribution of a bibliography 

(more generally an IPP - see Egghe (1989), (1990)) for which cp and $ are the valid, dual, 

(entire) frequency functions as described above. Then, for every zcQ+ : 



where o denotes convolution. Here it is assumed that the fractional scores distributions in a 

paper are independent and identically distributed (i.i.d.), being the distribution f,. 

Proof : Let N be the (random variable of the) number of papers (ieN) and Yo) the 

fractional score from the j" paper. Then 

f(z) = P (overall fraction = z) 

= P(Y(~)  + Y(2) + ... + Y(N) = zlN=i)P(N=i) 
i = l  

by the Theorem of Total Probability. So 

- 

f ( z ) = x  P(Y(l)+Y(2)+ ...+ Y(i)=z)P(N=i) 
i -1  

(independence of N w.r.t.the Ys) 

The distribution of Y(l)+Y(2)+ ...+ Y(i) is given by the convolution of the individual 

distributions since we assumed independence of the Ys (cf. Chung (1974), Blom (1989)) 

and this becomes the i-fold convolution of f,, using the assumption of identical distributions 

for the Ys. Hence we proved (3). 

: Although it is relatively easy to accept that all Ys have the same distribution, the fact 

that they are independent is less sure. It is indeed not certain that a certain score in paper 2 

(say) is independent of the score in paper 1, due to collaboration habits. However, we have 

to suppose independence for the intricate model (see (3) and further on !) to work. The 

assumption can be considered as a simplification which is acceptable in this first attempt to 

model fractional frequencies. It will be clear in the sequel that our model fits real data very 

well which is a (post factum !) argument for the acceptance of this simplification. 



From the above it is hence clear, at least theoretically, that the very irregular fractional 

frequency distribution is determined by the entire frequency distribution cp and its dual $. In 

the sequel we will use the simplest (and in informetrics most important) distribution : the 

Lotka distribution with exponent 2. So we will use (ndV) 

6 
Here - =0.6079271 is the normalizing constant, assuring that 

n2 

as is required for a discrete distribution (cf. also Egghe and Rousseau (1990)). 

For the dual analogue $ of cp, we use the same simple function 

 EN. Hence cp=@, mathematically, but cp and $ have dual interpretations. Note that (2) and 

(6) imply that 

Note on the use of the law of Lotka 

The use of the law of Lotka for the distribution cp is undisputed (although other distributions 

can be used, of course). As one of the referees points out this has been confirmed hundreds 

of times (going even back to Lotka (1926) itself). However the same referee disputes the 

use of Lotka's law for distribution +. As helshe rightly points out, Lotka's law is not fitting 

well the distribution of number of authors per paper in the cases Ajiferuke (1991) and 

Rousseau (1994). It is fitting well in case there are more single-authored papers than 2- 

authored ones but in several cases there are more 2-authored papers than single-authored 

ones. Nevertheless we used Lotka's faw for $ for the following reasons : 



10 

We wanted to develop further a "Lotka-type" informetrics theory as we did before in 

several papers. Hereby we want to show the interaction of the two dual laws and 

also that nothing else is needed to explain the fractional frequency distributions. Of 

course, basic for the model is proposition 11.2 and - as indicated by the same referee 

- the model (3) is probably very robust in the sense that it will not matter very much 

what are the exact distributions that are used for cp and q. Another referee even 

advocates to use the real experimental data for cp and $. While this has value in the 

testing of the validity of model (3), this methodology would not shed light on the 

dual mechanism that is explained in this paper (via formula (2)). In short, we want 

to investigate how "far" we can go with "Lotka-type informetrics". It would then 

also be interesting to develop - in a consequent way - other informetric theories, 

based on other frequency distributions. Note that Egghe (2000) and Egghe and Rao 

(2002) are examples of an explanation of the first citation distribution and of the 

most-recent-reference distribution, where (especially in the latter paper) it was made 

clear that the distribution of the number of references does not follow Lotka's law. 

Using Lotka's law for cp and q is easy and much more easy than using distributions 

of the lognormal type (which would have been more exact, certainly in the case of 

$1 . 
In a forthcoming paper we intend to investigate other distributions for cp and $. 

Even the use of the uniform distribution for $ (which is clearly not the correct one!) 

could be considered, thereby showing the "power in itself" of the methodology that 

is developed here (robustness). 

Last but not least : our data show an approximate Lotka law for q. Only the cases of 

1 and 2 authors per paper yield a more or less equal number of papers, contrary to 

Lotka's law. The reason that we encounter a distribution close to Lotka's law is that 

we have papers in mathematics where collaboration is less than in some other 

disciplines (such as e.g. chemistry,. . .). 

The parameter p (the mean of $) will be determined by an ad hoc method (see further). We 

prefer it this way rather than calculating the mean of $, for n limited to a finite number of 



values (as in practise). Allowing an infinite number of n in $ yields a distribution with 

infinite mean. 

As explained in the previous section, formula (3), interpreted for continuous z€R+ yields in 

Egghe (1993) an explanation of the overall behavior of f : increasing in [O,l] and 

decreasing beyond 1. However it does not give an explanation for the many irregularities in 

rational points zcQf. This will be done in the rest of this paper. We will be able to inspect 

the properties o f f  in (3) by adapting it a bit by restricting the number of possible fractional 

scores (per paper) from below as explained in the introduction (and repeated further on). 

Analogous groupings in the experimental data will then allow for the comparison between 

the theoretical model with the experimental fractional frequency distribution. 

I I I . T h e o w i n e  an author score of 112 or 1 in 1 

paper. 

Although too rough, this case will very simply illustrate the methodology that we will apply 

in this paper to yield discrete fractional frequency distributions. Note that in all our studies 

in this paper we will limit ourselves to fractional scores q52, as explained in the 

introduction. 

In this simple model, an author receives a score 1 if helshe is an author in a single-authored 
1 paper. If helshe is author in a multi-authored paper, this author receives a score -. Let us 
2 

call g, the author distribution of fractional scores in 1 paper. By definition 



since f, is a distribution. Using (7) this yields 

1 3  
We apply now (3) but with f, replaced by g, and for the values z=-,I,-,2, the only 

2 2 
possible scores (inferior to 2). This gives 

where cp is given by (4). 

These values are then compared by the corresponding grouped data from Rao's table in the 

Appendix, grouped as follows : 

1 - score - corresponds to grouping the data in the interval ]0,0.75] 
2 - score 1 corresponds to grouping in ]0.75,1.25] 
3  - score - corresponds to ] 1.25,1.75] 
2 

- score 2 corresponds to ] 1.75.2.251. 

1  It is clear that we take the interval ]0,0.75] for - (and not ]0.25,0.75]) since in our model, 
2 

1 1 all fractional scores (in one paper), smaller than -, are transformed into -. 
2 2 



Of course, these groupings are not a perfect analogue of our simplified model since an 
1 author with an overall score of - , being the result of participation in 2 8-authored papers is 
4 

classified into the score 1 in the model while it is classified in the interval ]0,0.75] in the 

grouping. This difference is there but will diminish in the next cases where we allow for 

smaller fractions. Also, if we find good results in this setting, this will indicate that the 

above difference is not destroying the similar nature of both simplifications. 

The (only) parameter p is determined by requiring f (9 to be exact : 

- - $ in ]0,0.75] 
total tl 

(see the table in the Appendix). This yields p=1.80537576. We have now the following 

table and graph, comparing theoretical and experimental fractional frequency distributions. 

Table 1. Distribution of overall fractional scores (case of i=2) 

Theoretical (0 I Experimental 



I I I I I I I I I 
w o w 0 1 n o v 1 o m  
y y q q q q - - 0  
0 0 0 0 0 0 0 0 0  

saauanbag aA1iqaa 
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From the above we see, although we only compare 4 fractions, both theoretical and 

experimental graphs are following the same pattern. This will become more clear in the 

next (more important and more interesting) cases. 

This will be the first interesting case. Here an author receives a score 1 if helshe is an 

author in a single-authored paper, a score -1 if helshe is an author in a 2-authored paper 
1 .  2 

and a score - if helshe is an author in a j-authored paper, for all j t 3 .  Now we have 
3 

Possible overall fractional scores (in 

(theoretical) to be compared with groupet 

are 

d data (from the Table in the Appendix) in the 

We have the following formulas from which the theortical fractional frequency distribution 

can be calculated. 



Again, the parameter p is determined by 



yielding p= 1.1819488123. We obtain the following remarkable table and graph. 

Table 2. Distribution of overall fractional scores (case of i=3) 

Theoretical (f) 

0.1389322 

0.1562373 

0.0079701 

0.0294265 

0.323324 

0.002731 1 

0.0389478 

0.0417687 

0.0059575 

0.0129368 

Experimental 

0.1389322 



- Re1 Freq 
----- Theoretical 

Fractions 

Fig 2 Theoretical and experimental fractional frequency distributions (case of i=3). 
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The agreement between the theoretical and experimental results is remarkable. This proves 

that the two dual Lotka laws are capable of modelling fractional frequency distributions 
1 (except, maybe, for q= -, on which we will comment at the end of the paper). The model 
2 

also allows to prove the following inequalities (non-exhaustive list, proofs are left to the 

reader) : 

. lim gq) 
P-" n 

- - 9=- 
6nZ' 3 



The explanation for this last regularity is as follows : for extremally high ,a, the change to 

have a paper with less than 3 authors is very small. In this case one can only receive a 
1 n .  

fractional score of - per paper. Hence the only overall scores that are possible are q=- lf 
3 nz 3 

an author has n papers. The probability for this last event is cp(n)= -, ndV. 
6n 

V. The case i=4  : allow in^ an author score of 114. 113, 112 or 1 

in 1 paper. 

We are heading now towards increasing refinement : more fractional scores are obtained 

(and hence their probability must be determined) and - on the corresponding experimental 

side - more but smaller intervals are used to group data. So, for any data set, there comes a 

time where extra refinements lead to too few data in the groupings and hence to the 

comparison of many very small numbers. This will be experienced from i=5 on (see next 

section). It is our feeling that for the Rao data, the present case i=4 is the most interesting 

one. 

In this case an author receives a score 1 if helshe is an author in a single-authored paper, a 
1 .  1 .  

score - d helshe is an author in a 2-authored paper, a score - d helshe is an author in a 
2 1 .  3 

3-authored paper and a score - ~f helshe is an author in a j-authored paper, for all j24. 
4 

Now we have 
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1 1 1  7 2 3 5 1 1  
Possible overall fractional scores (in ]0,2]) are - , - , - , - - - - - 13 

4 3 2 12 '  3 '  4 '  6 '  12 
1 ,  - 3  

12 

- - - - -  l7  - - - -  l 9  ' I  2 2 (theoretical) to be compared with grouped 
6 '  4 '  3 '  12 '  2 '  12 '  3 '  4 '  6 ' 12'  

7 7 9 9 13 data (from the Table in the Appendix) in the intervals 10, -1, ] -, -1, ] -, -1, 
24 24 24 24 24 

13 15 15 17 17 19 19 21 21 23 23 25 25 27 27 29 
I-,-I, 1-3-1> ]-->--I> I--.-], I-,-I, I - , - - ] ,  I-,-], ]-,--I, 

24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 
29 31 31 33 33 35 35 37 37 39 39 41 41 43 43 45 I-,-I, I - - - ] ,  I-,-]. I-,-I, I-,-I, I-,-], I-,-], I-,-], 
24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 
45 47 47 49 I-,-I, I-,-I. 
24 24 24 24 

We have the following formulas from which the theoretical fractional frequency distribution 

can be calculated. 







The parameter p is determined by 

yielding p= 1.185186831 1 .  We obtain the following - again remarkable - table and graph. 



Table 3. Distribution of overall fractional scores (case of i=4) 

Theoretical (0 

0.036241009 

0.1039555 

0.1564714 

0.0030927 

0.004444 1 

0.0046533 

0.013455 

0.0003526 

0.3220503 

0.0010631 

0.0015435 

0.0100909 

0.0290481 

0.000205 

0.0417575 

0.0024309 

0.0035013 

0.0033829 

0.0093664 

0.0004929 

0.0476329 

Experimental 

0.036241009 

0.10223305 1 

0.250570935 

0.003052099 

0.01274198 

0.00420464 

0.019827973 

0.001323288 

0.309905449 

0.001686125 

0.005698675 

0.003905833 

0.018654088 

0.001899558 

0.053358376 

0.000661644 

0.003478966 

0.001430004 

0.007000619 

0.000277464 

0.0697428726 





We can say that, again, the agreement between the theoretical and experimental results is 

remarkable. In this model we can prove the following inequalities (the proofs are straight- 

forward and left to the reader) (non-exhaustive list). 

f - 5 - f  
( 2  2 (9 and equality is valid - p=1 (i.e. * every paper has 

one author) 



15. lim f(q) { 

The argument given in section IV for the similar result also applies here. 

VI. The case i=5 : allowing an author score of 115. 114, 1/3? 112 

or 1 in 1 paper. 

This case is very complex as we will describe below. Happily it turns out that this case is a 

bit "overkill" w.r.t. to the Rao data in the Appendix. Nevertheless we describe it here 

(briefly) so that it can be used for larger datasets, to be produced in the future. That this 

case is a bit "overkill" for our data is not a drawback for the model : one could compare 

this with the case in statistics where one is graphing a set of continuous data, be means of a 

histogram where too many bars are used (i.e. where the abscissa intervals are too small 

w.r.t. the number of data that one has). 

We repeat that in this case an author receives a score f if helshe is an author in an j- 
J 1 authored paper (j55) and where an author receives a score - if helshe is an author in an j- 

5 
authored paper (j z 5). Now we have 



The complete list of possible fractional scores comprises 83 rational numbers (in ]0,2]) (for 

a list, see Table 4, first column) and the same number of half-open intervals for the 

groupings in the experimental data set in the Appendix. For each possible q we determined 

analytical formulae for f(q), based again on the g,-variant of formula (3). They can be 

calculated as before, but the 83 formulae are, relatively speaking, more intricate. 

Nevertheless, they still contain only one parameter p which we determined as 

p=1.2899744688 based on our requirement that the value f - must be exact. We can 3 
provide the reader with the formulae for f(q) and with the necessary intervals for the 

groupings. We omit it here since it would consume several pages. For the same reason we 

omit the Table giving the experimental and theoretical values for the case of i=5. We only 

provide the experimental and theoretical curves. Experimental and theoretical curves are so 

similar that they practically overlap if they are shown on a single XY-plane ; it is thus 

difficult to indentify the two different curves in a single XY-plane. Therefore, experimental 

and theoretical frequency distributions are shown in Figures 4 and 5 seperately. However, 

an attempt has been made to show both the curves on a single XY-plane in Figure 6. One 

can see from Figure 6 that the model fits the experimental data remarkably well. 









VII. Conclusions and a remark on the case a_= 112 

We applied the model 

of Egghe (1993), where f is the overall fractional frequency distribution, f, is the fractional 

frequency distribution in 1 paper and cp is the distribution of the number of papers per 

author (total count). We obtained the exact discrete result that 

where 9 is the distribution of the number of authors per paper. The distributions cp and 9 

are each others dual (cf. Egghe (1989), (1990)) and in this paper we use the simplest 

frequency distribution, known in informetrics, namely the discrete Lotka law with exponent 

2 : 

(cf. Egghe and Rousseau (1990)). 

In order to model the very irregular fractional frequency distributions (of the overall 

fractional scores of authors in a (large) bibliography), we use a variant of the fractional 

scoring system : fix  EN. An author receives a score of 4 if helshe has a paper with j 
J 

authors in total (jsi) and receives a score of f if helshe has a paper with j authors in total 
1 

(jri). Per fixed i, a new fractional scoring distibution gl in 1 paper is derived (based on f,) 

that can be used in our scoring system. 



For i=2, 3, 4 and 5 we have determined the overall theoretical fractional frequency 

distribution which has the advantage that it contains only one parameter (which we estimated 

in each case). We then compared with the corresponding experimental fractional frequency 

graph of the (accordingly) grouped data, based on the data of Rao (1995), reproduced in the 

Appendix. The agreement is remarkable. For the Rao data-set the cases i=3 and i=4 appear 

to be best. The case i=5 is a good model but requires a grouping of data in very small 

intervals so that, for the Rao-data, this case is a bit "overkill", comparable with the case of 

the use of a histogram in statistics with too many bars w.r.t. the given data. 

1 . .  
One remark on the fraction q= - 1s in order. As is clear from the graphs in Figs. 2, 3, 6, 

2 1 the agreement between the theoretical and the experimental graphs is the poorest in q= -. 
2 

This is -most probably - due to the fact that we used Lotka's law for $, the fraction of 

papers with a certain number n of authors : 

Although such a choice is good for its dual cp,  there are many cases where there are 

relatively more papers with 2 authors than given by (6) (R. Rousseau - oral communication). 
1 In fact (6) gives $(2)= -Jr(l) and is, most probably, the reason for our underestimation of 

1 .  4 
f(-) in all cases i=3, 4, 5, since in our data - as mentioned in section I1 - we have 

2 
$(l)=Jr(2). 

In a forthcoming paper we will investigate this further but we can report here on first 

attempts by replacing $ in (6) by a Poisson distribution. We noticed already that a Poisson 

distribution, if the parameter ?. in chosen in the appropriate way, is better capable of 

describing the distribution of the number of authors per paper. Using this Jr in our fractional 
1 frequency model we indeed obtained an improvement in q= - and even in q=2 although 
2 

now q = l  is more poorly modelled. We will investigate this further and see whether an 

overall improvement of the model obtained in this paper can be obtained. 



We further conclude that two features of our model are : 

. The resulting theoretical frequency curve clearly shows several ups and downs which 

are exactly similar to the ups and downs in the experimental frequency curve ; both 

the curves are so similar that it is difficult to distinguish between each other if they 

are shown on a single XY-plane. 

As i increases, the required number of formulae to compute theoretical values 

increases considerably and it may become difficult to compute the theoretical calues. 

In such circumstances an easy approach to derive the formulae to compute the 

theoretical values is absent. In order to get the solution for these problems, further 

investigation is required. 
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Appendix 

Table of experimental fractional frequency distribution of author scores in mathematics 

Y : Fraction of papers 

0.02 

0.04 

0.06 

0.07 

0.08 

0.09 

0.1 

0.13 

0.14 

0.16 

0.17 

0.2 

0.25 

0.29 

0.33 

0.35 

0.38 

0.39 

0.41 

0.42 

0.43 

0.45 

0.46 

0.48 

0.5 

No. of authors 






















