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Fractional frequency distributions of, for example, au-
thors with a certain (fractional) number of papers are
very irregular and, therefore, not easy to model or to
explain. This article gives a first attempt to this by as-
suming two simple Lotka laws (with exponent 2): one for
the number of authors with n papers (total count here)
and one for the number of papers with n authors, n € N.
Based on an earlier made convolution model of Egghe,
interpreted and reworked now for discrete scores, we
are able to produce theoretical fractional frequency dis-
tributions with only one parameter, which are in very
close agreement with the practical ones as found in a
large dataset produced earlier by Rao. The article also
shows that (irregular) fractional frequency distributions
are a consequence of Lotka’s law, and are not examples
of breakdowns of this famous historical law.

Introduction

In Rousseau (1992), the discussion started on the frac-
tional frequency distribution of, for example, authors, and
the distribution of their fractional scores in a bibliography.
Fractional scores means that if an author has published a
paper in which there are i (i = 1, 2, 3,...) authors in
total, then this author (and all the other authors in this
article) receives a score 1/i. This is different from the total
scoring system in which every author receives a score 1 in
such a paper; hence, here, scores are always entire numbers,
as opposed to the fractional scoring system. One then won-
ders how the fractional frequency distribution of author
scores looks like in a given bibliography. To be precisely
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clear about the score of an author in such a bibliography, let
us give an example. Suppose an author in this bibliography
has a paper where he/she is the only author, has another
paper where there are two authors in total, and has three
other papers where there are three authors in total. Then the
overall fractional score of this author is the sum of the
fractional scores per paper, i.e., 1 + 1/2 + 3 - 1/3 = 2.5.
Note that we avoided to use the term “total fractional score,”
which could be confusing with the overall score in the total
counting system of this author, which would be 5 in this
case.

Although Lotka’s law (or distribution) very well applies
to any scoring system where entire numbers are used—we
can even go back to the historical paper Lotka (1926) for
this—it is clear that this is not the case anymore for the
fractional scoring system. As Rousseau (1992) points out, a
fractional score of 1/8 probably will occur less frequently
than a score 1/4, because we can assume that there are less
eight-authored papers than four-authored ones. Even if this
would not be the case we can go further to 1/16,
1/32, . . . scores that will not occur very frequently. In ad-
dition to this, a score 1/4 need not only come from author-
ship in a four-authored paper but is also obtained in the case
the author has two eight-authored papers. To go back to the
score of 2.5 above, the number of possibilities is (theoreti-
cally) unlimited. Indeed, an overall score of 2.5 can also be
reached via two one-authored papers and one two-authored
paper, but also via five two-authored papers, but also via
three two-authored papers and four four-authored papers,
and so on.

Burrell and Rousseau (1995) present numerical simula-
tions of fractional frequency distributions showing their
irregular shapes.

From this it is very clear that calculating the fractional
frequency distribution is very difficult, if not impossible.
Indeed, in any theoretical work, any positive rational num
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ber ¢ = p/r (p, r € N) is a possible fractional frequency
(indeed one of the many ways to obtain ¢ as an overall
fractional score is by having p r-authored papers). So, if we
want to determine the fractional frequency distribution one
requires a formula for f(gq), the probabilty (or fraction) to
have an overall fractional score g € 0", the positive
rational numbers. This is virtually impossible, because there
are an infinite number of these, and because we expect, due
to the very irregular shape (see the examples above and also
further, where we discuss the Rao data set) of such a
distribution, that, for each g € 0", a different formula for
f(q) is needed, i.e., we do not expect to be able to produce
one analytical function for f(g) where ¢ appears as a pa-
rameter.

Therefore, in Egghe (1993) we decided to tackle the
problem, where the rational number ¢ is replaced by any
real number z € R™. The argument—briefly—was as
follows. Let ¢(i) denote Lotka’s law (any exponent) being
the fraction of authors with i papers in the total scoring
system (i.e., independent of the number of coauthors in
these papers), i € N. Let f;(z) be the fraction of authors
with a fractional score z in one paper (hence, z = 1, 1/2,
1/3, 1/4, ...). Then the overall fractional frequency dis-
tribution f is given by (z € Q")

f@)= ; (i® . .. Bf)(2)e(i) (1)

i times

where ® denotes convolution, applied here i times in every
term of the sum. Indeed, Equation 1 follows from the
Theorem of Total Probability (also called Partition Theo-
rem) and the fact that (f,® ... ®f,)(z), where we have i
times f,, is the distribution of the fractional frequencies of
authors, given one has published i papers (see, e.g., Chung,
1974, or Blom, 1989, or virtually any good text book on
probability theory).

As said, in Egghe (1993) we were unable to use Equation
1 in the discrete case (z € QF), but we studied the
continuous case (z € R™). In Egghe (1993), we could
indeed show that Equation 1 is not a decreasing function
anymore but is increasing up to z = 1 from where it starts
decreasing. This explained the “overall” view of a fractional
frequency distribution but not at all its values for every
rational z. We refer to the table in the Appendix for a very
large fractional dataset, collected earlier in Rao (1995), with
accompanying graph (Figure 1). There the “overall” view is
clear, but also the irregularity of the individual data is
evident. The graph clearly shows that as fractions of papers
(g) increases, f(g) tends to zero. Further, f(¢q) is not a
smooth curve, and it moves up and down frequently even
for large values of g. The mean and median are 1.121 and
0.99252, respectively. The variance and standard deviation
are 1.1721 and 1.0826, respectively.

We close this overview of existing results by remarking
that the model (1) follows from a dual approach of infor-
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FIG. 1. A fractional frequency curve (experimental data of the table in the
Appendix).

metrics (cf. Egghe, 1989, 1990), because f; is derived from
the Lotka law i, the dual of the Lotka law ¢: {s(j) denotes
the fraction of papers with j authors (j € N). Hence, model
(1) involves (and only involves) the two dual Lotka laws ¢
and ¢. It is, therefore, that we argued in Egghe (1993) that
modeling fractional counting does not prove a breakdown of
Lotka’s law (as argued in Rousseau, 1992) but, on the
contrary, Lotka’s laws ¢ and its dual ¢s explain the fractional
frequency distribution. We, therefore, consider (1) to have a
high informetric explanatory value.

For this reason, we continue to use (a variant of) model
(1), in the attack of the problem of explaining the irregular
shape of the fractional frequency distribution f(¢), g € Q™.
As explained above, this is not possible for every g € Q™.
In this article, therefore, we apply a variant of Equation 1 to
grouped data, where we only allow for a few fractional
scores ¢. Let us explain this in more detail. Let i € N be
fixed. A fractional scoring model that is between the clas-
sical one and the total scoring system is the following:

1. If we have a paper with j authors, j = 1,...,7 — 1,
each author receives a score of 1/j,

2. If we have a paper with j authors, j = i, i + 1, ...,
each author receives a score of 1/i.

Note that for i = 1 we have the total scoring system,
which we will not use here. If i increases, we move closer
and closer to the fractional scoring system. Because now,
for each fixed i € N, only the scores 1, ..., 1/i per paper
are possible, we are in a position to calculate all possible
fractional frequency probabilities, where we will limit our-
selves to total scores ¢ = 2. One reason for this is that the
most interesting part of scores is in the interval [0, 2] (the
highest values belong to that interval and, although irregu-
larity persists after ¢ = 2, the overall tendency is a de-
creasing function). Another reason is the increased diffi-
culty in calculating f(g) for higher g. Indeed, the higher the
q, the more possibilities there are of patterns of publications
to reach this value. This will also be illustrated in the sequel.

The next section will deal with i = 2. Here, the only
possible values for ¢ are 1/2, 1, 3/2, 2 and this case is too
rough in comparison with the detailed Rao data (Rao, 1995).
Appropriate grouping in these data gives a first (rough)
comparison between the theoretically obtained fractional
frequency distribution and the experimental one.
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The fourth section deals with i = 3. Here, we have
possible fractional scores g: 1/3, 1/2, 2/3, 5/6, 1, 7/6,
4/3,3/2, 5/3, 11/6, 2 (we stop at 2), and for each of them
we present an analytical formula for its probability f(g).
Corresponding groupings in the Rao data now gives a
remarkable agreement between the theoretical and experi-
mental fractional frequency distribution.

The fifth section deals with i = 4. Possible fractional
scores ¢ here are: 1/4, 1/3, 1/2, 7/12, 2/3, 3/4, 5/6, 11/12, 1,
13/12, 716, 5/4, 4/3, 17/12, 3/2, 19/12, 5/3, 7/4, 11/6, 23/12,
2. Again, for each of them we give an analytical formula for
its probability f(q) and corresponding groupings in the Rao
data again gives a remarkable agreement between the the-
oretical and experimental fractional frequency distribution.

The case i = 5 is also elaborated, now yielding formulae
for not less than 83 fractional scores ¢ = 2. The model is
very good, but the only problem is that groupings in the Rao
data often are not necessary because the obtained intervals
are too small. In this way, many very low probabilities are
compared. This phenomenon could be compared with the
choice—in statistics—of how many bars one uses in a
histogram: usually a computer program gives an optimal
choice (see also Egghe and Rousseau, 2001). If we take less
bars, the graph becomes too rough; if we use more bars, we
risk to have too many intervals so that reasonable groupings
are not possible anymore.

For the Rao data the cases i = 3 and 4 are the best, but
we stress the fact that the very detailed cases i = 5 has its
application in even larger datasets, yet to be constructed.
We, therefore, plead to construct very large fractional data
sets (i.e., fractional frequency scores of authors in vast
domains) so that our model for i = 5 is more suited.

In the next section we present the general theoretical
model, which is a discrete (exact) version of the continuous
(approximated) version in Egghe (1993).

Exact, Discrete, Theoretical Model for the
Fractional Frequency Distribution, Derived from
Two Dual Lotka Laws

Let ¢(n) denote the fraction of authors with n papers (n
€ N, total counts). Its dual analog (cf. Egghe, 1989, 1990)
is the function ¢y where {s(n) denotes the fraction of papers
with n authors (n € N). In the sequel we will use concrete
Lotka laws for these functions, but the following important
result is independent of the choice of function for ¢ and .

Lemma Il.1. Let f(z) denote the fraction of the authorships
(i.e., author occurences) with fractional score z in one paper.

Then
(l>
e i
fl(Z)— nz ()

where u denotes the average number of authors per paper.

Proof:
__ total # authorships with fractional score z in 1 paper

fd = total # authorships

1 1

z total # papers with Z authors
hlz) = total # authorships

1# ith ! h
o I total # papers total # papers wit z authors
\2) =

Z total # authorships total # papers

11 1
filz) = Z ﬁ - fraction of papers with 2 authors

)

pz o

fl(Z) =

Note that z = 1/n, n € N, necessarily. This shows that
the fractional score of an author in one paper is directly
derivable from . Together with its dual function ¢ we will
be able to derive the theoretical, discrete fractional fre-
quency distribution. We thank one of the referees to com-
plete our proof of an earlier version.

Proposition 11.2.: Let f(z) denote the fractional frequency
distribution of a bibliography (more generally an IPP—see
Egghe, 1989, 1990) for which ¢ and ¢ are the valid, dual,
(entire) frequency functions as described above. Then, for
every z € Q™

f(z) = E (f1® cee ®fl)(z)(P(i)» 3)
i=l N———

i times

where ® denotes convolution. Here it is assumed that the
fractional scores distributions in a paper are independent
and identically distributed (i.i.d.), being the distribution f.

Proof: Let N be the (random variable of the) number of
papers (i € N) and Y(j) the fractional score from the jth
paper. Then
f(z) = P (overall fraction = z)
=PY(1)+Y2)+---+Y(N)=2)

= S P(Y(1) + Y(2) + -+ - + Y(N) = IN = )P(N = i)

i=1
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by the Theorem of Total Probability. So

3

fz) = 2 P(Y(1) + Y(2) + - - - + Y(i) = 2)P(N = i)

i=1

(independence of N w.r.t. the Ys)

f2) =2 P(Y(1) + Y(2) + - - - + Y(i) = 2)(i).

i=1

The distribution of Y(1) + Y(2) + ... + Y(i) is given
by the convolution of the individual distributions because
we assumed independence of the Ys (cf. Chung, 1974,
Blom, 1989), and this becomes the i-fold convolution of f/,
using the assumption of identical distributions for the Ys.
Hence, we proved Equation 3. [J

Note: although it is relatively easy to accept that all Y's have
the same distribution, the fact that they are independent is
less sure. It is indeed not certain that a certain score in paper
2 (say) is independent of the score in paper 1, due to
collaboration habits. However, we have to suppose indepen-
dence for the intricate model (see Equation 3 and further
on!) to work. The assumption can be considered as a sim-
plification that is acceptable in this first attempt to model
fractional frequencies. It will be clear in the sequel that our
model fits real data very well, which is a (post factum!)
argument for the acceptance of this simplification.

From the above it is, hence, clear, at least theoretically,
that the very irregular fractional frequency distribution is
determined by the entire frequency distribution ¢ and its
dual ¢. In the sequel we will use the simplest (and in
informetrics most important) distribution: the Lotka distri-
bution with exponent 2. So we will use (n € N)

e(n) = 4)

T

Here, 6/7 ~ 0.6079271 is the normalizing constant, assur-
ing that

> e(n) =1 (5)

as is required for a discrete distribution (cf. also Egghe and
Rousseau, 1990).

For the dual analog iy of ¢, we use the same simple
function

¥(n) = (6)

772112 s

n € N. Hence, ¢ = i, mathematically, but ¢ and i have
dual interpretations. Note that Equations 2 and 6 imply that

6z
W

fiz) = (7

Note on the Use of the Law of Lotka

The use of the law of Lotka for the distribution ¢ is
undisputed (although other distributions can be used, of
course). As one of the referees points out, this has been
confirmed hundreds of times (going even back to Lotka,
1926 itself). However, the same referee disputes the use of
Lotka’s law for distribution . As he/she rightly points out,
Lotka’s law is not fitting well the distribution of number of
authors per paper in the cases Ajiferuke (1991) and Rous-
seau (1994). It is fitting in case there are more single-
authored papers than two-authored ones, but in several cases
there are more two-authored papers than single-authored
ones. Nevertheless, we used Lotka’s faw for ¢ for the
following reasons:

1. We wanted to develop further a “Lotka-type” informet-
rics theory as we did before in several papers. Hereby we
want to show the interaction of the two dual laws and
also that nothing else is needed to explain the fractional
frequency distributions. Of course, basic for the model is
proposition I1.2 and—as indicated by the same referee—
the model (3) is probably very robust in the sense that it
will not matter very much what are the exact distribu-
tions that are used for ¢ and . Another referee even
advocates to use the real experimental data for ¢ and .
Although this has value in the testing of the validity of
model (3), this methodology would not shed light on the
dual mechanism that is explained in this article (via
Equation 2). In short, we want to investigate how “far”
we can go with “Lotka-type informetrics.” It would then
also be interesting to develop—in a consequent way—
other informetric theories, based on other frequency dis-
tributions. Note that Egghe (2000) and Egghe and Rao
(2002) are examples of an explanation of the first citation
distribution and of the most recent reference distribution,
where (especially in the latter article) it was made clear
that the distribution of the number of references does not
follow Lotka’s law.

2. Using Lotka’s law for ¢ and i is easy, and much easier
than using distributions of the lognormal type (which
would have been more exact, certainly in the case of ).

3. In a forthcoming article we intend to investigate other
distributions for ¢ and . Even the use of the uniform
distribution for ¢ (which is clearly not the correct one!)
could be considered, thereby showing the “power in
itself” of the methodology that is developed here (ro-
bustness).

4. Last but not least: our data show an approximate Lotka
law for . Only the cases of one and two authors per
paper yield a more or less equal number of papers,
contrary to Lotka’s law. The reason that we encounter a
distribution close to Lotka’s law is that we have papers
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in mathematics where collaboration is less than in some
other disciplines (such as, for example, chemistry, . .. ).

The parameter w (the mean of i) will be determined by
an ad hoc method (see further). We prefer it this way rather
than calculating the mean of s, for n limited to a finite
number of values (as in practice). Allowing an infinite
number of n in ¢ yields a distribution with infinite mean.

As explained in the previous section, Equation 3, inter-
preted for continuous z € R yields in Egghe (1993) an
explanation of the overall behavior of f: increasing in [0, 1]
and decreasing beyond 1. However, it does not give an
explanation for the many irregularities in rational points z
€ Q™. This will be done in the rest of this article. We will
be able to inspect the properties of f in Equation 3 by
adapting it a bit by restricting the number of possible
fractional scores (per paper) from below as explained in the
introduction (and repeated further on). Analogous group-
ings in the experimental data will then allow for the com-
parison between the theoretical model with the experimental
fractional frequency distribution.

The Case i = 2: Allowing an Author Score of 1/2
or 1 in One Paper

Although too rough, this case will very simply illustrate
the methodology that we will apply in this article to yield
discrete fractional frequency distributions. Note that in all
our studies in this article we will limit ourselves to frac-
tional scores ¢ = 2, as explained in the introduction.

In this simple model, an author receives a score 1 if
he/she is an author in a single-authored paper. If he/she is
author in a multiauthored paper, this author receives a score
1/2. Let us call g, the author distribution of fractional scores
in one paper. By definition

g:(1) :fl(l) ®)
1 ” 1
81(2> = Zfl(l-) )

1
g1<2) =1 - A1), (10)

because f, is a distribution. Using Equation 7 this yields

gi(1) = (11)

W

1 6
g.<2> =1 - (12)

We apply now Equation 3, but with f, replaced by g, and
for the values z = 1/2, 1, 3/2, 2, the only possible scores
(inferior to 2). This gives

#(5) = (3] 13

1 2
f(1) = gi(De(1) + <g1<2>) ®(2) (14)

3 1 13
f<2> = 281(2>g1(1)¢(2) + (g1<2>> e(3) (15)
l 2
f(2) = (g:(1)’e(2) + 3<g1(2)) gi(De(3)

1 4
+ (gl(z)) ¢(4), (16)
where ¢ is given by Equation 4.

These values are then compared by the corresponding
grouped data from Rao’s table in the Appendix, grouped as
follows:

1. score 1/2 corresponds to grouping the data in the interval
10, 0.75]

2. score 1 corresponds to grouping in ]0.75, 1.25]

. score 3/2 corresponds to ]1.25, 1.75]

4. score 2 corresponds to ]1.75, 2.25].

SV}

It is clear that we take the interval ]0, 0.75] for 1/2 (and
not ]0.25, 0.75]) because in our model, all fractional scores
(in one paper), smaller than 1/2, are transformed into 1/2.

Of course, these groupings are not a perfect analog of our
simplified model because an author with an overall score of
1/4, being the result of participation in two eight-authored
papers is classified into the score 1 in the model while it is
classified in the interval ]0, 0.75] in the grouping. This
difference is there, but will diminish in the next cases where
we allow for smaller fractions. Also, if we find good results
in this setting, this will indicate that the above difference is
not destroying the similar nature of both simplifications.

The (only) parameter p is determined by requiring
f(1/2) to be exact:

1 6\ 6 18892 #in]0,0.75]
N3 = l_ﬂ ™ 46,853  total #

(see the table in the Appendix). This yields w
= 1.80537576. We have now the following table and graph,
comparing theoretical and experimental fractional fre-
quency distributions (Table 1 and Figure 2).

From the above we see, although we only compare four
fractions, both theoretical and experimental graphs are fol-
lowing the same pattern. This will become more clear in the
next (more important and more interesting) cases.
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TABLE 1. Distribution of overall fractional scores (case of i = 2).
q Theoretical (f) Experimental
12 0.4033047 0.4033047
1 0.2715154 0.345911681
32 0.0875965 0.079546667
2 0.0545977 0.081360852

The Case i = 3: Allowing an Author Score of 1/3,
1/2, or 1 in One Paper

This will be the first interesting case. Here, an author
receives a score 1 if he/she is an author in a single-authored
paper, a score 1/2 if he/she is an author in a two-authored
paper, and a score 1/3 if he/she is an author in a j-authored
paper, for all j = 3. Now we have

6
81(1)=f1(1)=7TT (17)
1 1 3
31<2> :f1<2> = qu (18)
1 _ 1 _ 9
81(3)_1_(f1(1)+f1(2))_l_ﬂ_zu (19)

Possible overall fractional scores (in 0, 2]) are 1/3, 1/2,
2/3, 5/6, 1, 7/6, 4/3, 3/2, 5/3, 11/6, 2 (theoretical) to be
compared with grouped data (from the table in the Appen-
dix) in the intervals ]0, 5/12], 15/12, 7/12], 17/12, 9/12],
19/12, 11/12], 111/12, 13/12], 113/12, 15/12], ]15/12, 17/12],
117/12, 19/12], 119/12, 21/12], 121/12, 23/12], 123/12, 25/
12].

We have the following formulas from which the theor-
tical fractional frequency distribution can be calculated.

sl e
ol e
Bl e
)l

l 2
A1) = gi(De(1) + <g1<2>> ¢(2)

Relative frequencies

Rel Freq
0.05 —— Theoretical

T 2 "3 T a s e 7 ' &8 9 10 11 ' 12 13 '
Fractions

FIG. 2. Theoretical and experimental fractional frequency distributions

(o3
N PRSI | A

1
g1(3)) o(4) (26)

|
1(2) =26(3)si00 + (a(3)) ¢0
)

(25)

~

—

[ JEEN|

~
I

Doty

+

5)- {3
o ) )

+ (gl(;))srp(S) (28)
2 -en Yo}

cfofy) o

I

1 2
f2) = (g:(1))’e(2) + 3(g1<2>> gi(De(3)
1)\ 1)\*
+ 4<g1<3>> gi(De(4) + (g1<2>> ©(4)
l 3 l 2 1 6
c10faf3)) (a(3)) 51+ (s3] et

(30)

1 3
+ ( g1(3)) e(3) 24 Again, the parameter u is determined by
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TABLE 2. Distribution of overall fractional scores (case of i = 3).

q Theoretical (f) Experimental
173 0.1389322 0.1389322
172 0.1562373 0.2530468
2/3 0.0079701 0.0112693
5/6 0.0294265 0.0236911

1 0.323324 0.3125520
716 0.0027311 0.0097112
4/3 0.0389478 0.0192304
32 0.0417687 0.0340426
5/3 0.0059575 0.0049303
11/6 0.0129368 0.0072781

2 0.0483318 0.070959

)-(- )5 1102

3 mu) ™ total #

6,508
" 46,853

yielding p = 1.1819488123. We obtain the following re-
markable table and graph (Table 2 and Figure 3).

The agreement between the theoretical and experimental
results is remarkable. This proves that the two dual Lotka
laws are capable of modeling fractional frequency distribu-
tions (except, maybe, for ¢ = 1/2, on which we will
comment at the end of the article). The model also allows to
prove the following inequalities (nonexhaustive list, proofs
are left to the reader):

1 1
1. f(3> <f(2> & p < 1.216 (as in our case)

A5 <oty

.f(1)>2f(;)

r{g) = milys5) e (3)

(O8] NS}

~

W
~
—
W A
~—
V
[N°)
~
S
RS
~ —

3
6. f(2) >f(2)

Aol

3

Relative frequencies

Rel Freq
—— Theoretical

Fractions

FIG. 3. Theoretical and experimental fractional frequency distributions
(case of i = 3).

3
8. A1) >f(2)

N f@) <f(2> o u<152 (and, hence,f@
<o) 3)=s(3))

n
=0,q¢§,n e N
e n

10. lim flg)
p— - _
61’12 ’ q 3

The explanation for this last regularity is as follows: for
extremally high w, the chance to have a paper with less than
three authors is very small. In this case, one can only receive
a fractional score of 1/3 per paper. Hence, the only overall
scores that are possible are ¢ = n/3 if an author has n
papers. The probability for this last event is @(n) = w/6n?,

n € N.

The Case i = 4: Allowing an Author Score of 1/4,
1/3, 1/2, or 1 in One Paper

We are heading now towards increasing refinement:
more fractional scores are obtained (and, hence, their prob-
ability must be determined) and—on the corresponding
experimental side—more but smaller intervals are used to
group data. So, for any data set, there comes a time where
extra refinements lead to too few data in the groupings and,
hence, to the comparison of many very small numbers. This
will be experienced from i = 5 on (see next section). It is
our feeling that for the Rao data, the present case i = 4 is
the most interesting one.

In this case an author receives a score 1 if he/she is an
author in a single-authored paper, a score 1/2 if he/she is an
author in a two-authored paper, a score 1/3 if he/she is an
author in a three-authored paper, and a score 1/4 if he/she is
an author in a j-authored paper, for all j = 4. Now we have

gi(1) =fi(1) = (3D

L
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1 _ 1 _ 3

g,<2> —f1<2> =7 (32)
1 _ 1 -~ 2

81<3> —f1<3> = Wzﬂ (33)

1 1 1 11
81(4) =1- (fl(l) +f1(2) +f1(3)) =1 _WTP« (34)

Possible overall fractional scores (in 0, 2]) are 1/4, 1/3,
172,712, 2/3, 3/4, 5/6, 11/12, 1, 13/12, 7/6, 5/4, 4/3, 17/12,
3/2, 19/12, 5/3, 7/4, 11/6, 23/12, 2 (theoretical) to be com-
pared with grouped data (from the table in the Appendix) in
the intervals 10, 7/24], 17/24, 9/24], 19/24, 13/24], 113/24,
15/24], 115/24, 17/24], 117/24, 19/24], 119/24, 21/24], 121/
24, 23/24], 123/24, 25/24], 125/24, 27/24], 127/24, 29/24],
129724, 31/24], 131/24, 33/24], 133/24, 35/24], 135/24, 37/
241, 137124, 39/24], 139/24, 41/24], 141/24, 43/24], 143/24,
45/24], 145/24, 47/24], 147/24, 49/24].

We have the following formulas from which the theo-
retical fractional frequency distribution can be calculated.

-
)=+
)-elfe oo o
FEATTINEI PR
-G o
) -)eler o
2}l

Aol
T AT P

70 = + (o(3) ) e

ool o0

1
g,(4)(p(1> (35)

1
(3> e(1) (36)

AN
A e

2= {el 3ol
A e

f( ) 281(1)81(i)¢(2)+3(&< ))2&(;)@(3)
Yol )
( ())‘P(“”( (>>S<p(5) 46)
)

1(2) = 2608 (3o + 38,3 (23] )
- ifaly] )30
(ol e s s

)= o) o
S
f( ) 2g1(1)g1(;)¢(2) + 3<g( ))2&(1)@(3)
(ol oo = o ) )
ol s
ALl
ol 3] o3 o+ o3 o0

(49)

19 1 1 1 1
f<12> = 681(4)&(3)81(1)({3(3) + 12g1<4)g1(3)
1 2
(oY) et

796 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2002



sl 3ol ()
(ol v+l

5o
) e
sl () o () 2
S e B Y

(D

()l Yo
oo
(ool
(Y

)l
)Ll
Al

|
{3 o

(53] = el s 0e ]
<(ola] i3] oo
anfefg)) o{3)) alz)e0
coulg)(el3)) o

£

(e

f(2) = (g(1)*e(2) + 3(g ( )) gi(De(3)

> ( )gl(l)cp(4)

3 1 4
ai(1)g(4) + (g(2>) o(4)

(55)

The parameter w is determined by
0. 7
()6 #in 10.54
4) ) ™ total #

1,698
46,853

yielding uw = 1.1851868311. We obtain the following—
again remarkable—table and graph (Table 3 and Figure 4).

We can say that, again, the agreement between the the-
oretical and experimental results is remarkable. In this
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TABLE 3. Distribution of overall fractional scores (case of i = 4).
q Theoretical (f) Experimental
1/4 0.036241009 0.036241009
1/3 0.1039555 0.102233051
12 0.1564714 0.250570935
7/12 0.0030927 0.003052099
2/3 0.0044441 0.01274198
3/4 0.0046533 0.00420464
5/6 0.013455 0.019827973
11712 0.0003526 0.001323288
1 0.3220503 0.309905449
13/12 0.0010631 0.001686125
7/6 0.0015435 0.005698675
5/4 0.0100909 0.003905833
4/3 0.0290481 0.018654088
17/12 0.000205 0.001899558
32 0.0417575 0.053358376
19/12 0.0024309 0.000661644
5/3 0.0035013 0.003478966
7/4 0.0033829 0.001430004
11/6 0.0093664 0.007000619
23/12 0.0004929 0.000277464
2 0.0476329 0.0697428726

model we can prove the following inequalities (the proofs
are straightforward and left to the reader) (nonexhaustive

list).

w

7 1 1
2. f(lZ) = 2f<4> and equality is valid & p = 1

(O8]

(i.e. © every paper has one author)

MEEEE

1
4. f(1) >3f<3)

*
~

9

798

11 4 7
- f 12) <37T2f(12)

Rel Freq
—— Theoretical

Relative frequencies

17273 47576778 © 10 111213 14 15 16 17 18 19 20 21
Fractions

FIG. 4. Theoretical and experimental fractional frequency distributions
(case of i = 4).

11. f

13 9 3
13. f D) <2—ﬂ_2f 1 , and hence,

15. lim flg) - n
p—>ee = ——,q=-
6n*’ 4

The argument given in the Case i = 3 section for the
similar result also applies here.

The Case i = 5: Allowing an Author Score of 1/5,
1/4, 1/3, 1/2, or 1 in One Paper

This case is very complex, as we will describe below.
Happily, it turns out that this case is a bit “overkill” w.r.t. to
the Rao data in the Appendix. Nevertheless, we describe it
here (briefly) so that it can be used for larger datasets, to be
produced in the future. That this case is a bit “overkill” for
our data is not a drawback for the model: one could compare
this with the case in statistics where one is graphing a set of
continuous data, be means of a histogram where too many
bars are used (i.e., where the abscissa intervals are too small
w.r.t. the number of data that one has).

We repeat that in this case an author receives a score 1/j
if he/she is an author in an j-authored paper (j = 5) and
where an author receives a score 1/5 if he/she is an author
in an j-authored paper (j = 5). Now we have
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FIG. 5. Frequency curve for the experimental data (case of i = 5).
gi(1) = fi(1) = u (56)
1 1 3
g,<2> =f1<2> =7 (57
1 1 2
81<3> :f1<3) = e (58)
1 1 3
81<4) =f1(4> T (59)
1 _ 1 1 1
g1<5> =1- <f1(1) +f1<2> +f1(3) +f|(4>>
B 25
=1- m (60)

The complete list of possible fractional scores comprises
83 rational numbers (in ]0, 2]) and the same number of
half-open intervals for the groupings in the experimental
data set in the Appendix. For each possible g we determined
analytical formulae for f(g), based again on the g,-variant
of Equation 3. They can be calculated as before, but the 83
formulae are, relatively speaking, more intricate. Neverthe-
less, they still contain only one parameter w, which we
determined as w = 1.2899744688 based on our requirement
that the value f(1/5) must be exact. We can provide the
reader with the formulae for f(g), and with the necessary
intervals for the groupings. We omit it here, because it
would consume several pages. For the same reason we omit
the table giving the experimental and theoretical values for
the case of i = 5. We only provide the experimental and
theoretical curves. Experimental and theoretical curves are
so similar that they practically overlap if they are shown on
a single XY-plane; it is thus difficult to indentify the two
different curves in a single XY-plane. Therefore, experi-
mental and theoretical frequency distributions are shown in
Figures 5 and 6 separately. However, an attempt has been
made to show both the curves on a single XY-plane in
Figure 7. One can see from Figure 7 that the model fits the
experimental data remarkably well.

Relative frequencies

—— Theorctical

it || \

5 10 (5 20 25 30 35 40 45 50 55 60 &5 70 75 80 85
x = 12/60, 15/60 etc

FIG. 6. Frequency curve for the theoretical values (case of i = 5).

Conclusions and a Remark on the Case g = 1/2

We applied the model

f(z) = Z (® ... ®f)(2)e() 3)
=1 \ﬂ_/

of Egghe (1993), where f is the overall fractional frequency
distribution, f, is the fractional frequency distribution in one
paper, and ¢ is the distribution of the number of papers per
author (total count). We obtained the exact discrete result

that
llf -

fiz) = wz 2

where i is the distribution of the number of authors per
paper. The distributions ¢ and s are each others dual (cf.
Egghe, 1989, 1990), and in this article we use the simplest
frequency distribution, known in informetrics, namely the
discrete Lotka law with exponent 2:

e(n) = ¢(n) = (4), (6)

wn®
(cf. Egghe and Rousseau, 1990).

To model the very irregular fractional frequency distri-
butions [of the overall fractional scores of authors in a

Obs.Rel Freq
/\ AAAAA Theoretical

. oA |

S 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
x = 12/60, 15/60 ctc

Relative frequencies

FIG. 7. Frequency curves for experimental and theoretical values (case of
i =05).
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(large) bibliography], we use a variant of the fractional
scoring system: fix i € N. An author receives a score of 1/j
if he/she has a paper with j authors in total (j = i) and
receives a score of 1/i if he/she has a paper with j authors
in total (j = i). Per fixed i, a new fractional scoring
distibution g, in one paper is derived (based on f,) that can
be used in our scoring system.

Fori = 2, 3, 4, and 5 we have determined the overall
theoretical fractional frequency distribution that has the
advantage that it contains only one parameter (which we
estimated in each case). We then compared with the corre-
sponding experimental fractional frequency graph of the
(accordingly) grouped data, based on the data of Rao
(1995), reproduced in the Appendix. The agreement is re-
markable. For the Rao dataset the cases i = 3 and i = 4
appear to be best. The case i = 5 is a good model, but
requires a grouping of data in very small intervals so that,
for the Rao data, this case is a bit “overkill,” comparable
with the case of the use of a histogram in statistics with too
many bars w.r.t. the given data.

One remark on the fraction ¢ = 1/2 is in order. As is
clear from the graphs in Figures 3, 4, and 7, the agreement
between the theoretical and the experimental graphs is the
poorest in ¢ = 1/2. This is—most probably—due to the
fact that we used Lotka’s law for ¢, the fraction of papers
with a certain number n of authors:

6

n?

P(n) = (6)

Although such a choice is good for its dual ¢, there are
many cases where there are relatively more papers with two
authors than given by Equation 6 (R. Rousseau, oral com-
munication). In fact, Equation 6 gives $i(2) = 1/4 yi(1) and
is, most probably, the reason for our underestimation of
f(1/2) in all cases i = 3, 4, 5, because in our data, as
mentioned earlier, we have (1) =~ (2).

In a forthcoming article we will investigate this further,
but we can report here on first attempts by replacing ¢ in
Equation 6 by a Poisson distribution. We noticed already
that a Poisson distribution, if the parameter A in chosen in
the appropriate way, is better capable of describing the
distribution of the number of authors per paper. Using this
¢ in our fractional frequency model we indeed obtained an
improvement in ¢ = 1/2 and even in ¢ = 2, although now
q = 1 is more poorly modeled. We will investigate this
further and see whether an overall improvement of the
model obtained in this article can be obtained.

We further conclude that two features of our model are:

1. The resulting theoretical frequency curve clearly shows
several ups and downs that are exactly similar to the ups

and downs in the experimental frequency curve; both the
curves are so similar that it is difficult to distinguish be-
tween each other if they are shown on a single XY-plane.

2. As i increases, the required number of formulae to com-
pute theoretical values increases considerably, and it
may become difficult to compute the theoretical values.
In such circumstances an easy approach to derive the
formulae to compute the theoretical values is absent. To
get the solution for these problems, further investigation
is required.
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Appendix: Table of experimental fractional frequency distribution of author scores in mathematics.

X: Fraction of No. of X: Fraction of No. of X: Fraction of No. of X: Fraction of No. of X: Fraction of No. of
papers authors papers authors papers authors papers authors papers authors
0.02 1 1.11 2 2.28 2 3.98 1 6.87 3
0.04 1 1.12 2 2.29 1 4 386 6.92 1
0.06 9 1.13 2 2.33 288 4.08 9 7 18
0.07 2 1.14 22 2.36 1 4.12 2 7.08 2
0.08 1 1.15 2 2.37 1 4.14 1 7.17 3
0.09 13 1.16 15 2.38 1 4.16 2 7.2 1
0.1 17 1.17 189 24 2 4.17 20 7.33 2
0.13 12 1.2 37 241 3 4.24 1 7.5 12
0.14 35 1.23 2 2.42 20 4.25 1 7.53 1
0.16 3 1.25 177 2.44 1 4.33 3 7.58 1
0.17 93 1.28 3 2.45 4 4.4 1 7.67 2
0.2 341 1.29 1 2.5 789 4.41 1 7.83 4
0.25 1,166 1.3 1 2.55 2 4.42 5 8 22
0.29 4 1.32 2 2.58 34 4.5 143 8.11 2
0.33 4,772 1.33 868 2.63 1 4.51 1 8.33 5
0.35 16 1.37 2 2.66 6 4.53 2 8.5 6
0.38 1 1.38 1 2.67 55 4.58 2 8.58 1
0.39 2 14 2 2.7 9 4.67 22 8.67 1
0.41 17 1.41 2 2.73 1 4.7 2 8.83 6
0.42 2 1.42 19 2.75 25 4.72 1 9 7
0.43 1 1.45 6 2.83 130 4.75 7 9.08 1
0.45 6 1.48 4 2.86 1 4.83 37 9.17 1
0.46 1 1.5 2,547 2.87 3 7.87 1 9.53 4
0.48 2 1.53 9 2.9 1 4.95 1 9.5 7
0.5 11,673 1.55 1 291 1 5 117 9.83 3
0.53 36 1.57 1 2.92 9 5.04 1 10 4
0.56 1 1.58 27 2.95 1 5.08 4 10.03 1
0.58 136 1.6 1 3 1,191 5.09 1 10.33 1
0.59 3 1.62 1 3.03 3 5.14 1 10.5 1
0.62 2 1.64 1 3.08 10 5.17 8 10.57 1
0.63 1 1.65 1 3.1 1 52 2 10.67 1
0.64 5 1.66 1 3.11 1 5.25 4 11 4
0.65 2 1.67 149 3.17 42 5.26 1 11.33 1
0.66 17 1.7 11 32 9 5.33 27 11.42 1
0.69 474 1.73 1 3.23 1 5.4 1 11.5 1
0.72 23 1.75 65 3.25 29 5.42 2 11.67 1
0.74 1 1.79 1 3.33 126 5.5 60 11.75 1
0.76 170 1.83 328 3.36 1 5.58 4 11.83 1
0.78 3 1.9 2 342 4 5.67 14 12 1
0.82 2 1.91 1 345 2 5.7 1 12.17 1
0.84 919 1.92 9 3.48 1 5.75 4 12.23 1
0.86 7 1.95 1 3.5 33 5.83 17 12.5 1
0.88 1 1.98 6 3.53 1 5.88 1 12.67 1
0.9 6 2 3,255 3.58 5 5.92 1 12.83 11
0.92 2 2.03 6 3.6 2 6 70 13 1
0.94 48 2.06 1 3.66 2 6.08 2 13.67 1
0.96 6 2.07 1 3.67 33 6.17 2 14.34 1
0.98 1 2.08 47 3.7 2 6.2 4 15 1
0.99 1 2.09 1 3.72 1 6.25 3 15.5 1
1 14,507 2.12 2 3.75 13 6.28 1 15.83 1
1.02 9 2.14 2 3.78 1 6.33 14 16 1
1.04 2 2.15 1 3.8 1 6.5 26 17.06 1
1.06 2 2.16 2 3.83 80 6.58 1 17.2 1
1.08 66 2.17 70 391 1 6.67 8 17.58 1
1.09 3 2.2 26 3.92 1 6.75 1 18 1
1.1 2 2.25 50 3.95 1 6.83 8 Total 46,853
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