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ABSTRACT 

In digraphs one has a hierarchy based on the unidirectional order between the vertices of the 

graph. We present a method of measuring degrees of hierarchy as expressed by the inequality 

that exists between the vertices' hierarchical numbers. In order to do so, we need to extend the 

classical Lorenz theory of concentration (curves and measures) for a set of numbers x,, ..., x, to 
N 

the case that xi=O. This is then applied to the set of hierarchical numbers of the vertices of 
i = l  

the graph. A graph has a more concentrated hierarchy than another one if the Lorenz curve of 

the first one is above the Lorenz curve of the second one, hereby expressing that the inequality 

in domination in the first case is larger than in the second case that the inequality in 

subordination in the first case is larger than in the second case. We also determine maximal and 

minimal Lorenz curves in this setting and characterise the graphs that yield these curves. Based 
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on this theory, we also determine good measures of hierarchical concentration in graphs. 

Applications can be given in the study of organigrams in companies and administrations and in 

citation analysis. 

I. Introduction 

Consider a general digraph (directed graph) G in which there are no loops. let the number of 

vertices be NEN. We also suppose that the graph is weakly connected, i.e. that the underlying 

undirected graph of G consists of one component (see Wilson (1972)). In fact if this is not the 

case, we can apply the results from this paper to the different components of the graph. We 

will number the vertices by denoting them as i, i=1, ..., N. For each vertex i ~ ( 1 ,  ..., N} we can 

consider all chains that have i as the starting point. Their lengths are an indication of the role of 

vertex i in the graph from the point of view of "domination". In terms of a graph representing 

an organigram in a company or an administration, they indicate in what way vertex (person) i 

a direct or indirect boss of other vertices (persons) j. Conversely we can consider all chains 

that have i as an endpoint. Now their lengths are an indication of the role of vertex i in the 

graph from the point of view of "subordination". In the same example as above, they indicate 

in what way this person has direct or indirect bosses. The two together indicate the general 

hierarchical position of vertex i in the graph G. Let us denote, for every i ~ ( 1 ,  ..., N} 

0: = the sum of the lengths of the chains that start in i (1) 

oi- = the sum of the lengths of the chains that end in i (2) 

We will denote 

0. =o. - 0. 
I I (3) 

and call this the hierarchical number (or degree) of i in graph G. Note that it is obvious that 



Examples (N=4) 

Fig. 1 Three examples, N=4 

In case of the chain (Fig. la) we have IS;= 6, a;= 0, IS;= 3, IS,= 1, o;= 1, IS;= 3, o,'= 0, 

oi= 6. Hence o,= 6, 02= 2, IS,= -2, IS,= -6. 

In case of the graph in Fig. lb  we have a;= 3, GI= 0, IS:= 0, IS-= 1 (i=1,2,3,4). Hence o,= 3, 

oi= -1 (i=1,2,3). 
. . 

In case of the graph in Fig. Ic we have a;= 6, IS;= 0,  IS;=^,'= 1, IS,=IS~= 1, IS;= 0, o i=  6. 

Hence o,= 6, o,=o,= 0, IS,= -6. 

So, for each graph G as described above, we have a family of numbers of hierarchy IS,,..., IS,, 

representing degrees of domination and of subordination. The examples in Figs. la and l c  

show that the domination degrees have (apart from the - sign) the same pattern as the 

subordination degrees, but the example in Fig. Ib shows that this is not always the case : here 

vertex 1 dominates but the subordination degrees of 2, 3 and 4 are the same. In the sequel we 

want to study the inequality of the numbers  IS,,...,^, in its totality : inequality in domination 

subordination. 

The study of inequality (also called concentration) goes back to the beginning of the twentieth 

century when it was used to measure social inequality, as e.g. expressed by the income 

inequality in a social group. We mention Muirhead (1903), Lorenz (1905), Gini (1909), Dalton 

(1920), Shannon (1948), Theil (1967), Atkinson (1970), Allison (1978) as some historical 

papers amongst the many other ones. Of course, in Shannon (1948) one emphasizes more on 

similarity (being opposite to concentration) as one also does in biometry where one uses the 
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term diversity, see e.g. Rousseau and Van Hecke (1999). The basics of concentration theory 

can be summarized as follows. Let X=(x,, ..., x,) be a vector of positive numbers, incl. zero (but 

not all of them zero). We will always arrange the decreasingly, although an equivalent theory 

can be given for the increasing order (see Marshall and Olkin (1979)). 

Define, for each i=1, ..., N 

Note that 

1 The Lorenz curve L, of X is the polygonal line connecting (0,O) with (-, a,), then connecting 
2 N 

this point with (-, a,+%), and so on, hence connecting 
N 

i=1, ..., N. Note that for i=N this point is (1,l). See Fig. 2 for an example 



Fig. 2 Lorenz curve L, for X=(6,3,2,1) connecting 

The diagonal of the unit square, connecting (0,O) and (1,l) represents the Lorenz curve for the 

vector X=(x,x, ..., x) (x>O), the least concentrated situation since all xi are equal. This is the 

lowest Lorenz curve that is possible. The highest possible Lorenz curve (for fixed NEN) is the 
1 

one ofX=(l,O, ..., 0) connecting (0,O) with (-,I) and then with (1,l). 
N 

Let X=(x ,,..., x,) and X'=(xl ,,..., x',) be two vectors. We say that Xi is larger than X in the 

Lorenz sense, denoted X--<XI if LxsLx.. Unless X=X1, X' is then more concentrated than X 

(as can be seen by applying elementary transfers - we do not go into this and we refer the 

reader to Marshall and Olkin (1979) or to Egghe and Rousseau (1990)). The "degree" of 

concentration can be measured by using good measures of concentration C, i.e. measures that 

respect the Lorenz order --<. In other words, this are measures satisfying X--<Xi and X+X' =. 

C(X)<C(X1). Examples of good measures of concentration abound (see the references given 

above). We only give three examples. The coefficient of variation 



(also VZ can be used), where (T and p are the standard deviation and the average of the vector 
N 

X. Note that VZ is the normalized version of x a;, where a, is given by (5). Another measure 
i = l  

is the one of Theil : 

which is nothing else than the "concentration" version of the diversity measure entropy 

(Shannon (1948)). Finally the area between the Lorenz curve and the diagonal connecting (0,O) 

and (1,l) is also obviously a good concentration measure. The normalized version of it is 

nothing else than the famous Gini index, used in econometrics (Gini (1909)). 

It is this type of concentration theory that we will introduce in graph theory in order to 

measure the concentration (inequality) in domination and subordination. However, here, the 

numbers cri can also be negative and they even add up to zero (4), contradicting (6)  and making 

the construction of the Lorenz curve of (13, ..., oN) impossible because of (5). In the next 

section we will extend the theory of concentration to vectors X=(x,,...,xN) where some q can 
N 

be negative, including the case x,=O. Maximal and minimal Lorenz curves will be 
k = l  

determinated and good measures of concentration will be given. The third section will apply 

this concentration theory to the vector (q, ...,oN) of hierarchical degrees of the vertices of a 

graph. This represents the way to measure the inequality in domination subordination at 

the same time. The maximal and minimal Lorenz curves will be characterized by the graphs 

(for general NEN) that yield these extreme Lorenz curves. We will also compare this theory 

with some existing "measures of hierarchy" which are - in the author's opinion - too weak to 

describe hierarchy in a graph. Examples of application are given. In section four we illustrate 

the results on a general chain of N vertices. 



11. Lorenz concentration theorv for general vectors X=(x, ..... x,) 

We will begin with the case that 

N 

(but some x, can be negative). If xk<O, this model can still be used by applying it to the 
k = l  

N 

vector -X=(-x,,...,-x,). The case z xk=O will be handled in subsection 11.2. 
k = l  

N 

11.1 Concentration theorv in case xk > 0 
k = l  

This case is very simple. In fact we act exactly as in the case that all x, are positive, by applying 

(5). We again obtain a Lorenz curve connecting (0,O) with (1,l) but now the curve can leave 

the unit square. Fig. 3 gives an example 

t 

Fig. 3 Lorenz curve L, for X=(5,4,-1,-2) connecting 



. . 
Let X=(x ,,..., xN), Xr=(x' ,,..., x',) be two vectors such that xk+O, x ' ~ # o .  Upon 

h~ N k = l  k = l  ,. . . 
multiplication by - 1 (possibly) we can assume xk>O, x ' 2 0  and we also suppose X and 

k = l  k = l  

X' to be decreasing. We say that X' is larger than X in the Lorenz sense, denoted X--<XI if 

L,<L,, and we say that X' is more concentrated than X (unless X=X1). Because of this 

construction the following theorem of Hardy, Littlewood and Polya (1929,1952) - see also 

Marshall and Olkin (1979) applies. 

Theorem 11. I (Hardv. Littlewood and Polva) 

If X=(x,,. ..,x,)--<Xf=(x',,. ..,xJN) and if they are decreasing, then 

(and < if X#X') for all continuous convex fimctions cp. Here 

xfi  
a'. = - ' N c x'. J 

j = I  

Since e.g. (p(x)=x2 is continuous and convex we are able to provide a good measure of 

concentration for our model : 
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This measure can then be normalized, if necessary. Of course, as in the classical case, the 

measure = area between L, and the diagonal connecting (0,O) and (1,1), is also a good 

measure of concentration, hereby generalizing Gini's index. 

Applications of this theory can be the measurement of inequality (fluctuations) of the 

temperature in a certain area over a certain time period (e.g. a year), which then can be 

compared with the same in another area. We will not go into this since our main goal is the 

study of the hierarchy of digraphs. 

N 

11.2 Concentration theon, in case C xk = 0 
k = l  

Of course, we assume that not all are zero and that the x, are decreasing. Denote 

Hence 

Equation (18) enables us to develop a concentration theory (or inequality theory) for vectors X 

for which the coordinates add up to zero, hereby studying the concentration in (x,),,,+as well 

as the concentration in . We proceed as follows. Instead of (5) we calculate 

for all i=1 ,.. .,N. Because of (1 8) we have 



We now form the polygonal curve connecting (0,O) with ($,a,) , connecting (-!-,al) with 

( a  + )  and so on. Because of the above this curve goes from (0,O) to (x, 1), where 

then from (x,l) to (y,l), where 

[ when it1. x r y  since 11J+II+rN If no x. is and from (y,l) to (1,O) via the points - 
N' k;l 

zero, then x=y since II.I+II+(=N then. An example 1s given in Fig. 4. 

Fig. 4 Lorenz curve L, for X=(4,2,0,-1,-5) connecting 



intuitively speaking, L, consists of a "Lorenz curve" for the (xJi,,+(ftom (0,O) to (x,l)) and of 

a "Lorenz curve" for the ( ~ ~ ) ~ ~ , ~ ( f i o m  (y,l) to (1,O) and mirrored over the vertical line with 

abscissa y). This is why we have here a method of measuring the concentration in the 

as well as the one in the (xi),,,-. The global degree of inequality can then be compared with the 

same for another vector. 

Let, indeed, be X=(x,, ..., x,) and X1=(x', ,..., x',) be two decreasing vectors such that 

We say that Xi is larger than X in the Lorenz sense, denoted X--<XI if LxsL,.. If X+Xi, then 

X' represents a more concentrated situation in both the positive and negative values. This will 

enable us, in applications (see next section) to measure the hierarchical degree (both in 

domination and subordination as one system) in a digraph, with obvious practical applications. 

Using again, the theorem of Hardy, Littlewood and Polya (which is also valid for the order --< 

here), we arrive at the following good measures of concentration in this case 

and 

Again, the area between Lx and the x-axis is also a good concentration measure 

Note 
We repeat that the present concentration theory measures (at the same time) the concentration 

of (xi)i,,+ and of (xi)i,,. It does not measure the concentration of X=(x,, ..., xN) itself. This is 

illustrated by the following example. Let X=(2,1,-1,-2) and X1=(2,2,-2,-2). Although X' looks 

more "concentrated" than X (in an intuitive way of speaking), the inequality in the positive as 

well as in the negative coordinates of X' is smaller than in the comparable coordinates of X. 



This is also verified by using e.g. (25) : 

This clearly illustrates the value of concentration theory for vectors X=(x,, ..., x,) for which 
h, 

The highest possible Lorenz curve in this setting (and NEN fixed) is (obviously) the one 

connecting (0,0) with ( I )  , ( + , I )  with (?,I) and the latter point with (1,O). It is 

obtained for 

where x>O, and only for this type of vector. There is no lowest possible Lorenz curve but we 

can characterise all minimal Lorenz curves that are possible, i.e. curves L for which there does 

not exist another Lorenz curve L' such that L'<L The following theorem can be proved. 

Theorem 11.2. 
N 

Let NEN be fixed. Let X=(x,, ..., x,) be decreasing with x,=O. Then L, is minimal iff L, 

consists of 2 straight lines : one connecting (0,O) with and one connecting 

(1,0), (i=l, ..., N-1). Such a curve is obtained for 
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(and only for this type of vector) where x,yt-0 and where ix=(N-i)y. Hence there are exactly N- 

1 minimal curves. No minimal curve is lowest, except if N=2. 

&f : 

Every Lorenz curve L, has at least one point l ( i = 1 ,  ..., N-I) where the ordinate is one (by 
N 

construction). Since also (0,O) and (1,O) belong to any L,, the lowest Lorenz curve, given 1 , that is possible is the one consisting of the straight lines connecting (0,O) with 

-,I and the one connecting -,I with (1,O). So every minimal Lorenz curve is of this ( A  I 
type and, obviously, every curve of this type is minimal.They all exist, given N, since the above 

curve obtains for 

where ix=(N-i)y which is clear from the construction (L, connects (0,O) linearly with 

[' t) = (;,I) and connects the latter point with (1,O) because ix=(N-i)y Hence since 
N'C 

all these Lorenz curves exist, they intersect each other and, hence, no minimal curve can be the 

lowest except if N=2, since then there is only one minimal curve, the one connecting (0,O) 

linearly with (-?-,I) and connecting -,I with (1,O). i: I 0 

Corollarv 11.3 
1 Let A be the good concentration measure giving the area under the Lorenz curve. Then A=, 

I 2 
for every minimal Lorenz curve and A=l-,  for the highest Lorenz curve. Hence lim A=l  

N 
for the highest Lorenz curves. 

So a normalization of this measure is given by 2A-1. 

The proof is trivial. 



We will now apply this concentration theory to the study of hierarchy in digraphs, characterise 

graphs that yield the highest and the minimal Lorenz curves and interpret the results in terms of 

hierarchy in companies or in the administration and in terms of hierarchy in citation analysis. 

111. Hierarchy theory for dipraphs 

Combining the results of the two previous sections we can describe the hierarchy theory for 

digraphs (without loops and weakly connected) as follows. Let NEN and consider any graph 

(as described above) with N vertices. For each vertex i ~ { l ,  ..., N) we consider all chains that 

start in i and all chains that end in i. They are defined as follows. [ij] is a chain that starts in i if 

(ij) is an edge of the graph or if there exist k ,,...., k,,, E ( 1  ,..., N) such that (i, k,),(k,, k,) ,...., 

(b.,, k,,,),(k, j) are edges of the graph (in that order of course). In the same way we can 

define a chain U,i] that ends in i. Note that, in the above notation, all [i,k,], &{l, ..., m} are also 

chains that start in i (the same for chains ending in i). The length of a chain is the number of 

consecutive edges it contains ( e g  the length of [ij] above is 1 if (ij) is an edge of the graph or 

is m+l in the other case, using the same notation). Note that, given i , j ~ { l ,  ..., N} the chain [ij] 

(if it exists) is not always unique. Example : consider a (part) of a graph as shown in Fig. 5. 

Fig. 5 Existence of two chains between i and j. 



Here we have a chain of length 4 between i and j and one of length 1 between i and j. In our 

hierarchy theory, we will use &I these chains since, e.g. only considering the one of length one 

in Fig. 5 (corresponding to d(ij)=l, the distance between i and j) does not reveal that j is 

subordinated in 2 different ways w.r.t. i (or otherwise said, i is dominating j in 2 different 

ways), which should be taken into account in hierarchy theory : Fig. 5 is completely different 

(e.g. as an organigram in an administration) than the simple direct relation from i to j. 

We repeat now the construction of the hierarchy vector X=(o,, ..., 0,). For all i ~ ( 1 ,  ..., N} : 

0; = the sum of the lengths of all the chains that start in i (27) 

o; = the sum of the lengths of all the chains that end in i (28) 

The hierarchical number (or degree) of i is then 

Note (as explained above) that this definition is different from the one in which we only use the 

distances d(i,j) (from i) or d(j,i) (to i), for the reasons given. With the vector X=(a,, ..., oN) one 
N 

can then apply the concentration models as explained in section I1 (since oi=O). Let us 
i= l  

consider, as an example, some cases with N=4. Considering all cases is virtually impossible 

since it is easy to derive from R.C. Reid (1997), section 2.9 that there are 209 weakly 

connected digraphs without loops for N=4. To the three examples in Fig. la,b,c, we add the 

ones in Fig. 6. 



Fig. 6 Two more examples, N=4 

The hierarchical situation of each of these graphs is given by the Lorenz curves in Fig. 7. 

Fig. 7 L, for the hierarchy of the graphs in Figs. la, lb, lc, 6a, 6b. 



Fig. 1.c represents the highest Lorenz curve. Here the highest possible inequality exists in the 

sense of domination and subordination : X=(6,0,0,-6). The Lorenz curves of Figs. l.b, 6.a, 6.b 

represent the 3 minimal Lorenz curves that are possible in this case (cf Theorem I1.2), resp. 

for the vectors X=(3,-1,-1,-I), X1=(2,2,-2,-2), Xn=(l,l,l,-3). Note that all these cases 

represent equality in domination as well as equality in subordination. Finally Fig. 1.a is the 

chain, where domination and subordination are not extreme, which is intuitively obvious. The 

above example shows that the largest Lorenz curve as well as the minimal ones are all realized 

by existing graphs. 

We will now give a characterization, for general NEN, of graphs that give the largest Lorenz 

curve as well as the minimal Lorenz curves. We will hrthermore show that they are all realized 

by existing graphs, for all NEN. We first state and prove a simple but crucial lemma. 

Lemma 111.1. Suppose that 1 and 2 are two vertices in a general weakly connected digraph 

without loops and with any number N of vertices in total. Suppose that (1,2) belongs to the 

edges of this graph. Then 

Proof: Using definitions (27) and (28), it is clear that c.r;>o; since every chain that starts in 2 

is part of a chain that starts in 1. Also 01 <IS; since every chain that ends in 1 is part of a chain 

that ends in 2. Hence 

Theorem 111.1 Characterization of weakly connected digraphs without loops yielding the 

largest Lorenz curve. 

For every fixed NEN, the largest Lorenz curve is only obtained for the graph (upon a 

permutation of the vertices) in which only vertex 1 has a positive hierarchical degree (namely 

N-1), only vertex N has a negative hierarchical degree (namely 1-N) and where the vertices 

2 ,..., N-1 have a zero hierarchical degree. Moreover (1,2) ,..., (1,N-1),(2,N) ,..., (N-l,N) and 

possibly (1,N) are the only edges of the graph. 



Summarizing, we have the graph of Fig. 8 

Fig. 8 Graph yielding the largest hierarchical 

Lorenz curve 

Proof : In the previous section it was found that the maximal hierarchical Lorenz curve is 

obtained only for the vector 

, where x>O. Since a, = ... = a,., = O we have that no edge between the vertices 2 ,..., N-1 

exists, by the lemma. Since the graph is weakly connected, the vertices 2, ..., N-1 are linked to 1 

or to N or both. Only the last possibility is valid since a, = .. . = a,, = 0. Suppose there exist 

i jc(2,  .., N-11, iicj such that (1,i) and (Nj) are edges. Then since oi = aj = 0 we have that also 

(i,N) and (i,l) are edges. But this implies the existence of the loop 1-i-N-j-1, which is 

excluded. So, only the edges (1.2) ,..., (1,N-1),(2,N) ,..., (N-1,N) and possibly (1,N) exist apart 

from an interchange of the vertices 1 and N, concluding the proof (yielding also that x=3(N-2) 

or x=3(N-2)+1). 0 



Theorem 111.2 Characterization of weakly connected digraphs without loops yielding the 

minimal Lorenz curves. 

For the typical minimal Lorenz curve L, of Theorem 11.2 consisting of two straight lines : one 
1 I 

connecting (0,O) with (-,I) and one connecting (-,I) with (1,0), we have the following 
N N 

characterization of graphs of N vertices that yield L, as their hierarchical Lorenz curve : upon 

a permutation of (1, ..., N), we have that only the vertices 1, ..., i have a positive equal 

hierarchical degree x and that the vertices i+l, ..., N have a negative equal hierarchical degree y 

and the relation between x and y is : ix = (N-i)y. No edges between the vertices 1, ..., i exist and 

no edges between the vertices i+l, ..., N exist. The only edges that exist are from a vertex in 

{I  ,..., i} to one in {i+l, ..., N}, in that order. The case that every vertex in { l  ,... i) is connected 

to every vertex in (i+l, ..., N} is always a solution. This solution is unique iff P.c.d(i,N-i)=l. 

Proof : 

The given minimal Lorenz curve necessarily has i vertices (say 1, ..., i) of equal positive 

hierarchical degree x and N-i vertices (say i+l, ..., N) of equal negative hierarchical degree y, 

since L, is constructed from 

(theorem 11.2). Since these coordinates add up to zero, we have that ix=(N-i)y. No edges 

between the vertices 1, ..., i exist, otherwise their hierarchical degree would be different, by the 

lemma. The same goes for the vertices i+l, ..., N. So the only edges that can exist is between 

1 ,..., i and i+l, ..., N. Suppose there would exist an edge (k,P) and (0,k') with k,kic{l ,..., i)  and 

PC{i+l, ..., N).  Applying the lemma twice yields a+,., contradicting what we have. Hence only 

edges between 1, ..., i and i+l, ..., N, in that order, exist. The number of solutions is determined 

by the equation ix=(N-i)y. It is immediately clear that x=N-i, y=i always is a solution. It 

represents the case where every vertex in { I ,  .., i )  is connected with every vertex in {i+l, ..., N).  

We now show that this solution is the unique one iff P.c.d.(i,N-i)=l. Indeed, since y ~ { l ,  ..., i) 

and x ~ ( 1 ,  ..., N-i) necessarily, any other solution than the one above satisfies y<i. Since ix=(N- 

i)y, we have that there exists at least one prime divisor (>I) of i that is also a divisor of N-i. 



Hence O.c.d(i,N-i)>l. Conversely, let the P.c.d(i,N-i)>l. Hence there exists a prime divisor q>l 

such that N-i=qk, and i=qk2 (k,,k,~N). Hence, because ix=(N-i)y, also x=(q-P)k,, y=(q-P)k, 

(P=l, ...,q- 1) are solutions, if x,y+l and they are all realisable : connect vertex 1 with the 

vertices i+l,. . ,(i+(q-P)k,) (mod(N-it l)), vertex 2 with vertices (i+(q-P)k,+l) (modm-i+l)),. . ., 

(i+2(q-B)k,) (mod(N-i+l)) and so on until : connect vertex i with vertices (i+(i-l)(q-O)k,+l) 

(mod(N-i+l)), ...,( i+i(q-9)k,) (mod@-i+l)). Here a (mod (N-i+l)) denotes the rest of the 

division of a by N-i+l. In total, the vertices i+l, ..., N receive ix=i(q-9)k,=(N-i)(q-0)k2=(N-i)y 

links and each of these vectors have the same (negative) hierarchical degree (being -(q-P)k2) by 

construction and since (N-i)(q-P)k2 is an (N-i) multiple. Of course, each of the 1, ..., i vertices 

also have an equal positive hierarchical degree (being (q-O)k,), also by construction. This ends 

the proof of this theorem. 

The construction of nonunique minimal curves, as discussed in the above proof, is illustrated 

by the next example. 

Example : The two graphs of Fig. 9 yield the same minimal Lorenz curve 0\1=6, i=3). The 

freedom is expressed by ix=(N-i)y, as given in Theorem 11.2. 

Fig. 9 Two different (non-isomorphic) graphs yielding 

the same minimal Lorenz curve 

In case of Fig. 9a we have X=(2,2,2,-2,-2,-2) and for Fig. 9b we have X1=(3,3,3,-3,-3,-3) 
1 yielding the minimal Lorenz curve connecting linearly (0,O) with (-,I) and connecting linearly 
2 

( + , I )  with ( l , ~ ) .  



The above theorem also shows that, via the weakly connected digraphs without loops, we can 

obtain all minimal Lorenz curves, showing again that, also in this framework, no minimal curve 

is the lowest (since they all intersect). 

&I&: 

It is clear from the above characterization of minimal Lorenz curves that they are obtained in 

the cases that all dominators have equal hierarchical degree (i.e. equal power) that all 

subordinated vertices have equal hierarchical degree (i.e. are dominated in an equal way). 

The other extreme is reached in the case of the graph yielding the largest Lorenz curve : if we 

consider the vertices 2, ..., N-1 (all with zero hierarchical degree) as dominators as well as being 

dominated, we have indeed that, in this situation, the inequality (in hierarchical degree) 

between the dominators is maximal ; the same goes for the inequality between the ones that are 

dominated. 

This shows that our model yields a good way to measure hierarchy in graphs. This is an 

important tool for measuring hierarchy in companies and administrations and in citation graphs 

(see Egghe and Rousseau (1990)). 

&@: 

In Botafogo, Rivlin and Shneiderman (1992), an attempt has been given to describe hierarchy 

in graphs. Instead of using the lengths of all chains (as we do), they use, per vertex i ~ ( 1 ,  ..., N), 

all d(i,j) and all d(i,i). They are analogous (but different) fiom our IS; and a;. The difference is 

discussed in the beginning of this section, cf. Fig. 5. Also, our proofs of the results of the 

hierarchy theory for graphs, especially the one of lemma 111.1 is false if we use distances : see 

Fig. 10. 



Fig. 10 Counterexample to lemma 111.1 if we use distances 

instead of lengths of chains in the definition of o,, o, 

Indeed, denote o',, o', the analogues of o,, o, but now using "all distances" instead of "lengths 

of all chainsn.Then we have 

o', = 4 < a', = 6-1 = 5, 

showing that lemna 111.1 is not true for the of,, o', 

But, as explained in the beginning of this section, it is more logical to use lengths of chains, 

instead of distances (as is done in Botafogo, Rivlin and Shneiderman (1992) and De Bra 

(2000)) to explain hierarchy (in short : what "makes" hierarchy are the chains!). The two 

notions coincide for chains, obviously. In Botafogo, Rivlin and Shneiderman (1992) and De 

Bra (2000), a',' - 0'; (for a vertex i) is called the prestige of i. They only use 

Twice this number is, what they call, "stratum" (as is easily seen from their formulae). For 

chains we have that z+ = x: . It is clear from our theory that only using x+ (or x: ) is 

a too weak measure to describe hierarchy. 



Open problem. 

Characterise the graphs for which 

(i) a, = a', for all %{I, ..., N) 

(of course, (i) - (ii)). It is clear that chains satisfy this but it is easy to see that also other 

graphs can satisfy this, see the graph in Fig. 11 

Fig. 11 Example of a graph where prestige 

equals hierarchical degree 

Note that, by definition, we always have 

for all i ~ ( 1 ,  ..., N) since distance is determined by the length of the shortest chain between two 
't . - 

points : this is used in ai and ai . The lengths of all chains between two points is used in 

cr,' and a;. 



IV. Hierarchv theorv, applied to penera1 chains. 

We will give general formulae for the hierarchical Lorenz curves for chains (general NEN) and 

for the good concentration measure 2A-1 of section I1 (corollary 11.3) 

Fig. 12 A general chain of N vertices 

Theorem IV. 1 

Let G be a unidirectional chain with N vertices. If N is even, then the vector X=(cr,, ...,cr,) of 

hierarchical degrees is given by 

and L, connects (linearly) the points (in that order) : 

and then symmetrically to (1,O) 

If N is odd, then the vector X=(ol, ...,cr,) of hierarchical degrees is given by 



and L, connects (linearly) the points (in that order) 

and then symmetrical to (1,O) 

Proof: N even -- 
It is easy to see that 

N - 
2 N~ C+ = C ok = - as is easily seen and hence L, is as given. 

k - l  8 



N d  

It is easy to see that 

2 

N3-N as is easily seen and hence L, is as given. C+ = C 0 , = -  
k = ~  8 

Note: 

The last note of the previous section explain that in chains (as studied here), the number 2 c +  

is what is called in Botafogo, Rivlin and Shneiderman (1992) "stratum" - see also De Bra 

(2000). The formulae for c+ above also appear in Botafogo, Rivlin and Shneiderman (1992). 



From theorem IV.l we can derive the values of 2A-1 (the normalization of A, being the area 

under the Lorenz curve) for general chains. 

Theorem IV.2. 

Let G be a unidirectional chain with N vertices. Let A be the area under its hierarchical Lorenz 

curve. Then the normalized measure 2A-1 equals 

1 if N is even and equals - for all N odd. So, if N is large, 
3 

for all chains and = becomes = for all odd N. 

Proof: 

Rather than calculating the area A from left to right, separating the area in pieces of abscissa 

1 length -, we will work from bottom to top, separating the area in pieces of ordinate length 
N . . 

'i N N-1 - (i=l, ..., - (N even) or - (N odd)) which is much easier, based on theorem IV.1. 
C+ 2 2 

Let, first, N be even. We have 



Let now N be odd. Now 

Proceeding as in the case N even, we finally reach A = 5 ,  for all odd N. Hence 
3 

for all chains with an odd number of vertices 

Note : It is easy to see that, if N is even, 

where h, h+, denote the hierarchical Lorenz curve of the chain with N resp. N+l vertices. 

But as indicated above (theorems IV. 1, IV.2), L+L,+, for all N large. 



References 

P.D. Allison (1978). Measures of inequality. American Sociological Review 43, 865-880. 

A.B. Atkinson (1970). On the measurement of inequality. Journal of Economic Theory 2, 244- 

263 

R.A. Botafogo, E. Rivlin and B. Shneiderman (1992). Structural analysis of hypertexts : 

identifying hierarchies and useful metrics. ACM Transactions on Information Systems 

10(2), 142-180. 

H. Dalton (1920). The measurement of the inequality of incomes. The Economic Journal 30, 

348-361. 

P. De Bra (2000). Using hypertext metrics to measure research output levels. Scientometrics 

47(2), 227-236. 

L. Egghe and R. Rousseau (1990). Introduction to Informetrics. Quantitative Methods in 

Library, Documentation and Information Science. Elsevier Science Publishers, 

Amsterdam. 

C. Gini (1909). I1 diverso accrescimento delle classi sociali e la concentrazione della richezza. 

Giornali degli Economisti serie 1 I, 37. 

G.H Hardy, J.E. Littlewood and G. Polya (1929). Some simple inequalities satisfied by convex 

functions. Messenger Math. 58, 145-152. 

G.H. Hardy, J.E. Littlewood and G. Polya (1952). Inequalities. Cambridge University Press. 

Cambridge, UK. Reprinted in 1988. 

M.O. Lorenz (1905). Methods of measuring concentration of wealth. Journal of the American 

Statistical Association 9, 209-219. 

A.W. Marshall and I. Olkin (1979). Inequalities : Theory of Majorization and its Applications 

Mathematics in Science and Engineering, Volume 143, Academic Press, New York. 

R.F. Muirhead (1903). Some methods applicable to identities and inequalities of symmetric 

algebraic functions of n letters. Proceedings of the Edinburgh Mathematical Society 21, 

144-157. 

R.C. Reid (1997). Enumeration. In : Graph Connections (L.W. Beineke and R.J. Wilson, eds). 

Oxford Science Publications, Clarendon Press, Oxford. 

R. Rousseau and P. Van Hecke (1999). Measuring biodiversity. Acta Biotheoretica 47, 1-5. 



C. Shannon (1948). A mathematical theory of communication. Bell System Technical Journal 

28, 379-423. 

H. Theil (1967). Economics and Information Theory. North-Holland, Amsterdam. 

R.J. Wilson (1972). Introduction to Graph Theory. Longman, London. 


