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Abstract-In digraphs one has a hierarchy based on the unidirectional order between the vertices 
of the graph. We present a method of measuring degrees of hierarchy as expressed by the inequality 
that exists between the vertices’ hierarchical numbers. In order to do so, we need to extend the 
classical Lorenz theory of concentration (curves and measures) for a set of numbers II,. , IN to the 
case that C,“=, 1% = 0. This is then applied to the set of hierarchical numbers of the vertices of the 
graph. A graph has a more concentrated hierarchy than another one if the Lorena curve of the first 
one is above the Lorenz curve of the second one, hereby expressing that the inequality in domination 
in the first case is larger than in the second case, and that the inequality in subordination in the 
first case is larger than in the second case. We also determine maximal and minimal Lorenz curves 
m this setting and characterize the graphs that yield these curves. Based on this theory, we also 
determine good measures of hierarchical concentration in graphs. Applications can be given in the 
study of organigrams in companies and administrations and in citation analysis. @ 2002 Elsevier 
Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Consider a general digraph (directed graph) G in which there are no loops, let the number of 

vertices be N E N. We also suppose that the graph is weakly connected, i.e., that the underlying 

undirected graph of G consists of one component (see [l]). In fact, if this is not the case, we can 

apply the results from this paper to the different components of the graph. We will number the 

vertices by denoting them as i, i = 1,. . . , N. For each vertex i E (1,. . . , N} we can consider all 

chains that have i as the starting point. Their lengths are an indication of the role of vertex i in 

the graph from the point of view of “domination”. In terms of a graph representing an organigram 

in a company or an administration, they indicate in what way vertex (person) a is a direct or 

indirect boss of other vertices (persons) j. Conversely, we can consider all chains that have i as 

an endpoint. Now, their lengths are an indication of the role of vertex i in the graph from the 

point of view of “subordination”. In the same example as above, they indicate in what way this 

person has direct or indirect bosses. The two together indicate the general hierarchical position 
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of vertex i in the graph G. Let us denote, for every i E (1,. . . , N} 

o,* = the sum of the lengths of the chains that start in i, 

o‘i = the sum of the lengths of the chains that end in i. 

(1) 

(2) 

We will denote 

5.i = Crc - CY,;, (3) 

and call this the hierarchical number (or degree) of i in graph G. Note, that it is obvious that 

N 

c ui = 0. (4 
i=l 

EXAMPLES. (N = 4) 

Figure 1. Three exarnpies, N = 4. 

In case of the chain (Figure la) we have 0;’ = 6, UC = 0, uz = 3, CT; = 1, fl$ = 1, a; = 3, 

oqf = 0, aa = 6. Hence, CTI = 6, CQ = 2, ~73 = -2, a4 = -6, Cui = 0. 

In case of the graph in Figure lb we have u: = 3, a; = 0, C+ = 0,~~: = 1 (i = 2,3,4). Hence, 

cri = 3, di = -1 (i = 2,3,4), ccr< = 0. 

In case of the graph in Figure lc we have a;’ = 6, a: = 0, a$ = of = 1, a; = oq = I, 

CT: = 0, a; = 6. Hence, g1 = 6, us = ~7~ = 0, ~7s = -6, Cai = 0. 

So, for each graph G as described above, we have a family of numbers of hierarchy (~1, . . . , IThI, 

representing degrees of domination and of subordination. The examples in Figures la and lc show 

that the domination degrees have (apart from the - sign) the same pattern as the subordination 

degrees, but the example in Figure lb shows that this is not always the case, here vertex I. 

dominates but the subordination degrees of 2, 3, and 4 are the same. In the sequel, we want 

to study the inequality of the numbers ~1,. . . , LrN in its totality, inequality in domination and 

subordination. 

The study of inequality (also called concentration) goes back to the beginning of the 20th 

century when it was used to measure social in~ua~ty, e.g., as expressed by the income inequaiity 

is a social group. We mention [2-91 as some historical papers amongst the many other ones. Of 

course, in [6] one emphasizes more on similarity (being opposite to concentration) as one also 

does in biometry where one uses the term diversity, see, e.g., IlO]. The basics of concentration 

theory can be summarized as follows. Let X = (51,. . . , z~> be a vector of positive numbers, 

including zero (but not all of them zero). We will always arrange the zi decreasingly, although 

an equivalent theory can be given for the increasing order {see 1111). 

Define,foreachi=l,...,N 
xi a~=-----. 

2 xk 

(5) 

k--l 
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N 

c xk > 0. (6) 
k=l 

The Lorenz curve LX of X is the polygonal line connecting (0,O) with (l/N, ai), then connecting 

this point with (2/N, ai + a~), and so on, hence, connecting 

i=l,...,N. 

Note, that for i = N this point is (1,l). See Figure 2 for an example. 

- 

Figure 2. Lorenz curve Lx for X = (6,3,2,1) connecting (O,O), (l/4,1/2), (l/2,3/4), 
(3/4,11/12), and (1,l). 

(7) 

The diagonal of the unit square, connecting (0,O) and (1,1) represents the Lorenz curve for 

the vector X = (x,x,. . . , x)(x > 0), the least concentrated situation since all pi are equal. This 

is the lowest Lorenz curve that is possible. The highest possible Lorenz curve (for fixed N E IV) 

is the one of X = (l,O, . . . ,O) connecting (0,O) with (l/N, 1) and then with (1,l). 

Let X = (xi, . . . , ZN) and X’ = (xi, . . . , xx) be two vectors. We say that X’ is larger than X 

in the Lorenz sense, denoted X 5 X’ if Lx 5 LX,. Unless X = X’, X’ is then more concentrated 

than X (as can be seen by applying elementary transfers-we do not go into this and we refer 

the reader to [ll] or to Egghe et al. (121). The “degree” of concentration can be measured by 

using good measures of concentration C, i.e., measures that respect the Lorenz order 5. In other 

words, these are measures satisfying X 5 X’ and X # X’ + C(X) < C(X’). Examples of good 

measures of concentration abound (see the references given above). We only give three examples. 

The coefficient of variation 
I&a 

P’ 

(also V2 can be used), where 0 and p are the standard deviation and the average of the vector X. 

Note, that V2 is the normalized version of Cc1 a:, where ai is given by (5). Another measure 

is the one of Theil 

Th=$g(F)ln(F), (9) 

which is nothing else than the “concentration” version of the diversity measure entropy [6]. 

Finally, the area between the Lorenz curve and the diagonal connecting (0,O) and (1,1) is also 

obviously a good concentration measure. The normalized version of it is nothing else than the 

famous Gini index, used in econometrics (41. 
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It is this type of concentration theory that we will introduce in graph theory in order to 

measure the concentration (inequality) in domination and subordination. However, here, the 

numbers g1 can also be negative and they even add up to zero (4), contradicting (6) and making 

the construction of the Lorenz curve of (cT~, . . . , ci~) impossible because of (5). In the next 

section, we will extend the theory of concentratian to vectors X = (~1,. . . ,XN) where some 5, 

can be negative, including the case c,“=, Xk = 0. Maximal and minimal Lorenz curves will 

be determined and good measures of concentration will be given. The third section will apply 

this concentration theory to the vector ((~1,. . . ,cr~) of hierarchical degrees of the vertices of a 

graph, This represents the way to measure the inequality in domination and subordination at 

the same time. The maximal and minimal Lorenz curves will be characterized by the graphs (for 

general N E IV) that yield these extreme Lorenz curves. We will also compare this theory with 

some existing “measures of hierarchy” which are-in the author’s opinion-too weak to describe 

hierarchy in a graph. Examples of application are given. In Section 4, we illustrate the results 

on a general chain of N vertices. 

2. LORENZ CONCENTRATION THEORY FOR GENERAL 
VECTORS X = (ccl, . . . , ZN) 

We will begin with the case that 
N 

c xk > 0, PO) 
k=l 

(but some Z, can be negative). If EN_ k_l 2k < 0, this model can still be used by applying it to the 

vector -X = (-21,. . . , -EN). The case cc!‘=, Xk = 0 will be handled in Section 2.2. 

2.1. Concentration Theory in Case 5 xk > 0 
k=l 

This case is very simple. In fact, we act exactly as in the case that all x2 are positive, by 

applying (5). We again obtain a Lorenz curve connecting (0,O) with (1,1) but now the curve can 

the unit square. Figure 3 gives an example. 

Figure 3. Lorenz curve Lx for X = (5.4,-h-2) connecting (O,O), (l/4,5/6), 

(f/2,3/2), (3/4,4/3), and (&II. 
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Let X = (ICI,. . ,ZN), X’ = (xi,. . . ,sh) be two vectors such that c,“=, 21, # 0, c,“=, XL # 0. 

Upon multiplication by -1 (possibly) we can assume c,“=, xk > 0, c,“=, CC; > 0 and we also 

suppose X and X’ to be decreasing. We say that X’ is larger than X in the Lorenz sense, denoted 

X 5 X’ if Lr; 5 Lx! and we say that X’ is more concentrated than X (unless X = X’). Because 

of this construction the following theorem of Hardy, Littlewood and Polya [13,14]-see also [ll] 

applies. 

THEOREM 2.1. (See [14].) If X = (~1,. . . , ZN) 5 X’ = (IT:, . . . , zh) and if they are decreasing, 

then 

&t+k) 5 -&%‘b;)~ (11) 
k=l k=l 

(and <, if X # X’) for all continuous convex functions cp. Here, 

Xi 
(& = - 

5 Xj’ 
(12) 

j=l 

X! 
a!=Z. 

z &; 

(13) 

j=l 

Since, e.g., q(x) = x2 is continuous and convex we are able to provide a good measure of 

concentration for our model: 

&:. (14) 
k=l 

This measure can then be normalized, if necessary. Of course, as in the classical case, the 

measure = area between Lx and the diagonal connecting (0,O) and (1, l), is also a good measure 

of concentration, hereby generalizing Gini’s index. 

Applications of this theory can be the measurement of inequality (fluctuations) of the tem- 

perature in a certain area over a certain time period (e.g., a year), which then can be compared 

with the same in another area. We will not go into this since our main goal is the study of the 

hierarchy of digraphs. 

2.2. Concentration Theory in Case 5 xk = 0 
k=l 

Of course, we assume that not all x, are zero and that the xi are decreasing. Denote 

I+ = {i E (1,. . , iv}~~cc2 > O}, (15) 

I_ = {i E (1,. . , N}l/Xi < 0). 06) 

Hence, 

so, 

cxk= xxi+ ~xi=o 
k=l iEI+ iEI_ 

c+ 7: c 2, = - c 2%. 

iEI+ iEI_ 

(17) 

(18) 

Equation (18) enables us to develop a concentration theory (or inequality theory) for vectors X 

for which the coordinates add up to zero, hereby studying the concentration in (xi)ie~+ as well 

as the concentration in (~i)~e~_. We proceed as follows. Instead of (5) we calculate 

aiLi, 
C+ (19) 
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foralli=l,... , N. Because of (18) we have 

z: cri = 1, 

~Ei+. 
N 

c Crk = 0. (21) 
k=l 

We now form the polygonal curve connecting (0,O) with (l/N,ai), connecting (l/N,crr) with 

(2/N, al + as) and so on. 3ecause of the above this curve goes from (0,O) to (2, I), where 

a:&! 
N' 

then from (z, 1) to (y, l), where 

y = N - II-1 
N ’ 

w-9 

and from (y, 1) to (1,O) via the points (i/N, Et_, CQ) where i E I-. z I y since ]I- j -I- iI+1 I N. 

If no 2, is zero, then z = y since jl_ J + 11+\ = N. An example is given in Figure 4. 

115 35 3!5 41’5 1 

Figure 4. Lorenz curve Lx for X = (4, ~$0, -1, -5) connecting (O,O), (l/5,2/3), 
@/5, I), 13/‘5,11, (4/5, S/6), (LO). 

Intuitively speaking Lx consists of a “Lorenz curve” for the (Z&J+ (from (0,O) to (x, l}) and 

of a “Lorenz curve” for the (z~),~I_ (from (y, 1) to (1, 0) and mirrored over the vertical line with 

abscissa y). This is why we have here a method of measuring the concentration in the (3c,),e~+, 

as well as the one in the (zc~)~~I.. . The globai degree of inequality can then be compared with 

the same for another vector. 

Indeed, let X = (21,. . . ,ZN) and X’ = (xi,. . . , x’~) be two decreasing vectors such that 

$&=&‘k=o. (24) 
k=l k=l 

We say that X’ is larger than X in the Lorenz sense, denoted X < X’ if LX 2 LX,. If X # X’, 

then X’ represents a more concentrated situation in both the positive and negative values. This 

will enable us, in applications (see next section) to measure the hierarchical degree (both in 

domination and subordination as one system) in a digraph, with obvious practical applications. 

Using again, the theorem of Hardy, Littlewood and P6lya (which is also valid for the order 5 

here), we arrive at the folIowin~ good measure of concentration in this case: 

Again, the area between L-y and the x-axis is also a good concentration measure. 
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NOTE. We repeat that the present concentration theory measures (at the same time) the con- 

centration of (z,),~I+ and of (~,),EI_ . It does not measure the concentration of X = (x1,. . . , zN) 

itself. This is illustrated by the following example. Let X = (2,1, -1, -2) and X’ = (2,2, -2, -2). 

Although X’ looks more “concentrated” than X (in an intuitive way of speaking), the inequality 

in the positive as well as in the negative coordinates of X’ is smaller than in the comparable 

coordinates of X. 

This is also verified by using, e.g., (25) 

g (fg2 =2 ((a)‘+ (i)‘) = ;, 

gg)2=2((;)2+(;)2) =l 

This clearly illustrates the value of concentration theory for vectors X = (~1, . . ,XN) for which 

c,“=, x/, = 0. 
The highest possible Lorenz curve in this setting (and N E N fixed) is (obviously) the one 

connecting (0,O) with (l/N, l), (l/N, 1) with ((N - 1)/N, 1) and the latter point with (l,O). It 

is obtained for 

x = (2,O )...) 0,-Z), (26a) \ / 
N-2 

where 5 > 0, and only for this type of vector. There is no lowest possible Lorenz curve but we 

can characterize all minimal Lorenz curves that are possible, i.e., curves L for which there does 

not exist another Lorenz curve L’ such that L’ < L. The following theorem can be proved. 

THEOREM 2.2. Let N E N be fixed. Let X = (xl,. . . , XN) be decreasing with cr!‘=, xk = 0. 

Then, Lx is minimal iff Lx consists of two straight lines, one connecting (0,O) with (i/N, 1) and 

one connecting (i/N, 1) with (1, 0), (i = 1, . . . , N - 1). Such a curve is obtained for 

x = (x ,..‘) x,-y ).‘.) -y), 
-- 

1 N-1 

(26b) 

(and only for this type of vector) where x, y # 0, and where ix = (N - i)y. Hence, there are 

exactly N - 1 minimal curves. No minimal curve is lowest, except if N = 2. 

PROOF. Every Lorenz curve LX has at least one point i/N (i = 1, . . . , N - 1) where the ordinate 

is one (by construction). Since also (0,O) and (1,O) belong to any LX, the lowest Lorenz curve, 

given (i/N, l), that is possible is the one consisting of the straight lines connecting (0,O) with 

(i/N, 1) and the one connecting (i/N, 1) with (l,O). So, every minimal Lorenz curve is of this 

type and, obviously, every curve of this type is minimal. They all exist, given N, since the above 

curve obtains for 

X=(~‘.l.‘~\-Y’.;.‘-!$)’ 

z N-1 

where ix = (N - i)y which is clear from the construction (Lx connects (0,O) linearly with 

(i/N, ix/C+) = (i/N, 1) an d connects the latter point with (1,0) because ix = (N - i)Y. Hence, 

since all these Lorenz curves exist, they intersect each other and, hence, no minimal curve can be 

the lowest except if N = 2, since then there is only one minimal curve, the one connecting (0,O) 

linearly with (l/2,1) and connecting (l/2,1) with (l,O). I 

COROLLARY 2.3. Let A be the good concentration measure giving the area under the Lorenz 

curve. Then, A = l/2 for every minimal Lorenz curve and A = 1 - l/N for the highest Lorenz 

curve. Hence, limN4a A = 1 for the highest Lorenz curves. 
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So, a normalization of this measure is given by 2A - 1. The proof is trivial. 

We will now apply this concentration theory to the study of hierarchy in digraphs, characterise 

graphs that yield the highest and the minimal Lorenz curves and interpret the results in terms 

of hierarchy in companies or in the administration and in terms of hierarchy in citation analysis. 

3. HIERARCHY THEORY FOR DIGRAPHS 

combining the results of the two previous sections we can describe the hierarchy theory for 

digraphs (without loops and weakly connected) as follows. Let N f W and consider any graph 

(as described above) with N vertices. For each vertex i E (1,. . +, N) we consider all chains 

that start in i and all chains that end in i. They are defined as follows. [i, 31 is a chain that 

starts in i if (i, j) is an edge of the graph or if there exist kr, . . . , k, E (1,. . . , N} such that 

(6 kl), (kl, k2), . . . ? (bn--l~ b?d, ffhj) are edges of the graph {in t,hat order of course). In the 

same way we can define a chain [j, i) that ends in i. Note that, in the above notation, all ii, ice], 

fE (I,... , m) are also chains that start in i (the same for chains ending in i). The Iength of a 

chain is the number of consecutive edges it contains (e.g., the Iength of /i,j] above is 1 if (i,j) is 
an edge of the graph or is m f 1 in the other case, using the same notation). Note, that given 

i,j E {l,... , N) the chain [i,j] (if it exists) is not, always unique. Example, consider a (part) of 

a graph as shown in Figure 5, 

Figure 5. Existence of two chains between i and j. 

Here, we have a chain of length 4 between i and j and one of length 1 between z and j. In our 

hierarchy theory, we will use all these chains since, e.g., only considering the one of length one 

in Figure 5 (corresponding to d(i, j) = 1, the distance between i and j) does not revear that j is 

subordinated in two different ways w.r.t. i (or otherwise said, i is dominating j in two different 

ways), which should be taken into account in hierarchy theory. Figure 5 is completely different 

(e.g., as an organigram in an administration) than the simple direct relation from z to j. 

We repeat now the construction of the hierarchy vector X = (al,. . , a~). For all i E 

(l,*.*,N) 

0: = the sum of the lengths of all the chains that start in i, (27) 

a, = the sum of the lengths of all the chains that end in z. (28) 

The hierarchical number (or degree) of i is then 

u,=o2+ -0;. (29) 
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(4 (b) 

Figure 6. Two more examples, N = 4. 

I.b 6.a 6.b 

-1.c 
-1.a 

II4 I/2 314 1 

Figure 7. LX for the hierarchy of the graphs in Figures la-k, 6a, and 6b 

Note (as explained above), that this definition is different from the one in which we only use the 

distances d(i,j) (from i) or d(j, i) (to z), for the reasons given. With the vector X = (gl,. . . ,CJN) 

one can then apply the concentration models as explained in Section 2 (since C,“=, 0% = 0). Let 

us consider, as an example, some cases with N = 4. Considering all cases is virtually impossible 

since it is easy to derive from Section 2.9 of [15] that there are 209 weakly connected digraphs 

without loops for N = 4. To the three examples in Figures la-lc, we add the ones in Figure 6. 

The hierarchical situation of each of these graphs is given by the Lorenz curves in Figure 7. 

Figure lc represents the highest Lorenz curve. Here, the highest possible inequality exists in 

the sense of domination and subordination X = (6,0,0, -6). The Lorenz curves of Figures lb, 6a, 

and 6b represent the three minimal Lorenz curves that are possible in this case (cf. Theorem 2.2), 

respectively, for the vectors X = (3, -1, -1, -l), X’ = (2,2, -2, -2), X” = (l,l, 1, -3). Note, 

that all these cases represent equality in domination as well as equality in subordination. Finally, 

Figure la is the chain, where domination and subordination are not extreme, which is intuitively 
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obvious. The above example shows that the largest Lorenz curve as well as the minimal ones are 
all realized by existing graphs. 

We will now give a characterization, for general N f N, of graphs that give the largest Lorenz 
curve as well as the minimal Lorenz curves. We will furthermore show that they are all realized 
by existing graphs, for all N E N. We first state and prove a simple but crucial lemma. 

LEMMA 3.1. Suppose that 1 and 2 are two vertices in a general weakly connected digraph without 
Ioops and with any number N of vertices in total. Suppose that (1,2) belongs to the edges of 
this graph. Then, 

CT1 > cr2. (30) 

PROOF. Using definitions (27) and (28), it is clear that 0: > CY~ since every chain that starts 
in 2 is part of a chain that starts in 1. Also ot_ < CT; since every chain that ends in 1 is part of 
a chain that ends in 2. Hence, 

THEOREM 3.1. CHARACTERIZATION OF WEAKLY CONNECTED DIGRAPHS WITHOUT LOOPS 

YIELDING THE LARGEST LORENZ CURVE. For every fixed N E N, the largest Lorenz curve is 
only obtained for the graph (upon a permuta~jon of the vertices) in which only vertex 1 has a 
positive hierarchical degree (namely N - l), only vertex N has a negative hierarchical degree 
[namely 1 - N) and where the vertices 2,. . . , N - 1 have a zero hierarchical degree. Moreover, 

(1,2),..., (1, N - l), (2, N), . . , (N - 1, N) and possibly (1, N) are the’only edges of the graph. 

Summarizing, we have the graph of Figure 8. 

1 

N-l 

Figure 8. Graph yielding the largest hierarchical Lorenz curve. 

PROOF. In the previous section, it was found that the maximal hierarchical Lorenz curve is 
obtained only for the vector 

x = (2, 0,. . . ,o, -z), 

where x > 0. Since 1~2 = . . . = CTN__~ = 0 we have that no edge between the vertices 2,. . . , N - 1 

exists, by the lemma. Since the graph is weakly connected, the vertices 2,. . . , N - 1 are linked 
to 1 or to N or both. Only the last possibility is valid since 02 = +. . = ON-1 = 0. Suppose there 

exist i,j E (2,. . . , N - l}, i # j such that (1, i) and (N, j) are edges. Then, since (T, = ‘~j = 0 
we also have that (i, N) and (j, 1) are edges. But, this implies the existence of the loop 1 --+ i --f 
N~~~l,whichisexcluded. So,onIytheedges(l,2) ,..., (l,N-1),(2,N) ,..., (N-1,N) 
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and possibly (1, N) exist apart from an interchange of the vertices 1 and N, concluding the proof 

(yielding also that z = 3(N - 2) or 2 = 3(N - 2) + 1). I 

THEOREM 3.2. CHARACTERIZATION OF WEAKLY CONNECTED DIGRAPHS WITHOUT LOOPS 

YIELDING THE MINIMAL LORENZ CURVES. For the typical minimal Lorenz curve Lx of Thec- 

rem 2.2 consisting of two straight lines, one connecting (0,O) with (i/N, 1) and one connecting 

(i/N,l) with (l,O), we have the following characterization of graphs of N vertices that yield 

Lx as their hierarchical Lorenz curve: upon a permutation of (1,. . . , N}, we have that only the 

vertices 1, . . . , i have a positive equal hierarchical degree x and that the vertices i + 1, . . . , N have 

a negative equal hierarchical degree y and the relation between x and y is: ix = (N - i)y. No 

edges between the vertices 1,. . . , i exist and no edges between the vertices i + 1,. . . , N exist. 

The only edges that exist are from a vertex in { 1,. . . , i} to one in {i + 1,. . . , N}, in that order. 

The case that every vertex in { 1, . . . , i} is connected to every vertex {i + 1,. . . , N} is always a 

solution. This solution is unique iff 1.c.d. (i, N - i) = 1. 

PROOF. The given minimal Lorenz curve necessarily has i vertices (say 1, . . . , i) of equal positive 

hierarchical degree x and N - i vertices (say i + 1, . . . , N) of equal negative hierarchical degree y, 

since Lx is constructed from 

X = (WCY, ‘,’ , -y), 

I N-2 

(Theorem 2.2). Since these coordinates add up to zero, we have that ix = (N - i)y. No edges 

between the vertices 1, . . . , i exist, otherwise their hierarchical degree would be different, by the 

lemma. The same goes for the vertices i + 1,. . , N. So, the only edges that can exist is between 

1 . . 7 
aid 

i and i+ 1, . . . , N. Suppose there would exist an edge (k, C) and (a, lc’) with /c, k’ E { 1, . . . , i} 

e E {i + 1,. . . , N}. Applying the lemma twice yields ok > ok’, contradicting what we have. 

Hence, only edges between 1, . . . , i and i + 1, . . . , N, in that order, exist. The number of solutions 
is determined by the equation ix = (N - i)y. It is immediately clear that x = N - i, y = i always 

is a solution. It represents the case where every vertex in { 1,. . . , i} is connected with every 

vertexin{i+l,... , N}. We now show that this solution is the unique one iff 1.c.d. (i, N - i) = 1. 

Indeed, since y E (1,. . . , i} and x E (1,. . . , N - i} necessarily, any other solution than the 

one above satisfies y < i. Since ia: = (N - i)y, we have that there exists at least one prime 

divisor (> 1) of i that is also a divisor of N - i. Hence, 1.c.d. (i, N - i) > 1. Conversely, let 

the 1.c.d. (i, N - i) > 1. Hence, there exists a prime divisor q > 1 such that N - i = qkl 

and i = qk2 (kl,lc2 E IV). Hence, because ix = (N - i)y, also x = (q - !)Icl, y = (q - [)A3 

(e = l,...,q- 1) are solutions, if x, y # 1 and they are all realisable: connect vertex 1 with 

the vertices i + 1,. . . , (i + (q - @I) (mod(N - i + l)), vertex 2 with vertices (i + (q - a)/~, + 1) 

(mod(N-i+l)),...,(i+2(q_Qkl) (mod(N-i+l)) d an so on until: connect vertex i with 

vertices (i+(i-l)(q-e)lcl+l) (mod(N-ifl)), . . . , (i+i(q-e&l) (mod(N-i+l)). Here, a (mod 

(N - i + 1)) denotes the rest of the division of a by N - i + 1. In total, the vertices i + 1,. . , , N 
receiveix = i(q-!)lcl = (N-i)(q-C)kz = (N-i)ylinksandeachofthesevectors havethesame 

(negative) hierarchical degree (being -(q - e)k,) by construction and since (N - i)(q - C)kz is an 

(N - i) multiple. Of course, each of the 1, . . . , i vertices also have an equal positive hierarchical 

degree (being (q - C)kl), also by construction. This ends the proof of this theorem. I 

The construction of nonunique minimal curves, as discussed in the above proof, is illustrated 

by the next example. 

EXAMPLE. The two graphs of Figure 9 yield the same minimal Lorenz curve (N = 6, i = 3). 

The freedom is expressed by ix = (N - i)y, as given in Theorem 2.2. 

In case of Figure 9a we have X = (2,2,2, -2, -2, -2) and for Figure 9b we have X’ = 
(3,3,3, -3, -3, -3) yielding the minimal Lorenz curve connecting linearly (0,O) with (l/2,1) 
and connecting linearly (l/2,1) with (l,O). 
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(4 (b) 
Figure 9. Two different (nonisomorphic) graphs yielding the same minima1 Lorenz 
curve. 

The above theorem also shows that, via the weakly connected digraphs without loops, we can 

obtain all minimal Lorenz curves, showing again that, also in this framework, no minimal curve 

is the lowest (since they all intersect). 

NOTE. It is clear from the above characterization of minimal Lorenz curves that they are obtained 

in the cases that all dominators have equal hierarchical degree (i.e., equal power) and that all 

subordinated vertices have equal hierarchical degree (i.e., are dominated in an equal way). 

The other extreme is reached in the case of the graph yielding the largest Lorenz curve: if 

we consider the vertices 2,. . . , N - 1 (all with zero hierarchical degree) as dominators as well as 

being dominated, we have indeed that, in this situation, the inequality (in hierarchical degree) 

between the dominators is maximal, the same goes for the inequality between the ones that are 

dominated. 

This shows that our model yields a good way to measure hierarchy in graphs. This is an 

important tool for measuring hierarchy in companies and administrations and in citation graphs 

(see [12]). 

NOTE. In [lS], an attempt has been given to describe hierarchy in graphs. Instead of using the 

lengths of all chains (as we do), they use, per vertex i E (1, *. . , N}, all d(i, j) and all d(j, i). They 

are analogous (but different) from our a: and a,. The difference is discussed in the beginning 

of this section, cf. Figure 5. Also, our proofs of the results of the hierarchy theory for graphs, 

especially the one of Lemma 3.1 is false if we use distances, see Figure 10. 

Figure 10. Counterexample to Lemma 3.1 if we use distances instead of lengths of 

chains in the definition of 01, ~72. 

Indeed, denote Q:, CT& the analogues of ~1, ~72 but now using “all distances” instead of “lengths 

of all chains”. Then, we have 

5:=4<0+6-1=5, 

showing that Lemma 3.1 is not true for a:,~;. 

But, as explained in the beginning of this section, it is more logical to use lengths of chains, 

instead of distances (as is done [16,17]) to explain hierarchy (in short, what “makes” hierarchy 

are the chains!). The two notions coincide for chains, obviously. In [16,17], Q:+ - r~- (for a 

vertex i) is called the prestige of i. They only use 
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Twice this number is, what they call, “stratum” (as is easily seen from their formulae). For 

chains we have that C+ = Ck. It is clear from our theory that only using C+ (or C’+) is a too 

weak measure to describe hierarchy. 

Open Problem 

Characterise the graphs for which 

(i) a,=o:foralliE{l,...,N}, 

(ii) C+ = C’,, 

(of course, (i) + (ii)). It is clear that, chains satisfy this but it is easy to see that also other 

graphs can satisfy this, see the graph in Figure 11 

1 

/JL 

2 

3 4 

Flgure 11. Example of a graph where prestige equals hierarchical degree. 

Note that, by definition, we always have 

a,+ > u;+, a, 2 a;-, 

for all i E {l,... , N} since distance is determined by the length of the shortest chain between 

two points: this is used in CT:’ and c:-. The lengths of all chains between two points is used in 

c,+ and a,. 

4. HIERARCHY THEORY, APPLIED TO GENERAL CHAINS 

We will give general formulae for the hierarchical Lorenz curves for chains (general N E N) 

and for the good concentration measure 2A - 1 of Section 2 (Corollary 2.3) 

l ; = ; = ; *_______-. 

1 2 3 4 N-l N 

Figure 12. A general chain of N vertices. 

THEOREM 4.2. Let G be a unidirectional chain with N vertices. If N zs even, then the vector 

x = (g1,... , 0~) of hierarchical degrees is given by 

N(N-1) N(N-3) N(N-5) N N N(N - 5) 
2 1 2 7 2 l...l,?-,l...l- 2 , 

N(N - 3) N(N - 1) 
(32) 

- 
2 >- 2 1 

(33) 

and Lx connects (linearly) the points (in that order) 

(O,O), yNNJ ,(yy) ,(iy;2-3’) ,...) (g), ( 
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and then symmetrically to (1,O). 

If N is odd, then the vector X = (~1, . . . , ON) of ~ier~chica~ degrees is given by 

and L;y connects (linearly) the points (in that order) 

and then symmetrical to (1,O). 

PROOF, N even. It is easy to see that 

N-l 

iYl== xi= N(N - 1) 

2=1 
‘2 ’ 

N-2 

CT2 = r: i_l=E N(Jy--3) 
2 ’ 

ml 

N-3 

x 

N(N - 5) 
CT3 = i-l--2= 

2 ’ 
S=l 

N/2 

UN/2 = lx i--l-2_ . .._ 

E==l 

N 
uT(N/2)+1 = -2, 

(TN = _N(N - l) 
2 ’ 

c+ = c,“i: WC = N3 / 8, as is easily seen, and hence, Lx is as given. 
N odd. It is easy to see that 

N-l 

u’1 = c i = IL’tN - 1) 
2=1 

2 T 

N-2 

.p2 = c 
i_l = N(N--31 

2 ’ 
%=I 

(Nil)/2 

C(N-1)/2 = t: 
i-1-2-..._ 

ml 

(y-1) =N, 

(N- 1)/2 

a(N+l)/2 = t: 
i-~.-2-..~--~ ~ 

N-l o 

2 
a=1 
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O(N+3)/2 = -JJ, 

oN = _N(N- 1) 

2 ’ 

c+ = cy;‘“” ck = (N3 - N)/8, as is easily seen and hence Lx is as given. I 

NOTE, The last note of the previous section explains that in chains (as studied here), the number 

2 c+ is what is called in [l6] “stratum’‘---see also [17]. The formulae for c+ above also appear 

in [16]. From Theorem 4.1, we can derive the values of 2A - 1 (the normalization of A, being the 

area under the Lorenz curve) for general chains. 

THEOREM 4.2. Let G be a unidirectional chain with N vertices. Let A be the area under its 

hierarchical Lorenz curve. Then, the normalized measure 2A - 1 equals 

1 

5 ( ) 
1-s 1 

if N is even and equals l/3 for all N odd. So, if N is large, 

(36) 

for all chains and z becomes = for all odd N. 

PROOF. Rather than calculating the area A from left to right, separating the area in pieces of 

abscissa length l/N, we will work from bottom to top, separating the area in pieces of ordinate 

length Q,/ C+, (i = 1,. . . , N/2 (N even), or (N - 1)/2 (N odd)) which is much easier, based on 

Theorem 4.1. First, let N be even. We have 

A_ i3 [N(N2-1) (I_$)+ N(NZ-3) (1-s) +...+ N(N-;N-3)) (1-y) 

+;(1+)] 

= $ [(N - 1)2 + (N - 3)’ +. . . + 32 -t 1’1 = & z(N - (2~’ - 1))’ 
j=l 

4 N/2 
ZZ- 

N3 
c ((N + 1)’ - 4j(N + 1) + 4j2) 
j=1 

= -$ [(jV+1j2; -4(N+1)(N’2)(;‘2+1) +4 (N/2) (N/2 + 1) (N + 1) 
6 1 > 

Hence, 

Now, let N be odd. Then, 

= -& [(N - 1)’ + (N - 3)2 +. . . + 22] = ~ N3y N ‘Ng’2(N - (2j - 1))‘. 
3=1 



602 L. EGGHE 

Proceeding as in the case N even, we finally reach A = 213, for all odd N. Hence, 

I for all chains with an odd number of vertices. 

NOTE. It is easy to see that, if N is even, 

where LN, LN+~ denote the hierarchical Lorenz curve of the chain with N, respectively, N + 1 

vertices. But, as indicated above (Theorems 4.1 and 4.2), LN x LN+~ for all N large. 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11 

12. 

13. 

14. 

15. 

16. 

17. 
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