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ABSTRACT
In first order logic there are two main extensions to quan-
tification: generalized quantifiers and non-linear prefixes.
While generalized quantifiers have been explored from a
database perspective, non-linear prefixes have not – most
likely because of complexity concerns. In this paper we first
illustrate the usefulness of non-linear prefixes in query lan-
guages by means of example queries. We then introduce the
subject formally, distinguishing between two forms of non-
linearity: branching and cumulation. To escape complex-
ity concerns, we focus on monadic quantifiers. In this con-
text, we show that branching does not extend the expressive
power of first order logic when it is interpreted over finite
models, while cumulation does not extend the expressive
power when it is interpreted over bounded models. Branch-
ing and cumulation do, however, allow us to formulate some
queries in a succinct and elegant manner. When branch-
ing and cumulation are interpreted over infinite models, we
show that the resulting language can be embedded in an in-
finitary logic proposed by Libkin. We also discuss non-linear
prefixes from an algorithmic point of view.
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1. INTRODUCTION
Modern, declarative query languages are based in logic,

in particular, in First Order Logic (henceforth, FO) or some
extension thereof. Thus, relational algebra is equivalent to
the safe fragment of FO, while SQL can be seen as (safe) FO
plus counters, and Datalog can be seen as (safe) FO with
fixpoint. In the past century, FO has also been extended
with respect to its quantification power, in two ways: with
the introduction of generalized quantifiers (by Mostowski
[30] and Lindstrom [28]) and with the introduction of non-
linear prefixes of quantifiers (by Henkin [17]). While the
idea of generalized quantification has been used as the basis
for a query language [2, 13], the idea of non-linear prefixes
has, to to the best of the authors’ knowledge, never been
applied to databases.

It is well known that in the standard linear quantifier pre-
fixes used in FO any existential quantifier is under the scope
of all the preceding universal quantifiers. For instance, the
sentence (∀x) (∃y) (∀z) (∃w)ϕ(x, y, z, w) can be converted,
via Skolem functions, into the logically equivalent second
order sentence

(∃F1) (∃F2) (∀x) (∀z)ϕ(x, F1(x), z, F2(x, z)) (1)

However, when non-linear branching quantifiers are allowed,
formulas can be obtained which are not expressible in first
order logic [6]. For instance, the sentence„

(∀x) (∃y)
(∀z) (∃w)

«
ϕ(x, y, z, w) (2)

is intuitively read as stating that for each x we pick a y and
for each z with pick a w, with w depending only on z and
not on x. Through Skolemization, we obtain

(∃F1) (∃F2) (∀x) (∀z) ϕ(x, F1(x), z, F2(z)). (3)

Note that each existentially quantified variable is replaced
by a Skolem function of a single variable in the formula
above. Any linear reformulation of this sentence would lead
to a Skolemization where at least one existentially quantified
variable is replaced by a Skolem function depending on both
x and z, as in (1). Depending on the exact statement of φ,
the sentence (2) above hence cannot necessarily be expressed
in FO.

Example 1. As an example of the power of branching,
the sentence„

(∀x1) (∃y1)
(∀x2) (∃y2)

«
(∃z1) (∃z2) (∃z3) (φ1 ∧ φ2 ∧ φ3),



where

φ1 = (x1 = x2) → (y1 = y2)

φ2 = R(x1, x2) → (y1 6= y2)

φ3 =
^

i∈{1,2}

_
j∈{1,2,3}

(yi = zj)

expresses 3-colorability of a graph R.

In fact, a result in Blass and Gurevich [5] asserts that sen-
tences like (2) above (with ϕ first order) capture existential
second order logic which, by Fagin’s theorem, captures NP.
Hence, the reason that using non-linear prefixes have not
been exploited in query languages may be complexity.

In this paper, we introduce the idea of non-linear prefixes
in query languages.

• We first argue the usefulness of non-linear prefixes by
giving examples of queries in English that are naturally
and succinctly expressed as formulae using non-linear
prefixes.

• We then introduce, FO(Q), the extension of FO with
generalized quantifiers in Q and show how two forms
of non-linearity, branching and cumulation can be ex-
pressed as operations on the quantifiers in Q. As such,
if Qb and Qc stand for the classes of generalized quan-
tifiers obtained from Q by branching respectively cu-
mulating quantifiers in Q, then FO(Qb) and FO(Qc)
is first order logic with branching and cumulation, re-
spectively.

• Motivated by our examples and to avoid formulae like
(2) that allow us to capture NP, we focus on FO(Qb)
and FO(Qc) where all quantifiers in Q are monadic.

• We then show that in this setting FO(Qb) does not
extend the expressive power of FO, provided that all
quantifiers in Q are evaluated on finite models (as is
natural in query languages).

• We also show that FO(Qc) does not add to the ex-
pressive power of FO provided that all quantifiers in
Q are evaluated on finite models with a bound on
their domain. We provide some partial insights into
the expressiveness of FO(Qc) when such a bound does
not exist. In particular, we show that FO(Q ∪ Qb ∪
Qc) is embeddable in LC , an infinitary logic due to
Libkin [27], even when generalized quantifiers in Q are
evaluated on infinite models.

• Finally, we discuss branching and cumulation from an
algorithmic point of view and close with directions for
future work.

2. PRELIMINARIES
Let us first introduce the basic concepts underlying this

work. Generalized Quantifiers (GQs) are extremely versa-
tile and powerful; because we use only a limited version of
the concept, and in the interest of brevity and clarity, we
give here a simplified definition, fixing several parameters
upfront.

Databases. From the outset we postulate a fixed, infinite
universe U of atomic data values. Throughout the paper,

we fix an arbitrary database schema S. A database schema
is a finite set of relation names, where each relation name
R has an associated arity, denoted by arity(R). A database
D over S is an assignment of a finite relation D(R) ⊆ Uk to
each R ∈ S, where k is the arity of R.

Generalized Quantifiers. A generalized quantifier of ar-
ity k is a non-empty set Q of k-ary relations over U that is
closed under isomorphism (i.e., if R ∈ Q and S ⊆ Uk is iso-
morphic to R, then also S ∈ Q). We write Q : k to indicate
that Q is a generalized quantifier of arity k. A generalized
quantifier of arity 1 is called monadic.

Intuitively, generalized quantifiers describe “generic” prop-
erties of relations [1]. For example, the set three := {R ⊆
U | |R| = 3} of all sets of cardinality 3 is a generalized
quantifier. Likewise, the set even := {R ⊆ U | |R| is even }
of all sets of even cardinality is also a generalized quanti-
fier. The set {{a}} with a an arbitrary atomic data value is
no a generalized quantifier, however, as is not closed under
isomorphism (and hence break “genericity”). Another inter-
esting example is the generalized quantifier conn := {R ⊆
U2 | R is a connected graph} of all connected graphs.

Extending FO with generalized quantifiers. We can
use generalized quantifiers to extend the power of first order
logic as follows. Let Q be a class of generalized quantifiers.
Then FO(Q) is the extension of first order logic with gener-
alized quantifiers in Q, whose formulae φ are given by the
following grammar:

φ ::= x = y | R(x1, . . . , xk) | φ ∧ φ | ¬φ | (∃x)φ
| (Qx1, . . . , xk)φ.

Here, x, y, and xi (i a natural number) range over vari-
ables; R ∈ S is a relation name of arity k; and Q ∈ Q is a
generalized quantifier of arity k.

The semantics of formulae is as follows. As usual, an as-
signment is a function from the set of all variables to U . Let
the satisfaction relation D |= φ[α], denoting that formula
φ is true in database D under assignment α, be defined as
usual in FO [11] for all formulae except those of the form
(Qx1, . . . , xk)φ. Then D |= (Qx1, . . . , xk)φ[α] iff

{(a1, . . . , ak) ∈ Uk | D |= φ[x1 : a1, . . . , xk : ak, α]} ∈ Q.

Here, x1 : a1, . . . , xk : ak, α is the assignment that equals α
on all variables except that it maps x1 to a1, . . . , xk to ak.

We stress that (Qx1, . . . , xk) binds the variables x1, . . . , xk

in a formula (Qx1, . . . , xk)φ. Formally, if the free variables
FV(φ) of a formula φ, are defined as usual in FO [11] for all
formulae except (Qx1, . . . , xk)φ, then

FV((Qx1, . . . , xk)φ) = FV(φ)− {x1, . . . , xk}.

We follow the standard convention and write φ(x, . . . , y) to
denote that every free variable of φ is among x, . . . , y. Also,
we write x for a sequence of variables x1, . . . , xk.

Example 2. The formula φ(x) = (three y)R(x, y) selects
all nodes in R with out-degree 3. This query can clearly be
simulated in FO. The query ψ(x) = (even y)R(x, y) that se-
lects all nodes in R with an even out-degree cannot, however.
As a final example, if we interpret a tuple (x, y, z) to signify
that there is an y-labeled edge from node x to node z, then
(connx, z) (∃y)S(x, y, z) is the query that decides whether
the unlabeled graph underlying S is connected.



At this point, it is worthwhile to note that the standard
first order quantifiers ∃ and ∀ can also be expressed using
generalized quantifiers. Indeed, if exists = {R ⊆ U | R 6= ∅},
and all = {U}, then it is readily seen that

(∃x)φ ≡ (existsx)φ and (∀x)φ ≡ (allx)φ.

However, as seen in the examples, there are many monadic
quantifiers, like the aforementioned even, that are not FO-
definable.

3. LINEAR AND NON-LINEAR PREFIXES
As in first order logic, formulae in FO(Q) have an equiv-

alent formula in prenex normal form

±1(Q1 x1) ±2 (Q2 x2) · · · ±n (Qn xn)φ,

where every ±i ∈ {¬,¬¬}, every Qi ∈ {∃} ∪ Q, and φ
is quantifier-free. In particular, every variable of xi in the
formula above is in the scope of the variables of x1, . . . , xi−1.
The quantifier prefix ±1(Q1 x1) ±2 (Q2 x2) · · ·±n (Qn xn) is
therefore called linear.

Some queries in English, however, naturally involve non-
linear quantifier prefixes [35, 37]. Consider, for example, the
ternary relation LINEITEM whose tuples are of the form

(orderkey, partkey, supkey),

relating orders to their ordered parts, together with the
parts’ supplier. This relation is a simplification of the TPCH
benchmark for decision support systems [39]. Now, consider
the natural language query “List the orders where (at least)
three suppliers supply (at least) five parts”. There are vari-
ous ways to interpret “three suppliers supply five parts”:

1. There are three suppliers that supply five parts each.
The parts may be the same or different for each sup-
plier. This reading is expressed in FO(three, five) by

ϕ1(x) := (three y) (five z) LINEITEM(x, y, z). (4)

The quantifier five is within the scope of the quantifier
three. (Of course, this query can also be expressed in
FO, albeit using a longer formula.)

2. There are five parts that are supplied by three suppli-
ers each. The suppliers may or may not be the same for
each part. This reading is expressed in FO(three, five)
by

ϕ2(x) := (five z) (three y) LINEITEM(x, y, z). (5)

The quantifier three is within the scope of the quanti-
fier five.

3. There are three suppliers and five parts such that each
supplier supplies all five parts and all five parts are
supplied by each supplier. Observe that the suppli-
ers and parts are ”picked” from the universe indepen-
dently of each other. In formal linguistics, this reading
is expressed using branching quantification [6]:

ϕ3(x) :=

„
three y
five z

«
LINEITEM(x, y, z). (6)

Here, each quantifier is independent of each other (be-
ing first or second has no significance).

4. Finally, it may be that the same three suppliers supply
a total of five parts among the three of them (e.g., the
first supplier supplies two parts, the second supplies
two parts more, and the third supplier supplies one
more part; or the first supplier supplies one part, the
second supplies one part, and the third supplies three
parts; or . . . ). In formal linguistics, this reading is
expressed using cumulation quantification:

ϕ5(x) := [three y, five z] LINEITEM(x, y, z) (7)

Again, the suppliers and parts are “picked” indepen-
dently of each other and each quantifier is independent
of each other (being first or second has no significance).

The important point of our example is that there are
readings of some English queries that naturally involve non-
linear quantification in terms of branching or cumulation.
This suggests that branching and cumulation may be of in-
terest in query languages. Let us therefore introduce these
concepts formally.

We first note that we can view linear quantification as
given by formulas of the form

±1(Q1 x1) ±2 (Q2 x2) · · · ±n (Qn xn)φ,

also as an iteration operation on generalized quantifiers [44].

Definition 3 (Iteration). If Q : k and P : l are gen-
eralized quantifiers then Q ·P : k+ l is the generalized quan-
tifiern

R ⊆ Uk+l |
n
a ∈ Uk |

˘
b | (a, b) ∈ R

¯
∈ P

o
∈ Q

o
.

Indeed, it is readily verified that (Qx) (P y)φ is equivalent
to ((Q · P )x, y)φ.

In a similar vain, we can also define branching and cu-
mulation as operations on generalized quantifiers. To sim-
plify notation, we abandon the matrix-based notation for
branching as we have used it up until here, and use a lin-
ear notation that facilitates integration of formulas in the
surrounding text.

Definition 4 (Branching). Let Q1 : n1, . . . , Qk : nk

be generalized quantifiers and let n =
P
ni. Then the branch-

ing (Q1; . . . ;Qk) : n of Q1, . . . , Qk is the generalized quanti-
fier

{R ⊆ Un | there is S1 ∈ Q1, . . . , Sn ∈ Qk

such that S1 × · · · × Sk ⊆ R}.

For example, it is readily verified that the third reading
of our suppliers query above is indeed expressed by

((three; five)x, y) LINEITEM(x, y, z). (8)

Moreover, the sentence

((all · exists; all · exists)x1, y1, x2, y2)

(∃z1)(∃z2)(∃z3) φ1 ∧ φ2 ∧ φ3, (9)

with all and exists the generalized quantifier forms of ∀ and
∃; and φ1, φ2, and φ3 as in Example 1 expresses three-
colorability.



Definition 5 (Cumulation). Let Q1 : n1, . . . , Qk : nk

be generalized quantifiers and let n =
P
ni. Then the cumu-

lation [Q1, . . . , Qk] : n of Q1, . . . , Qk is the generalized quan-
tifier

{R ⊆ Un | ∃S ⊆ R such that Si ∈ Qi for 1 ≤ i ≤ k},

where Si is the projection of S on columns 1+
P

j<i ni untilP
j≤i nj:

Si := {ai ∈ Uni | (a1, . . . , ak) ∈ S for some aj ∈ Unj}.

For example, it is readily verified that the fourth reading
of our suppliers query above is expressed by

([three, five] y, z) LINEITEM(x, y, z). (10)

In what follows, we write Qb for the class of generalized
quantifiers obtained by branching quantifiers in Q:

Qb := {(Q1; . . . ;Qk) | k ≥ 0 and every Qi ∈ Q}.

Similarly, we write Qc for the class of generalized quantifiers
obtained by cumulating quantifiers in Q:

Qc := {[Q1; . . . ;Qk] | k ≥ 0 and every Qi ∈ Q}.

4. NON-LINEAR PREFIXES OF MONADIC
QUANTIFIERS

As we have already noted in the Introduction, it is well-
known that unrestricted quantifier branching gives a sub-
stantial rise in expressive power. For instance, Example 1
shows that branching allows us to express 3-colorability, an
NP-hard property. In fact, Blass and Gurevich showed that
the subset of FO({all · exists}b) formulae of the form`

(all · exists; all · exists)x1, y1, x2, y2
´
φ

with φ first order suffices to capture NP [5].
Since branching arbitrary quantifiers of arity 2 is there-

fore too powerful a feature to add to a query language, we
will restrict our attention to branching and cumulation of
monadic quantifiers (i.e., generalized quantifiers of arity 1).
Our examples of Section 3 suggests that, apart from being
theoretically interesting, branching and cumulation of such
quantifiers is also useful in practice. In fact, research in
formal linguistics strongly suggests that branching and cu-
mulation may be needed to properly formalize some natural
language sentences [35, 37].

As we are primarily interested in the application of non-
linear prefixes to database queries – which test properties of
finite relations – we will first focus on generalized quantifiers
that themselves test only properties of finite relations.

Definition 6. A generalized quantifier is finite-model if
it contains only finite relations.

For instance, three, even, and exists are all finite-model, but
all is not as it contains the infinite universe U .

We define the range rng(Q) of a finite-model general-
ized quantifier Q, as rng(Q) := {|R| | R ∈ Q}. Observe
that for monadic generalized quantifiers, R ∈ Q iff |R| ∈
rng(Q) since Q is closed under isomorphism. We abbreviate
min(rng(Q)) by min(Q).

4.1 Branching
The following theorem then shows that branching monadic

finite-model quantifiers does not add expressive power to
first order logic.

Proposition 7. Let Q be a class of monadic, finite-model
generalized quantifiers. Then FO(Qb) ≡ FO and FO(Q ∪
Qb) ≡ FO(Q).

Proof. Since FO(Qb) and FO(Q ∪ Qb) are at least as
expressive as FO and FO(Q), respectively, it suffices to show
that they are no more expressive.

Let Q1, . . . , Qk be quantifiers in Q. First observe that a
relation S is in (Q1; . . . ;Qk) iff there exist Si with |Si| =
min(Qi) for 1 ≤ i ≤ k such that S1 × · · · × Sk ⊆ S. Indeed,
the if direction follows by definition of branching. For the
only-if direction, suppose that S ∈ (Q1; . . . ;Qk). By def-
inition, there exist S′i ∈ Qi such that S′1 × · · · × S′k ⊆ S.
Since min(Qi) is the minimum of rng(Qi), we know that the
cardinality of S′i is at least min(Qi). Then fix, for every i,
a subset Si ⊆ S′i of cardinality min(Qi). Since generalized
quantifiers are closed under isomorphism and since there is
a set of cardinality min(Qi) in Qi, also Si ∈ Qi. Moreover,

S1 × · · · × Sk ⊆ S′1 × · · · × S′k ⊆ S,

as desired.
Then observe that the concrete elements of S1, . . . , Sk do

not matter since every Qi is closed under isomorphism. As
such, a formula ((Q1; . . . ;Qk)x1, . . . , xk)φ(x1, . . . , xk, y) is
equivalent to

(∃z1
1) . . . (∃z1

min(Q1)) . . . (∃zk
1 ) . . . (∃zk

min(Qk))0@ ^
1≤i<j min(Q1)

z1
i 6= z1

j

1A ∧ · · · ∧

0@ ^
1≤i<j min(Qk)

zk
i 6= zk

j

1A

∧

0BBB@ ^
1≤i1≤min(Q1)

...
1≤ik≤min(Qk)

φ(z1
i1 , . . . , z

k
ik
, y)

1CCCA
By using this translation inductively, every FO(Qb) formula
is hence equivalent to a FO formula, and every FO(Q ∪
Qb) formula is hence equivalent to a FO(Qb) formula, as
desired.

4.2 Cumulation
For cumulation of monadic finite-model quantifiers, the

expressiveness is less clear. The following proposition shows
that no expressiveness is gained when only bounded gener-
alized quantifiers are cumulated. Here, a generalized quan-
tifiers is bounded if it is finite-model and rng(Q) is finite.

Proposition 8. Let Q be a class of bounded monadic
generalized quantifiers. Then FO(Qc) ≡ FO and FO(Q ∪
Qc) ≡ FO(Q).

Proof. Since FO(Qc) and FO(Q ∪ Qc) are at least as
expressive as FO and FO(Q) respectively, it suffices to show
that they are no more expressive.

First observe that ([Q1; . . . ;Qk]x1, . . . , xk)φ(x1, . . . , xk, y)
with every rng(Qi) a singleton {ci} is equivalent to the for-



mula ψc1,...,ck defined as follows.

(∃z1
1) . . . (∃z1

c1) . . . (∃z
k
1 ) . . . (∃zk

ck
)0@ ^

1≤i<j<c1

z1
i 6= z1

j

1A ∧ · · · ∧

0@ ^
1≤i<j<ck

zk
i 6= zk

j

1A

∧

0BBBBBBBBBB@
^

1≤m≤k

^
1≤j≤cm

_
1≤i1≤c1

...
1≤im−1≤cm−1
1≤im+1≤cm+1

...
1≤ik≤ck

φ(z1
i1 , . . . , z

k
ik
, y)

1CCCCCCCCCCA
Hence, ([Q′

1; . . . ;Q
′
k]x1, . . . , xk)φ(x1, . . . , xk, y) with rng(Q′

i)
not necessarily a singleton is equivalent to_

c1∈rng(Q′
1)

· · ·
_

ck∈rng(Q′
k
)

ψc1,...,ck .

This is clearly a finite formula when all rng(Q′
i) are finite.

By using this translation inductively, every FO(Qb) formula
is hence equivalent to a FO formula, and every FO(Q ∪
Qb) formula is hence equivalent to a FO(Qb) formula, as
desired.

For the more general class of monadic finite-model monadic
quantifiers, we provide the following partial insights for bi-
nary cumulations.

Lemma 9 (Range reduction). The cumulation of a
bounded with a finite-model quantifier is the same as the
cumulation of two bounded quantifiers. That is, let Q1 and
Q2 be two finite-model monadic generalized quantifiers such
that Q1 is bounded and Q2 is not. Let l be the least element
in rng(Q2) such that l ≥ max(rng(Q1)). Then [Q1, Q2] =
[Q1, Q3] where Q3 = {R ∈ Q2 | |R| ≤ l}.

Proof. It is clear that [Q1, Q3] ⊆ [Q1, Q2]. For the con-
verse, suppose that R ∈ [Q1, Q2]. Then there exists S ⊆ R
such that π1(S) ∈ Q1 and π2(S) ∈ Q2, where π1 and π2

denote left and right projection of a binary relation, respec-
tively. We discern the following cases:

• If |π2(S)| ≤ l then π2(S) ∈ Q3. Hence, R ∈ [Q1, Q3],
as desired.

• If |π2(S)| > l then let n = |π1(S)|. By definition of
l, we have n ≤ l. Then let S′ be a subset of n tuples
of S such that π1(S

′) = π1(S) (clearly, such a subset
must exist). Let B be a subset of π2(S) of cardinality
l− |π2(S

′)|, disjoint with π2(S
′). Such B must always

exist since |π2(S)| > l. Clearly, for each b ∈ B there
exists ab ∈ π1(S) = π1(S

′) such that (ab, b) ∈ S. Then
let S′′ = S′ ∪ {(ab, b) | b ∈ B}. By construction, S′′ ⊆
S ⊆ R, |π1(S

′′)| = |π1(S
′)| = |π1(S)| ∈ rng(Q1), and

|π2(S
′′)| = |π2(S

′)|+ |B| = |π2(S
′)|+ (l − |π2(S

′)|) =
l ∈ rng(Q3). As such, π1(S

′′) ∈ Q1 and π2(S
′′) ∈ Q3,

and hence R ∈ [Q1, Q3], as desired.

It is not clear if and how this reduction lemma generalizes
to arbitrary cumulations [Q1, . . . , Qk].

Lemma 10. The cumulation of two unbounded quantifiers
whose ranges have an element in common is the same as the
cumulation of two bounded quantifiers. That is, let Q1 and
Q2 be two monadic finite-model generalized quantifiers such
that rng(Q1)∩rng(Q2) is non-empty. Let l = max(rng(Q1)∩
rng(Q2)), let Q′

1 = {R ∈ Q1 | |R| ≤ l}, and let Q′
2 = {R ∈

Q2 | |R| ≤ l}. Then [Q1, Q2] = [Q′
1, Q

′
2].

Proof. It is clear that [Q′
1, Q

′
2] ⊆ [Q1, Q2]. For the con-

verse, suppose that R ∈ [Q1, Q2]. Then there exists S ⊆ R
such that π1(S) ∈ rng(Q1) and π2(S) ∈ rng(Q2), where π1

and π2 denote left and right projection of a binary relation,
respectively. We discern four cases:

• If |π1(S)| ≤ l and |π2(S)| ≤ l then π1(S) ∈ rng(Q′
1)

and π2(S) ∈ rng(Q′
2). Hence, R ∈ [Q′

1, Q
′
2], as desired.

• If |π1(S)| > l and |π2(S)| ≤ l then there are at least
|π1(S)| > |π2(S)| tuples in S. Let n = |π2(S)| and
let S′ be a subset of n tuples of S such that π2(S

′) =
π2(S). Furthermore, let m := |π1(S

′)| ≤ |S′| = n
and let A be a subset of π1(S) of cardinality l − m,
disjoint with π1(S

′). Such A must always exist since
|π1(S)| > l. Clearly, for each a ∈ A there exists ba ∈
π2(S) = π2(S

′) such that (a, ba) ∈ S. Then let S′′ =
S′ ∪ {(a, ba) | a ∈ A}. By construction, S′′ ⊆ S ⊆ R,
|π1(S

′′)| = |π1(S
′)|+ |A| = m+(l−m) = l ∈ rng(Q′

1),
and |π2(S

′′)| = |π2(S
′)| = |π2(S)| = n ∈ rng(Q′

2).
As such, π1(S

′′) ∈ Q′
1 and π2(S

′′) ∈ Q′
2 and hence

R ∈ [Q′
1, Q

′
2], as desired.

• If |π1(S)| ≤ l and |π2(S)| > l then the reasoning is
similar.

• If |π1(S)| > l and |π2(S)| > l, then it suffices to show
that there always exists S′ ⊆ S such that |π1(S

′)| = l
and |π2(S

′)| ≥ l, as we can then use the reasoning in
the previous cases to show that R ∈ [Q′

1, Q
′
2]. But if

both |π1(S)| > l and |π2(S)| > l, then there must exist
S′ ⊆ S such that S′ is bijective (i.e., one-to-one and
onto) and has cardinality l (if there is no such subset,
then either |π1(S)| ≤ l or |π2(S)| ≤ l). Hence, we are
back in one of the previous cases.

Again, it is not clear if and how this lemma generalizes to
arbitrary cumulations [Q1, . . . , Qk].

4.3 Branching and cumulation of infinite-model
quantifiers

Summarizing our results so far, we have shown that branch-
ing of finite-model monadic quantifiers does not add expres-
sive power to FO, nor does cumulation of bounded monadic
quantifiers. We now provide a rough upper bound on the ex-
pressiveness of branching and cumulation of arbitrary (pos-
sibly infinite-model) monadic quantifiers. In particular, we
show that FO(Q∪Qb∪Qc) with Q a class of monadic quan-
tifiers can be embedded into LC , an infinitary logic due to
Libkin [27]. Although the embedding by itself is rather
straightforward, we hope that further research on connec-
tions of non-linear prefixes with infinitary logics may pro-
vide better insights into the exact expressiveness of FO(Q∪
Qb ∪ Qc).

The logic LC is an extension of FO with (1) counting
quantifiers (∃i x) for each natural number i, interpreted as
“there are i x such that”; and (2) infinitary connectives: if



(ϕi)i∈I is a (possibly infinite) collection of formulae, thenW
i∈I ϕi is a formula; and the same for conjunction

V
i∈I ϕi.

Libkin proves that an extension of FO with aggregates and
grouping that captures SQL can be translated into this logic.

We should note that LC is interesting in the sense that
all formulae of finite rank express only local properties [27].
Hence, any language that can be translated into LC using
only finite rank formulae is also local. Unfortunately, how-
ever, our embedding below yields LC of unbounded rank
and it is hence currently not clear whether FO(Q∪Qb∪Qc)
is even a local language.

To be precise, the rank rank(ϕ) of a formula ϕ ∈ Laggr

defined as follows:

• If ϕ is atomic, then rank(ϕ) = 0.

• If ϕ = ¬ψ, then rank(ϕ) = rank(ψ).

• If ϕ =
W

i∈I ψi, then rank(ϕ) = supi∈I rank(ψi);

• If ϕ =
V

i∈I ψi, then rank(ϕ) = supi∈I rank(ψi);

• If ϕ = (∃i x)ψ, then rank(ϕ) = rank(ψ) + 1.

Lemma 11. Let Q be an arbitrary class of monadic quan-
tifiers. For each formula ϕ ∈ FO(Q ∪Qb ∪ Qc) there exists
an equivalent formula ϕ′ ∈ LC .

Proof. The lemma is by induction on the syntax of ϕ.

• Formulae without quantifiers trivially have an equiva-
lent in LC .

• If ϕ = (Qx)ϕ1, then we take

ϕ′ :=
_

i∈rng(Q)

(∃i x)ϕ′1(x),

where ϕ′1 is the LC formula equivalent to ϕ1, which
exists by the induction hypothesis.

Observe that, by the translation so far, if ϕ does not
contain any branching or cumulation, ϕ′ is always of
finite rank.

• If ϕ =
`
(Q1;Q2)x1, x2

´
ϕ′1(x1, x2, z), then φ′ is the

formula:_
i∈rng(Q1)

_
j∈rng(Q2)

(∃x1) . . . (∃xi)(∃y1) . . . (∃yj)

` ^
1≤m<n≤i

xm 6= xn

´
∧

` ^
1≤m<n≤i

ym 6= yn

´
∧

` ^
k∈{1,...,i},l∈{1,...,j}

ϕ′1(xk, yl, z)
´
,

where ϕ′1 is the LC formula equivalent to ϕ1, which
exists by the induction hypothesis. This translation
clearly generalizes to arbitrary branching formulae ϕ =`
(Q1; . . . ;Qk)x1, . . . , xk

´
ϕ′1(x1, . . . , xk, z).

• If ϕ = ([Q1;Q2]x1, x2)ϕ1(x1, x2, z), then φ′ is the for-

mula _
i∈rng(Q1)

_
j∈rng(Q2)

(∃x1) . . . (∃xi)(∃y1) . . . (∃yj)

` ^
1≤m<n≤i

xm 6= xn

´
∧

` ^
1≤m<n<j

ym 6= yn

´
∧

` ^
1≤k≤i

_
1≤l≤j

ϕ′1(xk, yl, z)
´

∧
` ^

1≤l≤j

_
1≤k≤i

ϕ′1(xk, yl, z)
´
,

where ϕ′1 is the LC formula equivalent to ϕ1, which ex-
ists by the induction hypothesis. Again, this transla-
tion clearly generalizes to arbitrary cumulation formu-
lae ϕ =

`
(Q1; . . . ;Qk)x1, . . . , xk

´
ϕ′1(x1, . . . , xk, z).

Note that the quantifier rank of the translating sentence
for the last two cases depends on the quantifiers, i.e. it is un-
bounded for unbounded quantifiers. In contrast, the transla-
tion for formulae ϕ with only linear prefixes always yields an
equivalent bounded-rank formula ϕ′. A better understand-
ing of the expressiveness of FO(Q∪Qb ∪Qc) may therefore
perhaps be gained from studying the unbounded rank for-
mulae of LC that have no equivalent formula of bounded
rank.

5. PRACTICAL CONSIDERATIONS
Let us now consider branching and cumulation from a

query evaluation point of view. In particular, suppose that,
for some given database D and some fixed monadic finite-
model generalized quantifiers Q1 and Q2 we want to check
that

D |= ((Q1;Q2)x, y)R(x, y)

where R is a binary relation name. Let m1 = min(Q1) and
m2 = min(Q2). By the reasoning in the proof of Proposi-
tion 7, this reduces to checking

D |= (∃x1) . . . (∃xm1) (∃y1) . . . (∃ym2)ϕ

where ϕ is the formula^
1≤i<j≤m1

(xi 6= xj) ∧
^

1≤i<j≤m2

(yi 6= yj) ∧
^

1≤i≤m2
1≤j≤m2

R(xi, yj).

The naive way to evaluate this formula is by nested iter-
ation over the active domain adom(D) of D: iterate over
all a ∈ adom(D)m1 and all b ∈ adom(D)m2 and check that
D |= ϕ[a, b]. This method clearly requires Ω(nm1+m2) time,
where n is the size of the relation D(R) assigned to R by D.

There is, however, a more efficient way to evaluate this
formula. Indeed, the following algorithm does so in time
O(nm1 lognm1).

1. Compute

S := {(a1, . . . , am1 , b) | every (aj , b) ∈ D(R)}.

This is essentially an m1-times self-join of D(R) on its
second column,

S = π1,3,...,2m1−2,2m1−1,2m1

`
σθ(R× · · · ×R| {z }

m1 times

)
´



with θ the condition

(2 = 2m1) ∧ (4 = 2m1) ∧ · · · ∧ (2(m1 − 1) = 2m1).

As such, S can be computed in time O(nm1) using
standard techniques [40].

2. Fix an arbitrary order < on adom(D) and sort S lex-
icographically according to <. Using standard sorting
techniques, this can be done in time O(nm1 lognm1)
since the cardinality of S is at most nm1 . After sort-
ing, all records that agree on the first m1 components
of S are grouped together.

3. It is now easy to check the existence of distinct a1, . . . ,
am1 and distinct b1, . . . , bm2 such that every (ai, bj) ∈
D(R). Indeed, it suffices initialize a counter c to 0
and scan S: as long as the first m1 components of
the current tuple equal that of the previous tuple we
increment c. Otherwise we reset c := 1. The check
then succeeds iff c ever becomes m2 during the scan.
Since S contains at most O(nm1) tuples, this scan can
be done in time O(nm1).

In conclusion, we can compute S in time O(nm1), sort S in
time O(nm1 lognm1), and do the final scan in time O(nm1).
Hence, we can check D |= ((Q1;Q2)x, y)R(x, y) in time
O(nm1 lognm1). Observe that, since D |= ((Q1;Q2)x, y)
R(x, y) iff D |= ((Q2;Q1) y, x)R(x, y), the above algorithm
implies that D |= ((Q1;Q2)x, y)R(x, y) can be checked in
time O(nm lognm) with m = min(m1,m2).

It is interesting to observe that this algorithm can also
be mimicked in SQL. For example, if m1 = 3, the fol-
lowing SQL query returns a non-empty answer iff D |=
((Q1;Q2)x, y)R(x, y). Here, A denotes the first column of
R and B the second.

SELECT *
FROM R R1, R R2, R R3

WHERE R1.A <> R2.A AND R1.A <> R3.A
AND R2.A <> R3.A AND R1.B = R2.B
AND R1.B = R3.B AND R2.B = R3.B

GROUP BY R1.A, R2.A, R3.A
HAVING COUNT(DISTINCT B)≥ n

Although the O(nm1 lognm1) algorithm provides a signif-
icant improvement on the naive O(nm1+m2) algorithm, it
is unclear whether it is usable in practice. For instance, if
D(R) is a fact table in a data warehouse an m1-fold self
join for m1 ≥ 4 is simply out of the question for current
systems due to the enormous size of such tables. This hence
raises the question whether a more efficient evaluation al-
gorithm for branching quantification exists. We strongly
suspect that this is not the case when the algorithm is to
be expressed in SQL in the sense that any SQL expres-
sion checking D |= ((Q1;Q2)x, y)R(x, y) must use at least
m = min(m1,m2) self-joins, despite the fact that SQL ex-
pression can use grouping and aggregation.

The question of a more efficient evaluation algorithm is
perhaps even more important for cumulation quantification.
Indeed, by the reasoning in the proof of Proposition 8, check-
ing whether D |= ([Q1;Q2]x, y)R(x, y) with rng(Q1) =
{m1} and rng(Q2) = {m2} reduces to checking

D |= (∃x1) . . . (∃xm1) (∃y1) . . . (∃ym2)ϕ
′

where ϕ′ equals

ϕ′(x, y) :=
^

1≤i<j≤m1

xi 6= xj ∧
^

1≤i<j≤m2

(yi 6= yj) ∧^
1≤i≤m1

_
1≤j≤m2

R(xi, xj) ∧
^

1≤j≤m2

_
1≤i≤m1

R(xi, xj)

Again, the naive way to evaluate this formula by nested
iteration runs in time Ω(nm1+m2). It is unclear, however,
whether a more efficient evaluation algorithm exists.

6. RELATED WORK
The study of non-linear prefixes has a long tradition both

in logic and in formal linguistics. We overview some of this
work as it has provided the background for the present re-
search. We also briefly touch on work in SQL optimization
which is somewhat related to our paper. There is, of course,
a very large body of research in descriptive complexity using
generalized quantification [9, 14, 15, 26, 29, 41] which will
not further be mentioned here.

In this paper we have used the simplest type of quan-
tifiers. In general, a type is a finite sequence of natural
numbers t = (k1, . . . , kn). A global generalized quantifier of
type t assigns, to each non-empty universe A a local gener-
alized quantifier of type t. A local generalized quantifier of
type t = (k1, . . . , kn) on A is a class of structures of type
< A,R1, . . . , Rn > with every Ri of arity ki, that is closed
under isomorphism. For instance, a type (1, 2) means that
the quantifier has two arguments: a set and a binary rela-
tion. Syntactically, the quantifier would bind 3 variables in
2 formulas, the first variable coming from the first formula
and the last 2 variables from the second formula. Thus, type
(1) is the simplest type, and is equivalent to having arity 1 –
the type of quantifier we have used. In general, richer types
yield more powerful quantifiers. The result of years of re-
search in the subject has shown that there is a hierarchy of
generalized quantifiers based on type. To be precise, we can
define a lexicographic order on types:

(1) < (1, 1) < . . . < (2) < (2, 1) < (2, 1, 1)

< . . . < (2, 2) < . . . < (3) < . . .

Then for every type t there is a quantifier of type t that
is not definable in FO(Q) where all quantifiers in Q are
of some type t′ < t [14, 15]. Quantifiers of types (1), (1, 1),
(1, 1, 1), . . . are usually called monadic and are the only ones
that can be captured by simple cardinality properties. Our
choice of quantifiers of type (1) as an initial step in the study
of non-linear prefixes is motivated by the fact that these are
the simplest type, but at the same time it is already known
that branching of iterations of such quantifiers leads to high
complexity.

Branching quantifiers were introduced by Leon Henkin
[17]. The classic theory was developed, among others, by
[10, 42]. Early work concentrated on first order logic; even
though it produced some well known results, such accom-
plishments are limited to combinations of ∀, ∃ prefixes. As
stated in the Introduction, when non-linear branching quan-
tifiers are allowed, formulas can be obtained that are not
expressible in first order logic [6]. For instance, the formula

(∀x ∃y; ∀z ∃w)x, y, z, w ϕ(x, y, z, w)

cannot be transformed into any linear prefix. The interest



in such formulas comes from the following three facts: such
branching formulas seem to be needed to faithfully formalize
some English sentences [6, 19]; allowing such branching for-
mulas greatly increases the power of the language [42]; and
branching formulas like the one above can be easily rep-
resented with generalized quantifiers -although not monadic
ones. The formula above can be captured by the generalized
quantifier H of type [4] defined by

{S ∈ U4 | ∃f1 : U → U , ∃f2 : U → U
∀a ∀b (a, f1(a), b, f2(b)) ∈ S}

usually called the Henkin quantifier. Since this is also one
of the simplest examples of non-first order definable prop-
erties, this quantifier and its properties has been studied
in depth [18]. The main result about Henkin quantifiers is
the Blass and Gurevich result [5], asserting that not only
is every Henkin quantifier sentence equivalent to an exis-
tential second-order sentence, but also the converse holds.
This means that known results about the logic of existen-
tial second-order sentences immediately apply to the logic
of Henkin quantifier sentences: the Lowenheim-Skolem the-
orem, the compactness theorem, the definability of truth for
sentences of this class by a sentence of the class, and more.
Other early studies include [25], which proved the Linear
Prefix Theorem: for each two different quantifier prefixes
Q1 and Q2 of the same length there is a Q1 sentence (i.e. a
sentence made up of Q1 as a prefix) that is not equivalent
to any Q2 sentence. In addition, [42] shows that in the case
of first order logic prefixes are equivalent (in the sense of
semantically indistinguishable) iff they only differ in vari-
ables, but order and type of quantifier are preserved. More
precisely, given a linear prefix of quantifiers Q1 . . . Qn, each
Qi equal to ∀ or ∃, call a subsequence of quantifiers of the
same type a block. For instance, in

(∃x1) (∃x2) (∀x3) (∃x4) (∃x5) (∀x5) (∀x7) (∀x8)

there are 4 blocks, the first one including the first two quan-
tifiers, the second one including only the third quantifier, the
third block corresponding to the 4th and 5th quantifiers, and
the fourth block corresponding to the last 3 quantifiers. Call
two prefixes equivalent up to blocks if they have the same
number and type of blocks, in the same order, and each block
is of the same length as its corresponding block in the other
prefix. Thus, quantifiers can be moved around only within
their block (i.e. permutations inside a block are allowed).
Then, two prefixes are equivalent iff they are equivalent up
to blocks. Thus, the above prefix is equivalent to

(∃x2) (∃x1) (∀x3) (∃x5) (∃x4) (∀x7) (∀x8) (∀x5)

These results are extended to the case of generalized quan-
tifiers in [22].

In formal linguistics, it was debated early whether non-
linear quantifiers are needed for representing natural lan-
guage. Hintikka [19] was the first to argue so, but his exam-
ples were very controversial, and many linguists remained
unconvinced. Barwise [6] gave examples that included gen-
eralized quantifiers (Hintikka’s examples were restricted to
∀, ∃) and gathered more support. Nowadays, there is broad
quorum that cumulative readings are indeed necessary [35];
even though it is still argued whether pure branching read-
ings are needed, but most researchers seem to be of this
opinion.

Westerstahl [44] studies iterated quantifiers, quantifiers
that are defined by a prefix of generalized quantifiers. As an
example, the sentence “Most critics reviewed two books” can
be modeled by the sentence (mostx) (two y)Review(x, y).1

One can, however, define a new quantifier most◦ two of type
(2) as the composition of the two quantifiers above. Note
that there is another linear reading of the example sentence,
in which the same two parts are involved. This reading is
expressed by permuting the quantifiers order (and hence re-
versing the scope) and creates another new quantifier. The
interesting fact is that there are quantifiers that cannot be
expressed as an iteration of simpler quantifiers; for instance
“every boy likes a different girl” and “every student criti-
cized himself” are two examples from [21] of complex quan-
tifiers that cannot be broken down into two (a combination
of “every” and “different” for the first example and of “ev-
ery” and “himself” for the second)2). Keenan and Wester-
stahl [24] also study iteration of quantifiers from a formal
linguistics perspective. A generalized quantifier is created
by considering the iteration of n quantifiers to give rise (and
define) a new quantifier. Here prefixes of generalized quan-
tifiers are assumed to have the traditional (linear, left-to-
right) scope. Several properties of iterations are studied;
for instance, if all quantifiers in an iteration are (upward,
downward) monotone, then the quantifier that the iteration
defines is also (upward, downward) monotone. Spaan [38]
gives conditions under which to distinguish cumulative and
branching readings, but they are not necessary and sufficient
– the problem remains open.

As a final note, we have pointed in Section 5 that the im-
proved evaluation algorithm for branching based on sorting
and grouping has a counterpart in SQL. Adding generalized
quantifiers to SQL has been proposed [33, 20], although such
proposals are focused on simplifying query formulation and
use a fixed, finite set of type (1, 1) quantifiers. Even in
such cases, issues of safety and domain independence arise
and must be dealt with [3]. Nevertheless, using generalized
quantification in query languages offers interesting possibil-
ities for query processing and optimization [2, 4].

7. CONCLUSION AND FURTHER WORK
We have taken the point of view that there are two natural

extensions of FO with regard to its quantification power: by
means of generalized quantifiers and by means of non-linear
prefixes. We have intuitively argued that non-linear pre-
fixes such as branching and cumulation are useful in query
languages as they naturally occur in the succinct formaliza-
tion of English queries. Furthermore, we have shown that
branching and cumulation do not extend the power of FO
when only finite-model respectively bounded monadic quan-
tifiers are involved.

Clearly, we have only scratched the surface here. The ex-
act expressiveness of cumulation of finite-model as opposed
to bounded quantifiers is still to be determined, as is the ex-
pressiveness of FO(Q∪Qb ∪Qc) when Q contains arbitrary
monadic quantifiers. Also, while our results imply that it

1The quantifier most can be defined in several ways; a very com-
mon one is to set it equal to {R ∈ U | |R| > |U − R|}.
2Recall that generalized quantifiers have been used in formal lin-
guistics to model the behavior and properties of English determin-
ers and other words classes that may work in a similar function.
Hence, for a linguist, “different” and “himself” can also be seen
as generalized quantifiers.



is in principle possible to add branching and cumulation (of
bounded quantifiers) as syntactic sugar to practical query
languages, there is still the question whether more efficient
evaluation algorithms exist that can be expected to work
well in practice. While this leaves the current article with
many questions, we hope nevertheless to have been able to
convince the reader that non-linear prefixes are interesting
from a database point of view.
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