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Abstract 

Compactness as introduced by Botafogo, Rivlin and Shneiderman, in short: BRS- 

compactness, is studied in general, as it can be used to describe the cohesion of 

parts of the lnternet or collaboration networks, and in the particular case of a 

unidirectional network, such as a citation graph. It is shown that the connection 

coefficient is an upper bound for the BRS-compactness value of a network. During 

our investigations we derive an upper bound for the generalized Wiener index of a 

directed graph. Several networks are constructed and their BRS-compactness values 

are calculated. 
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1. Introduction 

The pages and hyperlinks of the World Wide Web may be viewed as nodes and 

edges in a directed graph (Kleinberg et al., 1999; Broder et al., 2000). The degree of 

the interconnectedness of a hypertext or similar graph-like entities can be expressed 

using cohesion measures. One of these is compactness as introduced by Botafogo, 

Rivlin and Shneiderman (Botafogo et al., 1992). As the word 'compactness' has 

several meanings in mathematics and graph theory we will refer to the compactness 

notion as introduced by the fore-mentioned authors as BRS-compactness. An exact 

definition follows later. 

BRS-compactness is a measure which tries to capture how well-connected a 

hyperdocument or a network is. As a measure of cohesion its value can be used as a 

guideline for hypertext authoring systems (Johnson, 1995). It has been studied and 

discussed in many other works, see e.g. (De Vocht, 1994; Rivlin, 1994; Salton et al., 

1994, Calvi & De Bra, 1997; Mendes et al., 1998). Indeed, the density and cohesion 

of links in a hypermedia environment influences the retrieval efficiency of users (Khan 

& Locatis, 1998). Leazer & Furner (1999) study compactness in the context of textual 

identity networks, i.e. a set of documents that share a common semantic or linguistic 

form. They, moreover, compare BRS-compactness with other so-called topological 

indices such as the Wiener index, stratum and RandiC's index (RandiC ,1975). 

In informetric studies publications, citations, co-citations (Price, 1965; Shepherd et 

al., 1990) as well as collaborations give rise to networks (Pritchard, 1984; Ding et al., 

1998; Kretschmer, 1999). A citation network is clearly not symmetric (if article A cites 



article B, then B normally does not cite A), while a collaboration network definitely is: 

if author X collaborates with author Y, then automatically author Y has collaborated 

with X. Note that recently also other collaborations, such as actor collaborations have 

inspired fellow scientists (Barabasi & Albert, 1999). Citation links have been 

inspirational to web search techniques such as those used by the Clever algorithm 

and by Google (Chakrabarti et al., 1999; Brin and Page, 1998; Henzinger, 2001). 

Moreover, the 'hubs' and 'authorities' approach is related to the Pinski-Narin 

influence weight citation measure (1976) and mimics the idea of 'highly cited 

documents (authorities) and reviews (hubs). The exact relation between the older 

citation-based measures, such as the Pinski-Narin weights, including Geller's 

modification (Geller, 1978), and the newer hypertext and WWW-based approach is 

clearly described by Kleinberg (1999). 

In this article, we study the compactness of a general network and show how this 

web metric may be used in citation analysis and the study of collaboration networks. 

Indeed, De Bra (2000) observed that when studying the literature of a field large 

differences in the density of citations may be found. Sometimes we see densely 

connected citation clusters with little or no links to other clusters. De Bra suggests 

that the BRS-compactness measure can be used to identify research fields with a 

similar citation behavior. This, in turn, could be a factor in research evaluation 

exercises. For all these reasons we think it is necessary to have a closer look at the 

notion of BRS-compactness, to study its properties and to construct some more 

examples, besides those given by Botafogo, Rivlin and Shneiderrnan (1992) and De 

Vocht (1 994). 



2. Some notions from graph theory 

A directed graph G, in short: digraph, consists of a set of nodes, denoted as N(G), 

and a set of links (also called arcs or edges), denoted as L(G). In this text the words 

'network' and 'graph' are synonymous. A link e, is an ordered pair (a,b) representing 

a connection from node a to node b. Node a is called the initial node of link e, a = 

init(e), and node b is called the final node of the link: b = fin(e). The out-degree of a 

node b is the number of arcs leading out from it, i.e. the number of arcs e such that 

init(e) = b. Similarly the in-degree of a node, b, is the number of arcs e such that 

fin(e) = b (Knuth, 1969, p.371). A path from node a to node b is a sequence of 

distinct links (a, ul), (uI,u~), ... , (uk,b). The length of this path is the number of links 

(here k+l). Note that, in general, a path from a to b does not necessarily imply a path 

from b to a. A cycle is a path of length > 1, beginning and ending in the same node. A 

graph that does not contain any cycle is called an acyclic graph. In this paper we will 

always assume that edges are unweighted, or, equivalently, have a weight equal to 

one. We assume in this paper that there exists at most one direct link between two 

nodes. Further, nodes will often receive an index number and will be identified 

through this number. 

Two graphs G and H are isomorphic if there exists a bijection f from G to H such that 

if hj = f(g7) and h2 = f(g2), with gi EN(G) and hi E N(H), i= 1,2, and if there exists a link 

in G between gr and g2, then there exists a corresponding link in H between hl = 

f(gl) and h2 = f(g2) (in that order), and vice versa (Chen, 1971; Wilson, 1972). 

A unidirectional graph is a graph in which a link between nodes a and b, implies that 



there is not a (direct) link from b to a. In a unidirectional graph cycles may exist, but 

the smallest possible length is 3. If there are nodes a and b such that the whole 

graph consists of exactly one path of length N-I from a to b we will refer to such a 

linear graph as a unidirectional N-chain. We will say that a graph T is a tree if it is 

unidirectional, acyclic and there exists exactly one point, called the root, from which 

each other point can be reached. The distance from the root to a node t in a tree is 

called the depth of t .  If each node in the tree has the same number of children (at 

least those which have children), this number is called the branching factor of the 

tree. Nodes without children are called terminal nodes or leaves. The length of a 

longest path from the root to a leaf is called the tree-depth. A tree is balanced if at the 

same depth all nodes have the same number of children. Hence, in a balanced tree 

no leaf is further away from the root than any other leaf. 

If the existence of a link between nodes a and b necessarily implies the existence of 

a link from b to a we say that this network is a bi-directional graph. If a bi-directional 

graph consists of exactly one path of length N -1 then we will refer to such a graph as 

a bi-directional N-chain. Fig. 1 a unidirectional N-chain, a bi-directional N-chain and a 

unidirectional N-loop. 

$) . , . , , . 

Fig I (a) Unidirectional chain; (b) bi-directional chain; (c) loop 
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The distance from node a to node b is the smallest length of all the paths that join a 

to b. If such a path does not exist the length is infinity. A strongly connected 

component of a digraph is a set of nodes such that any two of them are joined by a 

path. Different strongly connected components in a network consist of disjoint sets of 

nodes. If a digraph consists of one strongly connected component it is said to be 

strongly connected. 

An undirected graph consists of a set of nodes and a set of edges, each of which is 

an unordered pair of nodes. Any bi-directional digraph can be considered as an 

undirected graph. A collaboration network is an example of such a graph: if author A 

co-authored an article with author B, then author B co-authored an article with A. 

Hence most of the results obtained in this paper can be applied to collaboration 

networks as studied e.g. in (Newman, 2001). 

When applying our ideas to citation networks (a network where nodes are articles 

and a link from article a to article b means that article a refers to article b) we always 

assume that these are unidirectional, although this is in reality not always the case 

(due, e.g. to the existence of invisible colleges). All citation networks considered in 

this paper are moreover assumed to be acyclic. 

For more information on graphs we refer the reader to (Knuth, 1969; Chen, 1971; 

Berge, 1967; Gibbons, 1985; Harary, 1969; Trinajstic, 1992). 



3. Compactness 

3. I Definition The BRS network matrix (Botafogo et al., 1992) 

Any (finite) network can be described by a matrix D such that its element on the i-th 

row and j-th column, denoted as d(i,j), is equal to the shortest distance between the i- 

th and the j-th node of the network. If node j cannot be reached from node i then 

d(i,,j) = -J. In their analysis of hypertexts and hyperlinks Botafogo .et al. (1992) 

introduced the following convention: if node j cannot be reached from node i then 

d(i,,j) is not put equal to -, but takes as its value the number of nodes in the analyzed 

network, see also (Leazer & Furner, 1999). This representation will be called the BRS 

representation and the associated matrix is denoted as Dg. Botafogo, Rivlin and 

Shneiderman (1992) refer to this matrix as the converted distance matrix. We define 

the generalized Wiener index of a general digraph, denoted by W, as the sum of all 

elements of the converted distance matrix. In the case of an undirected, strongly 

connected graph this sum divided by two is known as the Wiener index, after the 

chemist Harold Wiener (Wiener, 1947). 

3.2 Definition: BRS-compactness 

The BRS-compactness value, C, of a network consisting of N 2 2 nodes, is calculated 

using a formula having the following general structure: 

where d(i,j) denotes an element of the network matrix under study while MAX and 

MIN denote the maximum and the minimum sum for the corresponding N-node 

network (Botafogo et al., 1992). We see that compactness is the normalized, 



generalized Wiener index. If N = 1 (a network consisting of just one node), C is not 

defined. 

3.3 The compactness formula for a general digraph and the connection coefficient 

In the BRS-representation two unconnected nodes are attributed a distance value 

equal to N. There seems, however, to be no a priori reason why the value N must be 

used. Hence, we will just assume that this value is a function of the number of nodes 

in the citation network. This value is denoted as q(N) (Botafogo, Rivlin and 

Shneiderman denote this value by K). We will certainly put q(N) 2 N, otherwise 

unconnected pairs could have a smaller distance than connected ones. This 

agreement leads to the following compactness formula for a general network. 

The general BRS-compactness formula (Botafogo et al., 1992): 

MAX is here obtained in the case that no two pairs are connected. This gives N2 - N 

times the largest value, namely q(N). MIN is obtained when every two pairs of 

different nodes are connected. This gives a value of N2 - N multiplied by 1. 

Definition: connection coefficient 

Let now p, p E [0,1], be the fraction of all pairs (i,j) (with i # j) that are connected and 

let AD denote the set of those pairs (i,j) for which this happens, i.e. for which d(i,j) < 

cp(N). The fraction p will be called the connection coefficient of the network. The 



connection coefficient is either zero (and then C = 0) or it satisfies the following 

inequality: 

If the compactness value C is one (every two nodes have distance 1) then p is one 

too. The converse is not true: a = 1 simply means that every two nodes have a finite 

distance in the matrix Ds (this means that the graph is strongly connected). For a 

unidirectional chain p = 112, while for a bi-directional chain, and for a unidirectional 

loop the p-value is 1. 

If a network has N nodes then, a priori, the largest possible distance between two 

connected nodes is N -1. If, however, we know that its connection coefficient is p 

then the largest (possible) distance between two connected nodes is Lp = min(N -1, 

pN(N -1)). Following Pritchard (1984) we may say that in a communication network a 

high value of the connection coefficient improves the level of accessibility between 

nodes, and hence the transfer of information. 

3.4 A decomposition of the compactness measure 

Using the connection coefficient the BRS-compactness formula can be rewritten as: 

This leads to the following decomposition of (2) in two parts. The first is determined 

by the upper limit for a network with a connection coefficient j3; the second part 

reduces this value further depending on the degree of connectedness. 
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Because there are P(NZ-N) pairs (i,j) E Ap (pairs for which d(i,j) < cp(N)), we 

immediately see that 

Consequently, for fixed P: 

c .[O>P] (7) 

Note that the upper bound, P, can actually be reached, namely when all pairs (i,j) E 

Ap are at distance 1 (they are directly connected). We next derive a (much) better 

lower bound. Yet, relation (7) is all we need to study the limiting behavior of the 

following examples. 

3.5 A limiting procedure for trees and disjoint unions of networks 

We remind the reader that trees are important concepts in the information sciences. 

Distances between nodes in a tree, representing a hierarchical thesaurus, have been 

studied in the context of knowledge-based information retrieval (Kim & Kim, 1990). 

Let T be a balanced tree with branching factor b > 1 (Fig.2). The number of nodes in 

such a tree with depth d is: 



Fig.2 Construction of a tree with branching factor 2 

In order to find the connection Pd of a tree at depth d we proceed step by step. At 

depth 1 there are b links of length 1. Expanding the tree and reaching depth 2 leads 

to bZ links of length 2, plus bZ new links of length 1. At the next expansion b3 links of 

length 1, of length 2 and of length 3 are created. This yields at depth d a total number 

of links equal to: 

Consequently, 



The connection coefficient Pd is clearly smaller than 1. Moreover, lim Pd = 0 which 
d+m 

proves, by (7), that the limiting compactness value of this balanced tree with fixed 

branching factor (b > 1) is zero. 

Consider now a network consisting of N nodes. Starting from this network we 

consider the following construction of an infinite network. In a first step we construct a 

2N-node network by adding, in a disconnected way, a copy of the first one, i.e. there 

are no connections between the first copy and the second. The resulting graph is 

called the disjoint union of this network with itself. Then we iterate this procedure, 

leading to a network with 4N, 8N, and in general 2mN nodes. We will show that the 

limiting BRS-compactness value (m tending to infinity) of this network is zero. 

Let p be the connection coefficient of the original network. Then p,, the 

corresponding coefficient after the first iteration is equal to: 

In general, when P,., is the connection coefficient for the network after m -1 

iterations, then p,, the connection coefficient after m iterations is: 



As the connection coefficient is the upper bound for the compactness value of any 

network (7), this proves that the limiting compactness value of this infinite network is 

zero, and hence such a construction yields increasingly sparse networks. 

4. Bounds for the sum of distances between connected nodes 

4.1 Theorem 

Given a network with N nodes and with connection coefficient p. If the length of the 

longest used path in the distance matrix is kL then 

Proof. 

If there exists a path of length k ~ ,  then there also exist two paths of length (kL -I), 

three paths of length (k~-2), and so on, ending with k~ paths of length 1. Note, that all 

these paths are used in the distance matrix othetwise k~ would not be the longest 

one. This yields k~(k~+1)/2 pairs (i,j) for which we know the exact distance d(i,j). We 

obtain an upper bound for C by taking all d(i,j) equal to k ~ ,  except the kL(kL+1)/2 ones 

mentioned above. This yields: 



This proves the theorem. 

Corollary 1 

If an N-node network with connection coefficient P has a maximum path length equal 

to kL then its BRS-compactness value C satisfies the following inequality: 

Note that if kL = 1, the lower bound for C becomes equal to the upper bound P. 

Corollary 2 

A unidirectional N-chain is characterized by the following parameters: 

Proof 

1 + 2 + . . . + ( N  -1) 1 
Clearly, /3= = - .  The fact that C is equal to 

N ( N 2  - 1) 
2 

follows 
N 2 -  N  6 

from the proof of Theorem 4.1, noting that k~ = N-1 and hence the inequality in 

Theorem 4.1 becomes an equality for a unidirectional chain. Finally, 



4.2 Proposition 

Given a bi-directional network with N nodes and with connection coefficient P. If the 

length of the longest used path in the distance matrix is kL then 

Proof 

If there exists a path of length kL, then there exists a second one, by the fact that the 

graph is bi-directional. There, similarly exist four paths of length ( k ~  -I), six paths of 

length (k~-2), and so on, ending with 2 k ~  paths of length 1. This yields kL(k~+l) pairs 

(i,j) for which we know the exact distance d(i,j). Again, we obtain an upper bound for 

C by taking all d(i,j) equal to kL, except the kL(k~+l) ones mentioned above. This 

yields: 

This proves the proposition. 

Corollary (Plesnik, 1984) 

A bi-directional N-chain is characterized by the following parameters: 



Proof 

This follows immediately from Proposition 4.2. 

Best lower and upper bounds for Z are known in graph theory (Entringer et al., 1976; 

Ng and Teh, 1966; Doyle and Graver, 1977; Plesnik, 1984). The E-value for a bi- 

directional chain is a best upper bound for a graph with N vertices. 

4.3 Acceptable functions for pfN) in the compactness formula 

We explained already that we will always choose q(N) 2 N. If now q(N) = Na (a 2 1) 

then a bi-directional N-chain has, by the previous corollary, a C-value 

If N tends to infinity this value tends to 213, if a = 1, and to 1 if a > 1. This would 

mean that the compactness value of a network where some nodes may have 

arbitrarily large distances, can be as close to one as one likes. This is counterintuitive 

and provides a good argument for taking a = 1. This example does not rule out the 

possibility of taking q(N) = cN (c > I), yielding a compactness value for the bi- 

directional chain of (3c-1)13c. Such a value is not a priori excluded or counterintuitive. 

Yet, following Botafogo, Rivlin and Shneiderman (1992) we will from now on take 



q(N) = N. This leads to the following formula for C: 

We note that even if q(N) = N, the limiting value (for N 3 a, ) of a bi-directional star (a 

single root, connected by bi-directional links to all other nodes) is one (Botafogo et 

al., 1992). In this graph the distance between two nodes (except if one of the nodes 

is the root) is equal to two. Such a bi-directional star is a model for a totally 

centralized network. 

Fig. 3 A bi-directional star 

Note 

In a unidirectional, acyclic network the connection coefficient P is at most 112. Hence 

the BRS-compactness value of such a network is at most 0.5. 

4.4 Proposition 

Adding a new link between existing nodes in any network always increases the 

compactness value C. 



Proof. This is trivial. Adding an extra link decreases the value of C, and as N stays 

constant, this means that C increases. The increase in C is at least equal to 

4.5 The meaning of cohesion and the importance of 'central' links 

From Corollary 2 of Theorem 4.1 we know that Z, the sum of the distances of all 

connected nodes of a unidirectional N-chain is 
N ( N - l ) ( N + l )  

and that its BRS- 
6  

2N-1 
compactness value is (take q(N) = N in Corollary 2). Note, in particular, 

6 ( N  - 1 )  

that the first (or the last) link in chain has a contribution in C equal to N -1. Indeed, 

this link participates once in the set of links of length 1, once in the set of links of 

length 2, and so on, ending with links of length N-I. Assuming N to be even we see, 

N .  N  
however, that the link in the middle, connecting node - w~th node -+ 1 ,  has a 

2 2  

participation of 1 in the set of links of length 1, a participation of 2 in the set of links 

with length 2, increasing to a participation of Nl2 in the set of links with length Nl2, 

N2 
and then again a decreasing participation. Hence the middle link contributes - to 

4 

the Wiener index. This calculation illustrates the fact that a central link plays a more 

important role in the determination of the cohesion, as measured by BRS- 

compactness, than a more peripheral one. This is a desired property of a cohesion 

measure. If one were interested in replacing the BRS-compactness measure by 

another measure of cohesion, then this measure must have at least a similar 

ProPertY. 



4.6 Weaker inequalities for the sum of all distances that are strictly smaller than N 

In this section we will derive weaker inequalities than inequality (12). Although 

weaker they have the advantage that they depend on less parameters and, hence, 

can be used when certain data (such as k ~ )  are not known. Recall that 

with d(i ,  j) denoted as C: 
0 . 1 ) e A ~  

As p I 1, we always have: 

Considering the second factor on the left-hand side as a function of k~ (with N fixed), 

we see that it is increasing for k~ < ko = Because ko > N -1, and 1 s 

k~ N -1, we may replace k~ by N -1. This leads to the following (weaker) inequality: 

Inequality (19) leads to the following inequality between P and C. 

4.7 Theorem 

Given a network with N nodes, connection coefficient p and compactness C, then: 

Proof. 

The first inequality in formula (20) follows from (13). The last one is trivial, and so is 

the fact that p and C are always smaller than or equal to 1. So, we only have to show 



3(N - 1 )  
that Pl C . This inequality follows from this chain of relations: 

N + l  

Consequently: p 5 3 ( N - l ) C .  
N + l  

5. Adding one node: its influence on the compactness value 

In this section we show that adding one node, disconnected from all others, lowers 

the compactness value of the network. Adding, however, a node that is connected to 

all others increases the compactness value. This shows that the compactness 

measure as proposed by Botafogo, Rivlin and Shneiderman (1992) has nice (and 

expected) properties. 

5.1 Adding one node disconnected from all other ones. 

The reader will notice that the proof of this result is surprisingly difficult (or at least 

more complicated than the authors expected). If the compactness value was zero 

before the expansion it stays zero, and if the compactness value was 1 it certainly 

decreases. We next consider compactness values that lie strictly between 0 and 1, 

hence with p-values strictly between 0 and 1. 



If the compactness value before the expansion was 

with C the sum of all d(i,,j) not equal to N, then its compactness value after the 
expansion is: 

where 0' denotes the connection coefficient of the new, expanded network. Now, 
N-1 

P'= P N ~ ,  . so that we have to show that: 

This inequality reduces, after some simple algebra to: 

X ( ~ N - ~ ) < P ( ~ N ~ - N ~ - ~ N ~ + N ) = P N ( N ~ - ~ ) ( ~ N - ~ )  (22) 

Applying inequality (19) gives that it is sufficient to prove: 

or, equivalently: 

3N-113(N+1) 

This inequality is clearly true, proving that adding one node, disconnected from all 

others decreases the compactness value of the network. 

We observe that eliminating P' and C from (16) and (21) leads to the following formula 

expressing C' as a function of C, N and P: 



5.2 Adding one node connected to all other ones 

If the compactness value before the expansion was 

where S denotes the sum of all d(i,j), then its compactness value after the expansion 
is: 

Hence. we have to show that 

After some calculations this leads to: 

Because N(N-1) is the smallest possible value for S, this proves 5.2. 

6. Another formula for BRS-compactness 

Consider a network with N nodes and with connection coefficient p. Then we 

introduce the following definition. 



6.1 Definition 

Let , k = 1, 2, . .. , Lp, (recall that Lg denotes the largest possible distance between 

two nodes, given that the connection coefficient P) is be the fraction of the nodes in 

Ap for which d(i,,j) = k. As the 6ks are fractions, we have: 

Consequently, this leads to the following new formula for C: 

We know that [3 = 0.5 for a unidirectional N-chain. In this case we further have: 

For a bi-directional N-chain p = 1, but the 6;s are the same as for a unidirectional 

one. For a unidirectional N-loop, P = 1, and all &IS are equal to 1/(N -1). 

This leads to the following research problem: for which networks is 

SD< 6D_, <... 16, (28) 

Note that it is easy to find networks, unidirectional as well as bi-directional ones 

where (28) is not satisfied. Indeed for the following network with 7 nodes (Fig.4) , we 

have: 



Fig.4 A unidirectional network where inequality (28) is not satisfied 

7. Disjoint unions of arbitrary networks 

Let GI and G2 be two disjoint networks, the first having N1 (> 1) nodes, the second 

one having N2 (> 1) nodes. We next consider their (disjoint) union. The aim of this 

section is to obtain the compactness value C and connection coefficient P of this 

union, as a function of the compactness values of GI and G2 (denoted respectively 

as C, and C2), their connection coefficients PI and P2 and the number of nodes N1 

and N2. 

7.1 Lemma 

With the notations introduced above, we have: 

Proof. 

Graph GI contains, by the definition of the connection coefficient, PI ( N ;  - N ~ )  



connected pairs of nodes. Similarly, G2 contains P2 ( N :  - N , )  connected pairs of 

nodes. Then p,  the connection coefficient of G, the disjoint union of GI and G2, is: 

Corollary 

The connection coef fk ientp=~p,  +Alp2 with 11, h 2  E [0,1], and 21 + h2 < 1 

N; - N )  
Proof. Clearly 4 = , with j=l,Z.Now, 

N: +2N1N2 +N:  -N, -N2  

This result is not unexpected: p is not a convex combination of P1 and P2 (h, + h2 z 1) 

as there is a disjoint union involved. Intuitively: there is a loss in cohesion. This 

corresponds to a decrease in compactness (at least if GI and G2 are 'similar') as will 

be shown shortly. 

7.2 Theorem 

Using the notation introduced above we find for the value C, of the compactness of a 

disjoint union: 

Proof. 

Denoting in the first graph d(i, j) by C , ,  d(i, j) by C2 in the second 
d ( l . ~ W ' ,  dO , l )<N,  

,*I ' * I  



one, and d(i,  j )  by C in the union, we have: 
d ( % ~ b N , + . %  

-l 

It is clear that C=Cl +C2 because we have a disjoint union. Substituting the value of 

p (29) and this sum in expression (32) yields: 

Rearranging terms gives: 

C 
As I - PIN1 C, , for j  =1,2,  we obtain: 

NJ(NJ-1 )2  N, -1  



Simplifying this expression leads to: 

PIN1 +- (N ,  - U2N2 P2N2 +- (N2 - 1)' Nl 
Nl - 1 (N ,  + N2)(N, + N2 - 17 N2 - 1 (N ,  i- N2)(Nl + N, - 1)' 

or: 

7.3 Some special cases 

l o )  Taking N, = N, =n, C,  = C2 = c and P, =P ,  = b gives: 

2") Taking NZ = 1 (and leaving PZ and CZ unspecified, but finite) gives: 

which is exactly formula (23). This shows that, although formula (23) does not follow 

from the proof of theorem 7.2, it does follow from formula (31), showing that formula 

(31) is also correct if one of the two (or even both!) networks consists of one point. 

3") Taking PI = P, = 1 and C, =C2 = 1 gives the disjoint union of two complete 

networks. Its compactness is: 



as obtained by Botafogo, Rivlin and Shneiderman (1992). If, moreover, N, = N2= n 

n  - 1 
then the BRS-compactness is equal to - , which tends to 112 if n tends to infinity. 

2n-1 

7.4 Theorem 

If N , = N 2 = N , C l = C 2 = c a n d p 1  = P 2 = b  then: 

Proof. 

3(n - 1) 
We know by (20) that b  I c  , hence: 

n + l  

n  - 1 
C  = ( c ( n  - 1 )  + b n )  

(2n - 

5 
n - l  ( c ( n - ~ )  + n  

(2n - n + l  

We observe that this result as well as that of theorem 5.1 are derived using formula 

(20), which in itself is a result of the general formula (19) giving an upper bound for 

the sum of all distances between connected nodes in a network. 

We end this section by showing that the conditions N, = N2 = N ,  C, = C, = c  and 



p, =P2 = b do not imply that the two graphs are isomorphic. This implies also that 

the result of theorem 7.4 is not only valid for identical graphs for also for some non- 

isomorphic ones. 

Consider the graphs GI and G2 (see Fig. 5). All links are assumed to be bi- 

directional. They have both 7 nodes (n = 7) and clearly have a connection coefficient 

of 1 (b = 1). Finally, their Z-values are 64, so that they have the same compactness 

7 64 115 
value: c = = - . Moreover, the two graphs G1 and G2 are non-isomorphic 

6 7 0 6 ~  126 

as GI has a point with out-degree 1 (namely point 2), while G2 does not have such a 

point. Using the same construction, both now with unidirectional links leads to 

another example. 

61 4 

Fig. 5 Two non-isomorphic graphs with the same compactness value 

8. Unidirectional networks 

For unidirectional, acyclic networks, such as citation networks, De Bra (2000) 

introduced another convention, leading to the following definition. 



8. I Definition: De Bra's symmetric citation distance matnx 

Given a set of N documents, then De Bra (2000) defines the citation distance matrix 

DDB as follows: d(i, j) is equal to the length of the shortest path (in number of links) in 

the citation network from document i to document j, if such a path exists. Further: 

d(i,j) = d(j,i), and d(i,i) = 0. Finally, all other entries of the DDB -matrix are equal to N. 

Note that the matrix DDB is not the DB-matrix of the corresponding undirected 

network. The relation between the DDB-matrix, the DB-matrix and the DB-matrix of the 

corresponding undirected network is illustrated in the following example (Fig.6). 

Fig.6 A network used to illustrate the difference between the general 

and the De Bra approach 

The DB , DDB and DB-matrix of the corresponding undirected network are: 

a b c d  a b c d  a b c d  
a 0 1  1 2  0 1 1 2  0 1 1 2  
b 4 0 4 1  1 0 4 1  1 0 2 1  
c 4 4 0 1  1 4 0 1  1 2 0 1  
d 4 4 4 0  2 1 1 0  2 1 1 0  

De Bra made the citation matrix artificially symmetric. We show now that, for acyclic 

unidirectional networks, this is not really necessary. 

8.2 Different representations of an acyclic unidirectional network 

An acyclic unidirectional network such as a citation network, can be described in the 



following three ways: 1) as a general network using the BRS distance matrix (where 

the network just happens to be unidirectional and acyclic); 2) using the BRS distance 

matrix, but it is given that the network is unidirectional and acyclic (this condition 

influences the min-value in the compactness formula); 3) using De Bra's conventions. 

In all three cases MAX = N(N2 - N). In the first case MIN = N' - N; in the second one 

it is N(N' - 1)12; and in the last one it is again N2 - N. This leads to the following 

compactness formulae (denoted respectively as C, CB~U and CD~): 

and finally: 

These three formulae are all special cases of the general form introduced in 

Definition 2. 

The next theorem shows the relation between the three compactness formulae. 



8.3 Theorem 

For unidirectional, acyclic networks such as citation networks, we have: 

1) CBIU = CDB 

Proof. Denoting d(i,  j) simply by C' and N' - N by m, we have: 
( I , I ) E A B  

Further: 

This proves the theorem. 

8.4 Corollaries and comments 

It is easy to check that the previous result is also true in general, i.e. with q(N) 

instead of N. 

As the BRS-compactness value C of an acyclic, unidirectional network is at most 0.5, 

this also implies that De Bra's measure can be considered as a renormalization 

(resulting again in values between 0 and 1) of the BRS-value for the case of acyclic, 

unidirectional networks. 

In (Fang & Rousseau, 2001) the compactness of some small lattice citation networks 

has been calculated using De Bra's formula (De Bra, 2000). 



8.5 The non-uniqueness of the De Bra matrix description 

If one reverses all arrows in a digraph, then the new network will be called the 

reversed network. The operation of reversing all arrows in a network is called 

reversion. It is clear that the De Bra matrix of a citation network and that of its 

reversion are the same. Observe that, generally, citation networks that are each 

other's reversion, are non-isomorphic. 

Property. De Bra's description is non-unique. By this we mean that there exist citation 

networks that are non-isomorphic and are not each other's reversion, and yet yield 

the same De Bra matrix representation. 

It suffices to give an example. The citation networks represented by Figs. 7 a and b 

are clearly non-isomorphic and not each other's reversion. Yet, they both have the 

following De Bra matrix representation. 

Fig.7 Two non-isomorphic graphs with the same De bra matrix representation 



Matrix representation 

It is clear that this non-uniqueness shows the non-optimality of De Bra's 

representation. Consequently, it seems better to stick to the original BRS matrix 

representation. 

9. Calculation of the compactness of a balanced tree 

In section 3 we calculated the connection coefficient of a balanced tree of depth d. 

We will now continue the calculations in order to obtain this tree's compacted value. 

First we need its C-value, denoted as &. This is obtained as follows: 

This leads to the following compactness value: 



- bd"(2bd+l(bd - d - 1)-b2d(d + 1) + 2b(d2 + d + 1) - d(d  + 1)) 
- 

2 (b" l)2(bd+' - 1 )  
(40) 

1 
Taking d = 1 in equation (40) gives CI = - . If, moreover, we take the limit forb 

b + l  

tending to 1 in (40) we find the compactness value of a unidirectional chain of length 

2d+1 
d, namely - (checked by computer). 

6d 

10. Calculation of  the compactness of an ensemble 

In this section we present another construction of a unidirectional network based on 

simple building blocks. This construction generalizes the unidirectional chain. We will 

compute its BRS-compactness and study its limiting behavior. We are convinced 

that examples such as this one, are important in order to gain experience with this 

measure of cohesion. Moreover, the more complicated an example is, the more is 

resembles real-world networks, and, hence, can be used for modeling purposes. 

Construction of an ensemble 

Consider L 'levels'. Each level j consists of n, nodes. Nodes at a fixed level are 

disconnected between each other, but are connected to each node at level j+l 

(except of course nodes at level L). Connections are unidirectional and no other 



connections exist. This graph will be called an ensemble. An example, with 4 levels 

is given in Fig. 8. 

Fig.8 Ensemble with 4 levels 

1, 

The total number of nodes in the ensemble is N = E n ,  . 
,=I 

We now determine the Z-value of the BRS-representation. The nodes at level 1 

contribute: 

nl times ( [n2 + 21-13 + ... + (L-l)n~] + (nl-I) times N) ; 

nodes at level 2 contribute: 

n2 times ( [n3 + 2nd + ... + (L-2)n~] + [(np-I) + nl] times N) ; 

in general, nodes at level j contribute (j = 1, . . . , L-I): 

n, times ( [n,+l + 2nj+2 + ...+ (L-j)nd + [ @,-I)+ nl + ... + n,.~] times N); 

finally at level L we have n ~ ( ( n ~  -l)+nl + ... + nL.l) times N. 

This leads to the following total: 



We next consider the special case that all n, are equal, hence N = nL. Then the total 

is: 

Putting L-j = k leads to: 

Consequently, the BRS-compactness value is: 

In particular, if n = 1 (a unidirectional chain consisting of L nodes), C is equal to: 

This result is in agreement with Corollary 3 of Theorem 4.1, with q(N) = N = L. Hence 

we see that a chain consisting of two nodes has a BRS- compactness value of 0.5 

(the maximum value for a unidirectional network), a chain consisting of three nodes 

of 5/12, for four nodes it is 7/18, and so on, with a limiting value of 113. 



We fix n and consider the limit for L -+ m. Then the limiting value is: 

For n = 1, this is 216, for n = 2 it is 5/12, for n = 3 it is 8/18 and so on. If also n tends 

to infinity, we find the value 0.5, as expected for a unidirectional network. 

We next fix L, and consider the limit for n + m. This limit value is equal to 

If now, L tends to infinity, we find (again) 0.5. For L = 1, we find 0, also as it is 

expected to be. 

10. Conclusion 

The Net, citation networks as well as scientific collaboration networks are nowadays 

in the center of attention. We hope that the structural measure of cohesion, namely 

BRS-compactness, studied in this article will prove to be a useful element for their 

description. The fact that this measure has the well-known Wiener index as main 

component leads to the suggestion to find and apply more topological indices. These 

indices play an important role in the description of molecular graphs in computational 

and mathematical chemistry (Gutman & Polansky, 1986; Rouvray, 1986; TrinajstiC, 

1992). It has, moreover, been shown that the Wiener index is correlated to a large 

number of physiochemical properties such as boiling point, melting point, refractive 

index, surface tension and viscosity of chemical molecules. There seems to be no 



reason why they could not play an equally important role to characterize networks in 

the context of the information sciences. 

One clear restriction of the measure studied here and by Botafogo, Rivlin and 

Shneiderman is the fact that it relates to unweighted networks. Yet, there are usually 

many links between the nodes in a graph, be it authors that receive many citations 

from the same colleagues, or sites on the Internet that are connected through many 

links. This leads to a weighted graph structure that will be studied in a following paper 

(Egghe & Rousseau, 2001). 

We conclude with an open problem. Given a rational number between 0 and 1, does 

there exist a graph with that particular BRS-compactness value? 
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