
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Structural Recursion on Ordered Trees and List-Based Complex Objects

Non Peer-reviewed author version

ROBERTSON, Edward L.; LAWRENCE, Saxton V.; VAN GUCHT, Dirk &

VANSUMMEREN, Stijn (2007) Structural Recursion on Ordered Trees and

List-Based Complex Objects. In: Database Theory - ICDT 2007. p. 344-358.

DOI: 10.1007/11965893_24

Handle: http://hdl.handle.net/1942/7740

Structural Recursion on Ordered Trees and
List-based Complex Objects

Expressiveness and PTIME Restrictions

Edward L. Robertson1, Lawrence V. Saxton2, Dirk Van Gucht1, and Stijn
Vansummeren3?

1 Indiana University, USA
2 University of Regina, Canada

3 Hasselt University and Transnational University of Limburg, Belgium

Abstract. XML query languages need to provide some mechanism to
inspect and manipulate nodes at all levels of an input tree. In this paper
we investigate the expressive power provided in this regard by structural
recursion. We show that the combination of vertical recursion down a
tree combined with horizontal recursion across a list of trees gives rise to
a robust class of transformations: it captures the class of all primitive re-
cursive queries. Since queries are expected to be computable in at most
polynomial time for all practical purposes, we next identify a restric-
tion of structural recursion that captures the polynomial time queries.
Although this restriction is semantical in nature, and therefore undecid-
able, we provide an effective syntax. We also give corresponding results
for list-based complex objects.

1 Introduction

Over the past few years, the ordered, node-labeled tree data model of XML has
emerged as the standard format for representing and exchanging data on the
web. Often, there is no a priori bound on the width and depth of such trees.
As such, an XML query language needs to provide some mechanism to inspect
and manipulate nodes at all levels. XQuery, the standard XML query language
currently under development by the World Wide Web Consortium [4, 14], uses
recursion for this purpose. For example, to compute the table of contents of
books in which sections can be arbitrarily nested, one would write:

function toc(t) {
for s in t/section return <section>{ s/title, toc(s) }</section>

};

<toc> toc(book)</toc>

? Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

Here, toc is a recursive function returning for each section child s of its input
tree t a new section node containing the title and table of contents of s.

XQuery allows arbitrary recursive function definitions, resulting in a Turing
complete language. Turing completeness is an undesirable property for a query
language however, as it makes optimization difficult and allows non-terminating
queries. Therefore, it is desirable to look for suitable restrictions of arbitrary re-
cursion in XQuery. Non-termination can be prevented by closely tying recursion
to the structure of the data being operated upon, i.e., by restricting to structural
recursion. For example, a structural recursive function computing on a tree t can
only recursively call itself on the children of t. The function toc defined above
is an example of such a structural recursion. Similarly, a structural recursive
function computing on a list l can only recursively call itself on the tail of l. A
typical example of such a structural recursion is the list reversal function rev :

function rev(l) { if empty(l) then l else rev(tl(l)), hd(l) };

Here hd returns the head of a nonempty list, tl returns the tail of a nonempty
list, and the comma operator is concatenation of lists.

In this paper, we study the properties of structural recursion as a candi-
date replacement of arbitrary recursion in XQuery. In particular, we study the
combination of vertical structural recursion down trees and horizontal structural
recursion across lists of trees (as trees and lists of trees both naturally occur in
the XQuery data model [4, 14].

Structural recursion is an important primitive in database theory. It has
been used to query (nested) collections based on sets, or-sets, pomsets, bags,
and lists [8, 17, 21, 24]; unordered trees and graphs [7]; and sequences and text
documents [5]. Unrestricted structural recursion leads to highly expressive query
languages. For example, Buneman et al. have shown [8] that structural recur-
sion on nested relations is equivalent to the powerset algebra of Abiteboul and
Beeri [1], which by a result of Hull and Su, captures exactly the class of elemen-
tary nested relational queries [20] (i.e., the queries with hyper-exponential time
data complexity). Furthermore, Immerman et al. [21] and Suciu and Wong [27]
have shown that, in the presence of object invention, the class of functions
f : N × · · · × N → N representable with structural recursion on sets coincides
with the class of primitive recursive functions [6]. The resulting language is
hence strictly more powerful than the elementary queries. This result was later
extended to structural recursion on (nested) bags by Libkin and Wong [24].

Since tree construction is a form of object invention, it should come as no
surprise that a similar result also hold for structural recursion in XQuery. We
actually obtain a slightly stronger result than that of Immerman et al.: not only
does the class of functions f : N × · · · × N → N representable in our language
coincide with the class of primitive recursive functions, but the class of express-
ible queries coincides with the class of queries that have primitive recursive time
data complexity.

From a complexity point of view, structural recursion is hence too powerful a
primitive, as queries are expected to be computable in at most polynomial time

for all practical purposes. A restriction of structural recursion to polynomial
time is therefore desirable. Nevertheless, this restriction should still enable all
polynomial time queries.

The first such restriction was given by Immerman et al. for structural re-
cursion on sets, by disallowing all forms of nesting [21]. The resulting language
captures exactly the polynomial time flat relational queries. Their restriction
does not transfer to nested data models or data models with duplicates such
as bags or lists, however. As such, it is not directly applicable to structural
recursion in XQuery. A different restriction technique, known as bounded recur-
sion dates back to Cobham [11], and was applied to structural recursion on flat
lists by Grumbach and Milo [17]. Bounded recursion is best explained by means
of an example. Consider the unbounded function that computes a list of size
exponential in the size of l:

function explist(l) {if empty(l) then l else explist(tl(l)),explist(tl(l))};

Since explist generates exponential output, it certainly cannot be evaluated in
polynomial time. Bounded recursion prevents the expression of explist by requir-
ing each recursive function definition to halt computation whenever the result
becomes larger than some explicitly given size bound b. That is, with bounded
recursion, explist is required to have the following form:

function explist ′(l, b) {
if empty(l) then l else

let r = explist ′(tl(l), b),explist ′(tl(l), b) in
if sizeof (r) ≤ sizeof (b) then r else explist ′(tl(l), b)

};

In particular, the size of explist ′(l, b) is always bounded by the size of b. Since the
value for b will ultimately be computed by an expression that does not involve
recursion, the size of recursively computed outputs is always polynomial, and
this guarantees that all expressible queries can be evaluated in polynomial time
(see [11, 17] for details). This way of bounding recursion has also been applied
to query languages over nested relations and bags based on inflationary fixpoint
operators [12, 25, 26].

Although bounded recursion is useful for capturing polynomial time, it is
unsatisfactory from a practical point of view, as the programmer is required to
give explicit complexity bounds upon each recursive function invocation. More
intrinsic restrictions of structural recursion on the bitstrings by means of predica-
tive recursion were proposed by Bellantoni and Cook [3] and Leivant [23]. Their
restrictions were later generalized to arbitrary recursive functions operating on
ranked trees generated by a free term algebra by Caseiro [9]. Her techniques were
later explained by means of a type system based on linear and modal logic in
the context of a higher-order functional programming language by Hofmann [18,
19].

In this paper, we apply Caseiro’s observations and ideas to structural re-
cursion operating on lists and unranked trees to obtain an intrinsic restriction

that captures exactly the class of polynomial time queries. In particular, we
prevent the definition of explist above by disallowing all forms of doubling like
explist(tl(l)),explist(tl(l)). Although this restriction is semantical in nature, and
therefore undecidable, we provide an effective syntax for it.

For the formal development of our results, we find it convenient to not study
structural recursion directly in XQuery itself, but in the Nested Tree Calculus
NT C. The NT C can be viewed as the combination of non-recursive for-let-
where-return XQuery XQ and a complex object calculus for nested lists COC.
These languages blend naturally together, as it has repeatedly been observed in
the literature that there is a close correspondence between XQ and calculi for
complex objects [15, 22, 29]. In fact, we show NT C to be a conservative extension
of both XQ and COC, even in the presence of (restricted) structural recursion.
As a consequence, results about (restricted) structural recursion inNT C transfer
immediately to the respective sublanguages. As an important corollary we obtain
that our polynomial time restriction of structural recursion also allows to capture
the polynomial time queries on nested lists. Hence, suitably restricted structural
recursion provides an elegant alternative to the rather awkward list-trav iteration
construct of Colby et al. [13], which also captures polynomial time on nested lists.

Organization. This paper is further organized as follows. We start by introducing
our data model and the notion of a query in Section 2. Next, we define the Nested
Tree Calculus NT C and structural recursion in Section 3. The expressive power
of structural recursion in NT C is in studied in Section 4, where we also show
how to restrict it to polynomial time. Finally, we show NT C to be a conservative
extension of both XQ and COC in Section 5.

2 Preliminaries

Our data model is a combination of the tree-based data model of XQuery and
the list-based complex object data model [8]. That is, we consider the types
given by the following grammar:

σ, τ ::= atom | tree | σ × τ | [τ].

Semantically, a type denotes a set of values. The values of the base type atom
are atoms like the integers, the strings, and so on. The elements of the base type
tree are finite trees. Here, a tree is a pair 〈a〉 v with a an atom and v a finite list
of trees. Values of the product type σ × τ are pairs (v, w) with v and w values
of type σ and τ , respectively. Finally, values of the list type [τ] are finite lists
of values of type τ . Note that our types are not meant to describe the structure
of trees (as e.g., XML Schema types [28] do). They are used solely to define our
data model and to structure NT C expressions.

According to the XQuery data model, an XQuery value is either an atomic
data value; an ordered tree; a list of atoms; or a list of trees [4, 14]. Arbitrary
nested combinations of atoms, pairs, lists, and trees are not allowed. Conversely,
the list-based complex object data model typically does not include trees. We

therefore formally define an XQuery type (xq-type for short) to be either atom;
tree; [atom]; or [tree], while a complex object type (co-type for short) is a type in
which tree does not occur.

Notational convention. In what follows, we will range over atoms by letters from
the beginning of the alphabet. Also, we will denote the empty list by [], non-
empty lists by for example [a, b, c], and the concatenation of two lists l1 and l2 by
l1 ++ l2. Following [8], we write v � l for [v] ++ l. We feel free to omit parentheses
in types and write τ1×· · ·× τn for (. . . ((τ1× τ2)× τ3) · · ·× τn). Finally, we write
v : τ to indicate that v is a value of type τ .

Queries. Queries on values are defined by extending the classical definition of
Chandra and Harel [10] for relations. That is, a query is a function q : σ → τ that
maps values in σ to values in τ , for some types σ and τ . If σ = σ′×· · ·×σ′′ where
σ′, . . . , σ′′, τ are xq-types, then q is an xquery. Similarly, if σ and τ are co-types,
then q is a complex object query. Queries must be computable and generic (i.e.,
they must treat all but a finite set of atoms in uninterpreted way [2]). We will use
the domain Turing machine of Hull and Su [20] as our model of computation.
Domain Turing machines (DTMs for short) are augmented Turing machines
that are specifically designed to express generic computations; in particular,
they can work directly with an infinite alphabet on their tape. In contrast to
normal Turing machines, there is hence no need to (rather clumsily) encode
atoms as strings over finite alphabets. Nevertheless, DTMs can be simulated by
ordinary Turing machines while respecting the complexity classes considered in
this paper [20].

A query q : σ → τ is said to run in polynomial (resp. primitive recursive [6])
time if there exists a DTM M that, starting from the standard encoding of
a value v : σ, produces the standard encoding of q(v) in at most polynomially
many (resp. primitive recursive many) steps in terms of the size of the input.
Note that the query itself is fixed (i.e., we consider data complexity, not combined
complexity). Here, the standard encoding str(v) of a value v on a DTM tape
is as follows. The type constructor symbols (,), [, and] are part of the tape
alphabet, as are all of the atoms. Then a is encoded by itself; 〈a〉 v is encoded by
the string (str(a) str(v)); (v, w) is encoded by (str(v) . . . str(w)); and [v, . . . , w]
is encoded by [str(v) . . . str(w)]. We write s (v) for the length of str(v).

3 Query languages

In this section, we define the Nested Tree Calculus NT C, a first-order calcu-
lus that extends both non-recursive for-let-where-return XQuery and a complex
object calculus for nested lists. We will show in Section 5 that NT C is a conser-
vative extension of these languages, even in the presence of structural recursion.
As a consequence, in order to prove our expressiveness results claimed in the
Introduction, it suffices to prove them for NT C; they immediately transfer to
the respective sublanguages.

xτ : τ a : atom

e1 : σ e2 : σ e3 : τ e4 : τ

if e1 = e2 then e3 else e4 : τ

e : σ e′ : τ

(e, e′) : σ × τ

e : σ × τ e′ : τ ′

case e of {(xσ, yτ) → e′} : τ ′ [] : [τ]

e : τ

[e] : [τ]

e1 : [τ] e2 : [τ]

e1 ++ e2 : [τ]

e : [σ] e′
1 : τ e′

2 : τ

case e of {[] → e′
1; xσ � y[σ] → e′

2} : τ

e : [σ] e′ : [τ]

for xσ in e return e′ : [τ]

e1 : atom e2 : [tree]

〈e1〉 e2 : tree

e : tree e′ : σ

case e of {〈xatom〉 y[tree] → e′} : σ
e : τ

λxσ. e : σ → τ

f : σ → τ e : σ

fe : τ

Fig. 1. Expressions of NT C.

3.1 Nested Tree Calculus

To avoid confusion, we note that NT C is a first-order language; structural re-
cursion operators will be added in Section 3.2. The expressions of NT C are
explicitly typed, and are formed according to the typing rules of Fig. 1. There
are two sorts of expressions: value expressions and function expressions. Value
expressions like a : atom intuitively evaluate to values and are typed by a nor-
mal type, while function expressions like λxσ. e intuitively evaluate to queries
and are typed by a function type σ → τ . Note that variables are also explicitly
typed; we write xτ to denote that x is a variable of type τ . To ease notation, we
will often omit the explicit type annotations in superscript when they are clear
from the context. We use an ML-like notation for value inspection. For example,
case e of {(x, y) → e′} should be understood to be the expression that first eval-
uates e to a pair (v, w) and then evaluates e′ with x bound to v and y bound to
w. This non-standard syntax for inspection of pairs, lists, and trees will allow us
to easily define our polynomial time restriction in Section 4. The set FV (e) of
free variables of an expression e is defined as usual, with lambda abstraction and
the case expressions acting as binders. For example, FV (λx.e) = FV (e) − {x}
and FV (case e of {[] → e1; x � y → e2}) = FV (e)∪FV (e1)∪ (FV (e2)−{x, y}).
We will refer to expressions without free variables such as λx.(x, x) as closed
expressions.

Semantics. Intuitively, a value expression e : τ evaluates to a value in τ when
given values for its free variables, while a function expression f : σ → τ evaluates
to a query mapping values in σ to values in τ . Formally, a value expression e : τ
denotes a value JeKκ under context κ, while a function expression f : σ → τ
denotes a query JfKκ under context κ. Here, a context κ is a function from
variables to values respecting types (i.e., κ(x) : τ for all xτ). We denote by x : v, κ
the context that equals κ on all variables except x, which it maps to v. The
denotation of all expressions is inductively defined in Table 1. It is easy to see
that the denotation of an expression depends only on its free variables: if κ and
κ′ agree on FV (e) then JeKκ = JeKκ′ . As such, the input context to an expression

JxKκ = κ(x)
JaKκ = a

Jif e1 = e2 then e3 else e4Kκ =

(
Je3Kκ if Je1Kκ = Je2Kκ

Je4Kκ otherwise

J(e, e′)Kκ =
`
JeKκ, Je′Kκ

´
Jcase e of {(x, y) → e′}Kκ = Je′Kx : v,y : w,κ where JeKκ = (v, w)
J[]Kκ = []
J[e]Kκ = [JeKκ]
Je ++ e′Kκ = JeKκ ++Je′Kκ

Jcase e of {[] → e′
1; x � y → e′

2}Kκ =

(
Je′

1Kκ when JeKκ = []

Je′
2Kx : v,y : w,κ when JeKκ = v � w

Jfor x in e return e′Kκ = Je′Kx : v,κ ++ · · ·++Je′Kx : w,κ

where JeKκ = [v, . . . , w]
J〈e〉 e′Kκ = 〈JeKκ〉 Je′Kκ

Jcase e of {〈x〉 y → e′}Kκ = Je′Kx : a,y : v,κ where JeKκ = 〈a〉 v
Jλxσ.eKκ = f where f : JσK → JτK : v 7→ JeKx : v,κ

Jf eKκ = JfKκ

`
JeKκ

´
Table 1. Semantics of NT C.

can always be finitely represented. Moreover, the denotation of closed expressions
e without free variables is independent of the context. We simply write JeK in
that case.

Syntactic sugar. We will abbreviate λx. case x of {(x1, x2) → e} by λ(x1, x2). e.
Furthermore, we abbreviate case e of {(x, y) → x} and case e of {(x, y) → y}
by π1(e) and π2(e), respectively. Similarly, we abbreviate case e of {〈x〉 y → x}
by name(e) and case e of {〈x〉 y → y} by children(e). Also, we abbreviate the
iteration for x in children(e) return

(
if name(x) = a then [x] else []

)
by e/a.

Finally, we simulate general tuple construction by nested pairs. For example,
we write (e1, e2, e3) for ((e1, e2), e3). General tuple inspection is defined simi-
larly. For example, the expression case x of {(x1, x2, x3) → e} is a shorthand for
case x of {(y, x3) → case y of {(x1, x2) → e}}.

Example 1. Let friends be a variable of type [atom× atom] whose value is a set
of friends, as a list of pairs of atoms. The following closed function expression
generates a list of trees, each tree grouping the friends of a single person.

λfriends. for x in friends return [
〈π1(x)〉 for y in friends return if π1(x) = π2(y) then [〈π1(y)〉 []] else []

] ut

3.2 Structural recursion operators

To NT C we add structural recursion on lists (srl) and structural recursion on
trees (srt):

e : τ f : σ × τ → τ

srl(e, f) : [σ] → τ

f : atom×[τ] → τ

srt(f) : tree → τ

Here, Jsrl(e, f)Kκ is the unique function that maps the empty list to JeKκ and
non-empty lists u � v to JfKκ(u, Jsrl(e, f)Kκ(v)). Similarly, Jsrt(f)Kκ is the unique
function h defined by h(〈a〉 [t1, . . . , tn]) = JfKκ

(
a, [h(t1), . . . , h(tn)]

)
. We denote

by NT C(V) the language obtained by adding operators in V ⊆ {srl , srt} to
NT C.

Definition 1. Let V ⊆ {srl , srt} and let σ, τ be types. A query q : σ → τ is
expressible in NT C(V) if there exists a closed function expression f : σ → τ in
NT C(V) such that q = JfK.

Example 2. We can compute the transitive closure of a graph in NT C(srl) as
follows. Let a directed graph G be represented by a pair (V,E) with V a list
containing the nodes in G (represented by atoms) and E a list containing the
edges in G (represented by pairs of atoms). Transitive closure is then expressed
in NT C(srl) by λ(V,E).

(
V, srl(E, f)(V)

)
with f the function expression

λ(y, closure). closure ++
for x in V return

for z in V return
if (x, y) ∈ closure and (y, z) ∈ closure then [(x, z)] else []

Here, (x, y) ∈ closure checks whether the edge (x, y) occurs in closure. It is an
abbreviation of srl(false, g)(closure) = true with g the expression:

λ(edge, res). if edge = (x, y) then true else res.

Example 3. To express toc from the Introduction by means of srt we face a
problem: in a computation of srt(f) on a tree t the function expression f must
compute the output based solely on the label of t and the recursive result on the
children of t. To express toc, it is clear that f also needs to inspect the children of
t themselves. This problem is solved by letting f return a pair of trees where the
first component contains the actual table of contents (a list of trees) and the sec-
ond component is t itself. Then toc is expressed in NT C(srt) by λt. π1(srt(f)(t))
where f : atom×[[tree]× tree] → ([tree]× tree) is λ(lab, res). (e1, e2). Here, e1 is:

for x in res return
case x of {(stoc, s) →

if name(s) = section then [〈section〉 (s/title++ stoc)] else [] }

and e2 is 〈lab〉 for x in res return [π2(x)]. ut

4 Expressive power

4.1 Primitive recursion

In this section we investigate the class of queries expressible in NT C(srl , srt).
As a first result we have:

Theorem 1. A query is expressible in NT C(srl , srt) if, and only if, it is com-
putable in primitive recursive time.

This result is slightly stronger than that of Immerman et al. [21]; Suciu and
Wong [27]; and Libkin and Wong [24], who have shown that, in the presence
of object invention, the class of functions f : N × · · · × N → N representable
with structural recursion on (nested) sets and bags, coincides with the class of
primitive recursive functions on natural numbers [6]. Indeed, if we fix a repre-
sentation of natural numbers as values, then the theorem above implies that the
class of functions f : N × · · · × N → N representable in NT C(srl , srt) coincides
with the class of primitive recursive functions, as it is known that the primitive
recursive functions are exactly those functions on the natural numbers that can
be computed in primitive recursive time. Note, however, that their results do not
necessarily imply that the class of expressible queries coincides with the class of
primitive recursive time queries.

Theorem 1 shows that the combination of structural recursion on lists and
trees taken together gives rise to a robust class of queries. Unfortunately, the
expressiveness drops dramatically when we consider structural recursion on lists
or trees separately. Indeed, let lastlab : tree → atom be the query that maps its
input tree t to the label of the last node visited when traversing t in pre-order.
This query is clearly computable in linear time. Nevertheless:

Theorem 2. The query lastlab is inexpressible in both NT C(srl) and NT C(srt).
Hence, structural recursion on lists or trees alone is not strong enough to express
all linear time queries.

Intuitively, this is because srl only provides “horizontal” recursion along lists,
while srt only provides “vertical” recursion down trees. As such, NT C(srl) can
only manipulate inputs up to bounded depth, while NT C(srt) can only manip-
ulate inputs up to bounded width.

4.2 Taming Structural Recursion

From a complexity point of view, it follows from Theorem 1 that NT C(srl , srt)
is too powerful a query language. In this section we investigate intrinsic restric-
tions on structural recursion that capture exactly the polynomial time queries.
We start with a semantical restriction, from which we next derive a suitable
syntactical restriction.

Let us refer to the function expressions g in srl(e, g) or srt(g) as step ex-
pressions. It is clear that, in order for the function expressed by a function

expression f to be computable in polynomial time, f should never create in-
termediate results of more than polynomial size. This condition is trivially sat-
isfied if f does not use structural recursion. To see how structural recursion
can create results of exponential size or more, consider the function expression
explist := srl([a], λ(x, y). y ++ y). It is clear that, if v is a list of length k, then
JexplistK(v) returns a list of length 2k. As Caseiro [9] was the first to note, the
problem here is that the step expression λ(x, y). y ++ y doubles the size of the
result at each recursive invocation. A similar problem arises with structural tree
recursion. Indeed, consider exptree := srt(λ(x, y). 〈x〉 y ++ y). It is clear that, if v
is a linear tree (i.e., a tree in which each node has at most one child) of depth
k, then JexptreeK(v) returns a tree of size 2k. Again, the problem is that the
step expression λ(x, y). 〈x〉 y ++ y of exptree doubles its result at each recursive
invocation. This leads us to the following definitions.

Definition 2 (Tamed expressions). A function expression f : σ × σ′ → τ is
non-multiplying (in its second argument) if there exists a polynomial P such that
for all contexts κ; all v : σ; and all w : σ′, the size of JfKκ(v, w) is bounded by

P

s (v) +
∑

x∈FV (f)

s (κ(x))

 + s (w) .

An expression e ∈ NT C(srl , srt) is tamed if every step expression occurring in
it is non-multiplying.

Clearly, explist and exptree are not tamed. The following proposition shows
that being tamed is a strong enough restriction to ensure polynomial time com-
putability.

Proposition 1. Every tamed function expression in NT C(srl , srt) expresses a
polynomial time query.

Proof (Crux). The proof proceeds by induction on tamed expressions. We only
illustrate the reasoning involved in showing that tamed srl and srt expressions
can be computed in polynomial time, as these are the hard cases.

First, consider a closed function expression f of the form srl(e, f ′) with e
and f ′ also closed. Assume by induction that Jf ′K is computable in polyno-
mial time T ′. Since Jf ′K is non-multiplying, there exists a polynomial P such
that s (Jf ′K(v, w)) ≤ P (s (v)) + s (w) for all v and w of the correct type. We
assume without loss of generality that T ′ and P are monotone increasing. To
compute JfK(v) for a given list v = [w1, . . . , wm] of size n we first compute
w = JeK. Since e is closed, this can be done in constant time. Next, we compute
Jf ′K(w1, Jf ′K(w2, . . . Jf ′K(wm, w) . . .)). In order to do so, we need to evaluate Jf ′K
at most m ≤ n times. Every wi has size at most n and the size of w is some
constant c. Because Jf ′K is non-multiplying, Jf ′K(wm, w) then has size at most
P (n) + c; Jf ′K(wm−1, Jf ′K(wm, w)) has size at most P (n) + P (n) + c; and so on.
The maximum size of an input to f ′ is hence bounded by n×P (n)+c. The total

time needed to compute JfK(v) is then bounded by O(n × T ′(n × P (n) + c)),
which is clearly a polynomial in n.

Next, consider a closed function expression f of the form srt(f ′) with f ′ also
closed. Assume that Jf ′K(v, w) can be computed in polynomial time T ′. Since
Jf ′K is non-multiplying, there exists a polynomial P such that s (Jf ′K(v, w)) ≤
P (s (v)) + s (w). Again, we assume without loss of generality that T ′ and P are
monotone increasing. Using the fact that Jf ′K is non-multiplying, it is straight-
forward to prove by induction on a tree t that s (JfK(t)) ≤ s (t) × (P (1) + 2).
To compute JfK(t) for a given input tree t = 〈a〉 [t1, . . . , tm] of size n we must
compute Jf ′K(a, [JfK(t1), . . . , JfK(tm)]). Hence, we first need to compute JfK(ti)
for every i. This involves calling Jf ′K again multiple times. Note, however, that
the total number of times that Jf ′K gets called is bounded by n. Furthermore, at
each such call, the size of the input to Jf ′K is bounded by n×(P (1)+2). The total
time needed to compute JfK(t) is hence bounded by O(n× T ′(n× (P (1) + 2))),
which is clearly a polynomial in n. ut

The converse is also true: every polynomial time query can be expressed by a
tamed function expression, as we will show below. Note that “non-multiplying”
and “tamed” are semantical notions. Using a standard reduction from the sat-
isfiability problem of the relational algebra, it is straightforward to show that
checking whether an expression satisfies one of these semantical properties is un-
decidable. We can, however, restrict the syntax of expressions in NT C(srl , srt)
in such a way that all expressions are tamed, as we shown next.

To motivate our syntactical restriction, consider again the problematic step
expression λ(x, y). y ++ y from explist . Since this step expression is multiplying
(and explist is hence not tamed), we want our syntactical restriction to exclude
it. The first solution that comes to mind is to require that y occurs at most once
in the body e of a step expression λ(x, y).e. This solution is defective in multiple
ways. On the one hand it is too restrictive. Indeed, harmless, non-multiplying
step expressions like λ(x, y). if e1 = e2 then x � y else y with y occurring in e1

or e2 are excluded. Clearly, there is a difference between testing a variable and
actually using it to construct the output. On the other hand, the solution is
not restrictive enough. Indeed, the step expression, λ(x, y). for x in [a, b] return y
would be accepted, although it is equivalent to the problematic λ(x, y). y ++ y
above. For these reasons, a more fine-grained restriction is in order.

Definition 3 (Testing and outputting). An expression e tests a variable x
if every free occurrence of x as a subexpression in e is in e1 or e2 of a conditional
test if e1 = e2 then e3 else e4. An expression e outputs x if x is free in e and e
does not test x.

Example 4. The expression if x = y then (y, z) else (z, z) tests x and outputs y
and z. ut

Next, we define linearity. Here, linearity should be understood in the sense
of Caseiro [9] and Hofmann [18]: if e is linear in a variable x, then e uses x to
compute its output at most once.

Definition 4 (Linearity). A value expression in NT C(srl , srt) is linear in a
variable x if either

– it is an expression of the form y, a, or [];
– it is a conditional test if e1 = e2 then e3 else e4 with e3 and e4 linear in x;
– it is [e] or 〈e′〉 e with e linear in x;
– it is (e, e′) or e++ e′ with e and e′ linear in x and at most one of e and e′

outputting x;
– it is a case expression of the form case e′ of {(y, z) → e′2}, case e′ of {[] →

e′1; y � z → e′2}, or case e′ of {〈y〉 z → e′2} with (1) e′, e′1, and e′2 linear in x;
and (2) if e′ outputs x, then e′2 tests x and e′2 is linear in y and z;

– it is for y in e1 return e2 with e1 and e2 testing x;
– it is for y in e1 return y with e1 linear in x; or
– it is for y in e1 return children(y) with e1 linear in x.

We clarify this definition with some examples.

Example 5. The expression y ++ y is not linear in y. The expression from Exam-
ple 4 is linear in x and y, but not in z. The expression for y in x return (if y =
z then [y] else []) is linear in z, but not in x. The expression case x of {(y, z) →
(z, y)} is linear in x. The expression e1 from Example 3 is not linear in the
variable res because the for-loop does not have the required form. Finally, the
expression e from Example 2 is linear in x. ut
Definition 5 (Safety). An expression in NT C(srl , srt) is safe if every step
expression occurring in it is of the form λ(x, y). e with e linear in y.

From Example 5 above, it follows that the function expression computing
the transitive closure of a graph given in Example 2 is safe, whereas the function
expression computing the table of contents of a book given in Example 3 is not.

Lemma 1. If e ∈ NT C(srl , srt) is a value expression linear in x then there
exists a polynomial P : N → N such that for all environments κ:

s (JeKκ) ≤ P

 ∑
y∈FV (e)−{x}

s (κ(y))

 + s (κ(x)) .

It immediately follows that safe expressions are tamed; they are hence com-
putable in polynomial time by Proposition 1. Note, however, that some function
expressions, like the one expressing toc from the Introduction in Example 3 de-
note polynomial time queries, but are not safe. This hence raises the question
how powerful safe expressions are. Fortunately,

Proposition 2. Every polynomial time query is expressible by a safe, closed
function expression in NT C(srl , srt).

In particular, toc from Example 3 can hence be expressed in a safe way. From
Lemma 1 and Propositions 1 and 2 it immediately follows that safe expressions
provide an effective syntax for the polynomial time queries.

Theorem 3. A query is expressible in safe NT C(srl , srt) if, and only if, it is
computable in polynomial time.

5 Natural Sublanguages

Note that the results of Section 4 do not necessarily imply anything about the
expressiveness of structural recursion in XQuery or about the expressiveness of
structural recursion on list-based complex objects. Indeed, the expressions of
NT C(srl , srt) can create and manipulate arbitrary values (including e.g., lists
of lists and list of pairs) during their computation, while XQuery only manip-
ulate XQuery values (i.e., values in some xq-type). Conversely, the expressions
of NT C(srl , srt) can create and manipulate trees, while trees are not present in
complex object data models. Nevertheless, the results for NT C(srl , srt) trans-
fer cleanly to both structural recursion in XQuery and structural recursion on
list-based complex objects, as we show in this section.

Let us define structural recursive XQuery to be the natural sublanguage of
NT C(srl , srt) in which we restrict expressions to only manipulate XQuery val-
ues. Since we still want to be able to define and call multiple-argument functions
however, we do allow to create and manipulate tuples of XQuery values, but
only in function abstraction and application.

Definition 6 (Structural recursive XQuery). If V ⊆ {srl , srt} then XQ(V)
is the set of expressions e ∈ NT C(V) in which every subexpression e′ of e has
type either e′ : τ or e′ : σ× · · ·×σ′ → τ with σ, . . . , σ′, τ xq-types, except when e′

is a variable xσ×···×σ′
in a function abstraction λx. case x of {(y, . . . , y′) → e′′}

or e′ is a product (e1, . . . , en) in a function application f e′.

The function expression from Example 1 is not in XQ(srl , srt) as the subex-
pression friends has type [atom× atom], which is not an xq-type. The expression
λxtree× tree. case x of {(y, z) → 〈name y〉 children z} which we would normally
abbreviate by λ(ytree, ztree). 〈name(y)〉 children(z) does belong to XQ(srl , srt),
however. Unfortunately, the function expression λ(lab, res). (e1, e2) from Exam-
ple 3 that is used to simulate toc from the Introduction is not in XQ(srl , srt).
Indeed, the subexpression (e1, e2) creates a pair without directly giving it as
argument to a function. Nevertheless, toc is expressible in XQ(srt), as Proposi-
tion 3 below shows.

The structural recursive complex object calculus is the natural sublanguage
of NT C(srl , srt) in which we restrict expressions to only manipulate complex
objects. Such expressions hence cannot create or manipulate trees. In particular,
they cannot recur on trees.

Definition 7 (Complex object calculus). If V ⊆ {srl}, then COC(V) is the
subset of expressions e in NT C(V) in which every subexpression e′ of e has type
either e′ : τ or e′ : σ → τ with σ and τ complex object types.

The Nested Tree Calculus is a conservative extension of both XQuery and
the complex object calculus, as the following proposition shows.

Proposition 3. Let V ⊆ {srl , srt}.

1. An xquery is expressible in NT C(V) if, and only if, it is expressible in
XQ(V).

2. An xquery is expressible by a safe expression in NT C(V) if, and only if, it
is expressible by a safe expression in XQ(V).

3. A complex object query is expressible in NT C(srl , srt) if, and only if, it is
expressible in COC(srl).

4. A complex object query is expressible by a safe expression in NT C(srl , srt)
if, and only if, it is expressible by a safe expression in COC(srl).

It follows that our results about the expressiveness of (safe) structural recursion
in NT C as stated in Theorems 1,2, and 3 transfer to XQ and COC.

In particular, a complex object query is hence expressible in COC(srl) if, and
only if, it is primitive recursive. We note that this result may seem in contrast to
that of Grumbach and Milo [17], who consider a language that includes structural
recursion on pomsets (a datatype that generalizes sets, bags, and lists), which is
claimed to capture the elementary queries on pomsets. It seems counter-intuitive
that a language that generalizes COC(srl) has lower complexity. There is an
error in their upper-bound proof, however; also non-elementary queries can be
expressed [16].

We also note that the polynomial time queries on list-based complex objects
have already been captured by means of the list-trav iteration construct of Colby
et al. [13]. This iteration construct is rather awkward, however, and we think
that safe structural recursion provides an elegant alternative.

Another such alternative in the restricted case of list of atomic values was
given by Bonner and Mecca, in their work on Sequence Datalog [5]. Sequence Dat-
alog is a query language that extends Datalog with functions on lists of atomic
values. Using suitable syntactic restrictions, they give a query language sound
and complete for the flat relational queries. In these relations, tuple components
may either contain atomic values or lists of atomic values.

References

1. S. Abiteboul and C. Beeri. The power of languages for the manipulation of complex
values. VLDB Journal, 4(4):727–794, 1995.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations Of Databases. Addison-Wesley,
1995.

3. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-
time functions (extended abstract). In STOC 1992, pages 283–293. ACM Press,
1992.

4. S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0: An XML Query Language. W3C Candidate Recommendation,
November 2005.

5. A. J. Bonner and G. Mecca. Sequences, datalog, and transducers. J. Comput.
Syst. Sci., 57(3):234–259, 1998.

6. G. Boolos and R. Jeffrey. Computability and Logic. Cambridge University Press,
third edition, 1989.

7. P. Buneman, M. Fernandez, and D. Suciu. UnQL: a query language and algebra for
semistructured data based on structural recursion. VLDB Journal, 9(1):76–110,
2000.

8. P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles of programming
with complex objects and collection types. Theoretical Comput. Sci., 149(1):3–48,
1995.

9. V. Caseiro. Equations for Defining Poly-time Functions. PhD thesis, University of
Oslo, 1997.

10. A. K. Chandra and D. Harel. Computable queries for relational data bases. J.
Comput. Syst. Sci., 21(2):156–178, 1980.

11. A. Cobham. The intrinsic computational difficulty of functions. In Logic, Method-
ology, and Philosophy of Science II, pages 24–30. Springer Verlag, 1965.

12. L. S. Colby and L. Libkin. Tractable iteration mechanisms for bag languages. In
ICDT 1997, volume 1186 of LNCS, pages 461–475. Springer, 1997.

13. L. S. Colby, E. L. Robertson, L. V. Saxton, and D. V. Gucht. A query language
for list-based complex objects. In PODS 1994, pages 179–189. ACM Press, 1994.

14. D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C
Candidate Recommendation, June 2006.

15. M. F. Fernández, J. Siméon, and P. Wadler. A semi-monad for semi-structured
data. In ICDT 2001, volume 1973 of LNCS, pages 263–300. Springer, 2001.

16. S. Grumbach and T. Milo. Personal communication.
17. S. Grumbach and T. Milo. An algebra for pomsets. Inf. Comput., 150(2):268–306,

1999.
18. M. Hofmann. A mixed modal/linear lambda calculus with applications to

Bellantoni-Cook safe recursion. In CSL 1997, volume 1414 of LNCS, pages 275–
294. Springer, 1997.

19. M. Hofmann. Semantics of linear/modal lambda calculus. Journal of Functional
Programming, 9(3):247–277, 1999.

20. R. Hull and J. Su. Algebraic and calculus query languages for recursively typed
complex objects. J. Comput. Syst. Sci., 47(1):121–156, 1993.

21. N. Immerman, S. Patnaik, and D. W. Stemple. The expressiveness of a family of
finite set languages. Theor. Comput. Sci., 155(1):111–140, 1996.

22. C. Koch. On the complexity of nonrecursive XQuery and functional query lan-
guages on complex values. In PODS 2005, pages 84–97. ACM, 2005.

23. D. Leivant. Stratified functional programs and computational complexity. In POPL
1993, pages 325–333. ACM Press, 1993.

24. L. Libkin and L. Wong. Query languages for bags and aggregate functions. J.
Comput. Syst. Sci., 55(2):241–272, 1997.

25. V. Y. Sazonov. Hereditarily-finite sets, data bases and polynomial-time com-
putability. Theor. Comput. Sci., 119(1):187–214, 1993.

26. D. Suciu. Bounded fixpoints for complex objects. Theor. Comput. Sci., 176(1-
2):283–328, 1997.

27. D. Suciu and L. Wong. On two forms of structural recursion. In ICDT 1995,
volume 893 of LNCS, pages 111–124. Springer, 1995.

28. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures. W3C Recommendation, May 2001.

29. J. Van den Bussche, D. Van Gucht, and S. Vansummeren. Well-definedness and
semantic type-checking in the nested relational calculus and xquery. In ICDT 2005,
volume 3363 of LNCS, pages 99–113. Springer, 2005.

