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ABSTRACT 

This paper studies concentration aspects of bibliographies. More in particular we study the 

impact of incompleteness of such a bibliography on its concentration values (i.e. its degree of 

inequality of production of its sources). Incompleteness is modelled by sampling in the 

complete bibliography. The model is general enough to comprise truncation of a bibliography 

as well as a perfectly stratified sample on sources or items. In all cases we prove that the 

sampled bibliography (or incomplete one) has a higher concentration value than the complete 

one. These models hence shed some light on the measurement of production inequality in 

incomplete bibliographies. 
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I. Introduction 

Bibliographies (or its generalization : Informetric Production Processes (IPPs)) are formally 

described e.g. in Egghe (1989,1990). A bibliography consists of a set of sources (e.g. journals), 

a set of items (e.g. articles) and a function that points out which items belong to which source 

(i.e. pointing out, for each article, in which journal it is published). Other interpretations of 

IPPs (even beyond the information sciences, e.g. in econometrics, biometries, etc.) exist (see 

e.g. Egghe and Rousseau (1990)) but we will not use them here. We will henceforth use the 

terminology : bibliography. 

Typical for all bibliographies is the large inequality that exists between the production of the 

sources. Intuitively speaking, few sources have many items and many sources have few items. 

One talks in this connections also about "elitism" or "elitarism" of bibliographies - also found 

e.g. in econometrics models relating to richness and poverty. In informetrics, the formal way to 

express inequality is given by the classical informetric laws such as the ones of Lotka, Zip< 

Mandelbrot, Bradford, Leimkuhler and so on (see e.g. Egghe and Rousseau (1990)). The 

measurement of inequality can be performed using concentration theory, see Egghe and 

Rousseau (1990), Rousseau (1992) but its invention goes back to the beginning of the 20" 

century, see e.g. Lorenz (1905), Gini (1909). In its most elementary way it goes as follows. 

We start kom a vector 

X = (x ,,..., x,) 

where, for each i=l, ..., N, xi 2 0 denotes the number of items in (more generally the production 

of) the i" source in the bibliography. This sequence is ordered in a monotone way - here we 

will order it decreasingly. We transform X into its corresponding vector of relative values : 

where 



3 

for every i=1, ..., N. The Lorenz curve L, of X is then formed by linearly interconnecting the 

points in the unit square 

Note that indeed aj=l. Since X is decreasing, the Lorenz curve L, is concavely increasing 
j=1 

between (0,O) and (1,l). Let 

be a second vector as above. We say that Y represents a more concentrated situation than X if 

and where the higher concentration is strict if b>L,  at least in some points of the graphs 

One can then proceed with this classical concentration theory by defining good concentration 

measures M as functions on such vectors X, Y such that b > L ,  implies M(Y)>M(X). Classical 

examples of good concentration measures are : V (the coefficient of variation), G (the Gini 

index), P (Pratt's measure), Th (Theil's measure), see Egghe and Rousseau (1990), but we will 

not be using these measures here. It is well-known that comparing Lorenz curves is the perfect 

solution to comparing inequality. 

The above method applies to any bibliography : here in X = (x,, ..., x,), each represents the 

number of articles in the i" journal in the bibliography (where journals are ordered in 

decreasing order of the number of articles they have (on a certain subject)). In practise, 

however, we are faced with the problem of incomplete bibliographies : we never know the 

complete bibliography, e.g. due to the imperfectness of information retrieval machines. This 

incompleteness can also be interpreted in the following natural case : suppose we want to keep 

track of a bibliography in time. Then the cumulative set of journals and articles up to, say 

1999, is an incomplete version (or extract or sample) of the one up to, say 2000. Interpreted in 



this way, incomplete bibliographies have their application in the study of (even complete) 

bibliographies in function of time. Hence, the term "incomplete" does not only have to be 

interpreted in its "smallest" interpretation, i.e. the one in which we only retrieve a part of what 

we want : the complete bibliography. 

An incomplete version of a bibliography can be interpreted in several ways. In any way we will 

consider the incomplete version of a bibliography as a bibliography that is obtained as a sample 

in the original one. Of course, there are many ways to execute a sample. Because of the dual 

character of bibliographies, at least two "major" types of samples are possible : a sample in the 

items and a sample in the sources. We refer to Rousseau (1993) for a first attempt to study the 

effect of sampling on the concentration properties of a bibliography, based on elaborated 

(theoretical) examples. In addition to these two types we can - in case we end up with a source 

with zero items (in case of an items sample) or with a non-picked source (in case of a source 

sample) : 

1. allow this source but with zero items (x,=O), 

2. delete this source, i.e. considering as non-existent. 

These two approaches are considerably different. Without going into the different sampling 

techniques discussed in the sequel, let us illustrate this by a simple example. Suppose 

is our "complete" situaton, hence a bibliography where we have one source with 5,4,3,2,1 

items, respectively. Deleting the items in the sources with 1 and 2 items leaves us two 

possibilities, as described above 

1. The sampled bibliography is represented by the vector, denoted by s(X) : 

s(X) = (5,4,3,0,0) 

2. The sampled bibliography is represented by the vector, denoted by o(X) : 

o(X) = (5,4,3) 



These two cases are, conceptually, very different. Denoted in a general way, the difference 

between 

and 

(x,, ..., x,,>O) can be the difference between (econometric interpretation) 

1. a group of N persons where the first N-k ones have a good salary, while the last 

k persons do not earn any money 

and 

2. a group of N-k persons, all having a good salary. 

In an informetric interpretation, we have the above difference : 

1. we have a group of N researchers (in a scientific domain) in which N-k of them 

are very productive (in terms of number of publications) and in which k of them 

are not-productive at all 

and 

2. we have a group of N-k very productive researchers. 

The above arguments lead to the following 4 sampling typg (many more methods will be 

explained in the sequel - we do not go into this now) 

1. sampling in items, keeping zero sources (or in other terms : the number of sources (N) 

is fixed), 

2. sampling in items, deleting zero sources (here the number of sources varies), 



3 .  sampling in sources, keeping not-selected sources as zero sources (again using a fixed 

number N of sources), 

4. sampling in sources, deleting not-selected sources (again here the number of sources 

varies). 

The ultimate goal of studying the above sampling types - besides their proper theoretical 

interest - is to be able to conjecture some results concerning the concentration of a 

incomplete bibliography, e.g. a retrieved bibliography and to determine how it differs from the 

concentration of a (unknown) bibliography. 

The next section deals with sampling in items. There we prove, using a very general sampling 

method (to be discussed there and comprising truncation of a bibliography as well as perfectly 

stratified samples of the bibliography - see krther for exact definitions) that, if the number of 

sources is fixed and if we sample from the least productive sources to the most productive 

ones (the most important case as will be explained there), the Lorenz curve of the sampled 

bibliography is always above the one of the complete bibliography. In all other cases (including 

the deletion of zero-sources) we produce counterexamples showing that the Lorenz curve of 

the sampled bibliography is not always above or below the one of the complete bibliography. 

The third section deals with sampling in sources. Also here we prove that, if the number of 

sources is fixed and if we keep the most productive sources (see hrther for an exact 

definition), the Lorenz curve of the sampled bibliography is always above the one of the 

complete bibliography. 

In summary, the most "natural" sampling types lead to an increase of the inequality (in 

production of the sources) in the sampled bibliography. This hence leads to a systematic over- 

estimation of the inequality (concentration) of the complete bibliography. 



11. Sam~ling items 

We will first introduce two important item sampling methods which will turn out to be two 

extreme cases of the general sampling method that we will discuss in this section. 

11.1. Perfectlv stratified samvle (PSS) 

As always, a bibliography is represented by a production vector 

X = (x,, ..., x,) 

where xgNu{O), for all i=1, ..., N. We order X decreasingly and sample in the items, using the 

least productive sources first. Let BEQ' (the positive rational numbers) be such that 0ser; 1 and 
N 1 that x x,, the total number of items, is a - - multiple (this is used in order to have no 

j = l  0 
rounding - off errors which would disturb the results as we will see in the sequel). A perfectly 

stratified sample (PSS) starts replacing x, by [ex,] ([x] denotes the largest entire number, 

smaller than or equal to x). This will be the N"' coordinate s(x,) of the sampled vector, denoted 
1 by s(X). The "rest" -(ex,-[ex,]) is then added to x,., and, for the (N-I)"' coordinate of s(X) 
8 

we take 

The rest is added to x,., and so on. The notation is getting rather complicated but there is a 
N . . 

simple way to express the cumulative number s(x,) for every i=1, ..., N. It is nothing else 
j;i 

than 

which makes life much more easy and allows us not to use (3) fhther on : (4) will suffice. 
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1 
Another way to explain PSS is as follows. Let 0 =- (neN). Replace each xj by a unit row 

n 
vector of length xj , so that the production vector ( x . .  x )  is replaced by 

((1 ,..., 1)$1, ..., 1)( ...)( 1, ..., 1)). Ignoring the inner brackets we essentially have a unit vector of 
1 

length C xj. Choosing our --sample is then just a matter of going along this vector (from 
j=l  n 

right to left), ignoring the inner brackets and highlight each n'h entry. Then s(xJ is just the 

number of highlighted entries in the bracket corresponding to the j" source. 

P The same sort of construction can be described when 0 = - (p ,q~N,  p<q). Here the 
9 

production vector (x,, ..., x,) is replaced by replacing each 5 by a ulut matrix with p rows and xj 
N 

columns so that overall we have a unit matrix with p rows and xj columns. To execute the 

P j=1 
--sample we run down the columns successively highlighting ever qm entry and then count up 
9 

the number of highlighted entries within each matrix. 

Some examples will show the simplicity of the method. 
1 1 1. X = (4,1,1) = (x,,x,,x,) and 0 = -. Since -<x3<l we take s(x,)=O and we shift x,=l 
2 2 

1 1 to the second and add it. Now 2 . - = 1 yielding s(xJ = 1. Finally 4 . - = 2 yielding 
2 

3 
2 

1 s(xJ = 2. Hence s(X) = (2,1,0). Note that xj= 6 is a- = 2 - multiple. 
j = l  0 

In the description with the unit vectors we rewrite X as 

~ ~ ~ > ~ ~ ~ ~ ~ ~ > ~ ~ ~ , ~ ~ ~ ~  

and highlight every second 1 from the right. So we have 

((Ll,Ll),(l),(l)) 

yielding s(X)=(2,1,0) again. 

In the same way the following exercices can be executed. 

1 5 

2. X = (4,2,1,1, l), 0 = - . Note that C xj = 9 = 3 - multiple. Applying the same method 
3 j= l  

now yields (verify) 



but since s(X) is not decreasing we define (order s(X) decreasingly) 

sl(X) = (2,1,0,0,0) 

N 1 
0 can be any number in Q'n[O,l] such that xi is a - - multiple and not just a 

;=1 0 
number of the form 0 = -f., ncN. Example : 

' 

n 

3 5 5 
3. X = (1,1,1,1, I), 0 = -. Note that xj = 5, a - - multiple. Verify that 

5 j = I  3 

s(Q = (Ll ,O, l>~)  

and hence that 

PSS is one of the most important sampling methods, which is also applied in real-life to have a 

fast method that resembles (or approximates) random sampling (see e.g. Clarke and Cooke 

(1992), Carpenter and Storey Vasu (1978) or Egghe and Rousseau (1990, 2001a)). Only in 

cases of production units in factories, where a production error might occur in every n' object 

say, PSS might give sampling results which differ from random sampling. As described in the 

mentioned references, there is very little chance that we have this problem in sampling in 

bibliographies. In our interpretation we think it resembles the "making" of incomplete 

bibliographies very well. Yet, PSS will be generalized in this section, where source-variable 8 

will be allowed (see further). 

IL2. Truncation 

Let the bibliography be represented by X=(x,, ..., x,), ordered decreasingly. Let i ~ {  1, ..., N). The 

i-truncation of this bibliography is obtained by keeping the i most productive sources and 

putting the sources on rank i+l, ..., N on zero production. Hence the i-truncation of the 

bibliography is represented by 



The i-truncation can be considered as the bibliography consisting of the i "core" sources of the 

original bibliography (see Egghe and Rousseau (2001b) for a treatment of cores of a 

bibliography). 

11.3. General model for samvline, in items. 

The above item sampling methods can be generalized as follows. Let X=(x,, ..., x,) represent 

our bibliography. We suppose X to be decreasing. The philosophy of this general method is 

allowing for variable sample fractions Oi (i=1, ..., N) dependent on the source i. Most naturally 

we require (OJi=,,,,.,, to be decreasing (including a constant sequence) : in this sampling method, 

items in low productive sources (high i) have a lower chance to be picked for the sample than 

items have in sources with low i (highly productive sources). In exact mathematical terms, 

s(X)=(s(xJ, ..., s(xN)), the representation of the sampled bibliography, is obtained as follows : 

, of course sampling first in the low productive sources. The decimal rest, O,xN-[9,xN] is then 

added to the (N-1)"' source (the same as in 11. I). Then 

and so on. The simplest way to describe this sampling model is as follows : for every i=1, ..., N 

From this it also follows that, for every i=1, ..., N 
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N 

since C s(x,)EN. Formula (9) is easily obtained and certainly easier than deriving it from a 
j=i+l  

complete induction argument based on (6) and (7) (which, however, is also possible). The 

vector representing the sampled bibliography is denoted s(X)=(s(x,) ,..., s(x,)). Its decreasing 

version is denoted s'(X)=(s'(x,), ..., s1(x,)). Denote by L,, L,(,,, L,.(,,, the Lorenz-curves 

derived from X, s(X), sr(X). We have the following general result. 

N 

Theorem 11.3.1. If (OJi =,,..,, , is decreasing and if C Ojxj~N, then 
j = l  

Hence the sampled bibliography is more concentrated than the original one. 

Since the proof is a bit lengthy we give it in Appendix 1 

Note that the sampling methods described in 11.1 and 11.2 are a special case of this 

1 .  PSS is obtained by taking 

N 1 Note that in this case, the condition that C xj must be an - - multiple is the same as 
j=l  0 

the requirement in Theorem 11.3.1 above : 

This is a very natural requirement where we only look at bibliographies in which 

"entire" items are sampled. Besides, below, we will give a counterexample to Theorem 

II.3.1 in case (12) is not satisfied. So, since PSS is included in Theorem 11.3.1 we have 

here also that the sampled bibliography is more concentrated than the original one. 



2. Truncation is obtained by taking 

Note that here (12) is always valid and that sl(X)=s(X). Since Theorem 11.3.1 applies 

to truncation, we have a generalization of the result obtained in Egghe and Rousseau 

(2001b) which has, as mentioned above, an application in the determination of the core 

of a bibliography. 

11.4. Examule showing that the reauirement (12) cannot be d rov~ed  in Theorem II.3.1. 

Even in the case of a PSS we can give a counterexample. Take X=(3,1,1), 0=0.5, hence 
3 1 xj=5 is not a- = 2 - multiple. It is easily seen that s(X)=(1,1,0), hence 

j= l  0 

showing that L, and L,(,, cross 

If we sample items, using the most productive sources first, Theorem 11.3.1 is not true. 

11.5. If the sampling method 11.3 is done in the reverse wav. i.e. bv starting with the most 

productive sources. then Theorem 11.3.1 is not true. nor do we have an opposite result. 

This sampling method replaces (6)-(8) by 



Even in the PSS-case (0, = ... = 0, = 0) the analogue of Theorem 11.3.1, nor the opposite result 
1 

(L,(,,<L,) are generally true. Indeed, take X=(5,1,1,1,1), 0 = - . Then this sampling method 
3 

yields s(X)=(l,l,O,O, 1) and hence s'(X)=(l,l,l,O,O). But 

showing that L,.(,, and L, cross and hence also L,,2L,. 

11.6 If the samvling method 11.3 is applied but with drovving the zero sources. then Theorem 

11.3.1 is not true-nor do we have an opposite result. 

Take X=(l2,4,2,l,l), 9=0.25. Then here s(X)=(3,1,1) and so 

It is trivial to see that L,(,,<L,. Of course, any example where no zero sources occur yields 

L,,,>L,, by Theorem 11.3.1, since this sampling method and the one of 11.3 then coincide. The 

next is an example where L,(,, and L, cross. 

Take X=(3,3,2,2,l,l), 0=0.5. Then s(X)=(2,1,1,1, I), 



3 1 
The equation of the line connecting (0,O) with For x=- this yields 

5 

and L,,, cross. 

This completes the study of all cases of sampling on items. We now proceed with the case of 

sampling on sources. 

111. Samplinp sources. 

Also here, the most important case of sampling in sources, namely perfectly stratified sampling, 

will yield a result as in Theorem 11.3.1, namely L,.(,,>L,. It is the case where we keep the non- 

picked sources as zero-sources and where we sample in such order that the largest sources are 

kept in the sample. This will be described now. 

111.1 Descriotion of the model of samoline: in sources. 

Again we represent the bibliography by X=(x,, ..., x,) (decreasing) and we let qcQtn]O,l[ such 
1 that N is an - - multiple. A perfectly stratified sample (PSS) in sources, giving priority to 
7 

higher productwe sources yields the bibliography represented by the vector 

The decreasing order version of this vector is then 

K where N= - , KEN. 
11 



We have the following result. 

Theorem 111.1.1. The above sampling method in sources yields 

L ( X )  LF 

Hence the sampled bibliograhy is more concentrated than the original one. 

Since the proof is rather technical we give it in Appendix 2 

IIL2 The above theorem is not valid for the (non-decreasinv) dX). 

This is clear, since so many zeroes occur. An example 

Take X=(4,3,2,1), q=0.5. Then s(X)=(4,0,2,0). Hence 

and 

IIL3 The above theorem is not valid for not verfectlv stratified samples. 

Indeed, even the simplest case of replacing one source by a zero-source, does not yield the 

result. Take X=(3,3,1,1,1,1) and s1(X)=(3, 1,1,1,1,0) (hence replacing one source with 3 items 

by a zero-source). Now 



and 

Note that I,( 3 = fas.m(+) =$ but L( =3s,'L.0( :) =+. Note that and LS,(,, 

intersect twice since L 4 i) < L ~ , ~ [  i) = 1. 

111.4 The above theorem is not valid if we samole in the reverse wav. 

Here, instead of replacing each x i  (i=1, ..., K) by 0 as in (14) we replace each xN_ i by 0. - - + I  
n '1 

Example : X=(10,1,1,1), q=0.5, s'(X)=(l,l,O,O). But 

Hence L, and La.(,, cross. 

111.5 The above theorem is not valid if we delete sources (instead of re~lacinr! them bv 0). 

Indeed, take X=(4,3,2,1), q=0.5 (and sample as in the theorem, except that we delete non- 

picked sources). Here s(X)=(4,2) and hence 



Also an opposite example exists : X=(10,1,1,1), q=0.5. Then s(X)=(lO,l), hence 

and 

So L,<Lgx, here. 

IV. Conclusions. 

In this paper we studied different sampling techniques in bibliographies, comprising sampling in 

items and sampling in sources. 

When sampling in items we allow the probability for an item to be picked to be increasing with 

the number of items in the sources. In this general setting we prove that, if we start sampling in 

the least productive sources (hereby keeping zero-sources), the Lorenz curve of the sampled 

bibliography is above the Lorenz-curve of the original one. In other words, the sampled 

bibliography is more concentrated than the original one. The model and result applies to the 

case of perfectly stratified sampling (often used as an approximation for random sampling) as 

well as to truncation of bibliographies (i.e. only using the "core" of the bibliography - see 

Egghe and Rousseau (200 1 b)). 

When sampling in sources, a similar result is proved. Here we show that a perfectly stratified 

sample in sources, keeping the most productive sources and replacing non-picked sources by a 

zero-source, yields a sampled bibliography for which the Lorenz-curve is above the one of the 

original bibliography. 



We also show that all variants of the above methods (reversing the order, deleting zero- 

sources, ...) do not yield such (or another) result. 

So, in the two major sampling methods, we have that the sampled bibliography is more 

concentrated than the original one. This gives information about the concentration of 

bibliographies (as we receive them, e.g. as the result of an IR action) as compared to the 

(unknown) complete one. In all cases we can say that the observed concentration is higher than 

the concentration of the complete bibliography. 

Note 
N 

As remarked by one of the referees, the requirement that BjxjcN (in case of sampling 
1 j= l  . 

in items - Theorem 11.3.1) and the requirement that N is an --multiple (in case of sampling in 
rl 

sources - see subsection 111.1) is not always valid in practise. Very simply, if N is prime, the 

sampling in sources is not even possible. 

What is behind these requirements is that 

(i) for exact results, we need them (since we show by example that without them the 

results are wrong) 

(ii) for large N (which is always the case) one can drop the requirements, hereby o& 

making a mistake in the last item (or source) sampled. We estimate that in this case 

(large N) the found increase in concentration will be there. In short, we indicate that, in 

practical cases, concentration increases. 

Problem 

We leave it as an open problem (for hrther study) to make explicite calculations of the 

difference of concentration between a bibliography and its sampled version. It would yield 

information on the concentration values of a complete (unknown) bibliography. 
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Appendix 1 

Proof of Theorem lI.3.1 

That L,.(,,>L,(,, is trivial since sr(X) is the decreasing re-order of s(X) and hence, for every 

i=1, ..., N 

N N 

and note that C sl(xj) = C s(xj) 
j= l  j= l  

N 

Hence it suffices to prove that L,(,,>L,. Denote by T the total number of items, C x,. L, is 
i-l 
,-A 

obtained by linearly connecting the points 

L,,, is obtained by linearly connecting the points 

Now 

i 

1 X1 
C xj 

(o,o), [- N' - )  T (In) N' T . (1,l) 



So if the above number is larger than or equal to &L- for all i, we have shown that L,,2Lx. 
T 

We can exclude the case %+,= ...=x ,=O since then the assertion is trivial. We have to show that 

Since for all a,b,c,deRi 

a c a+c c [c] - 2 - * -  2 - 2 -  
b d b+d d d 

it suffices to show that 

From the lemma below we have that 



unless xl= ...-= 0 but then, since X decreases, X is the zero-vector, which we exclude and 

(applied to Oi+l,. ..,ON,xi+,,-. .,xN) 

(since q+,= ...=xN= 0 is excluded). 

Since Oi+,<Oi, for all i, we have that (A5) and (A6) imply (A4), completing the proof of the 

theorem. 0 

Lemma : 

where a, E [Oi,Ol] 

Proof : Since all Oj E [0,1] we have that 

and hence 
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for a certain a, E [O, 11. Suppose now that q<Oi. Hence q<B, for all j=l, ..., i and hence 

unless x,= ...= xi=O in which case (A7) is trivial for any q. Hence (A9) contradicts (AB). In the 

same way, suppose q>O,. Hence q>B, for all j=1, ..., N, hence for all j=l, ..., i .  So 

contradicting (AS) again. Consequently, q E [8,,0,]. 



Appendix 2 

Proof of Theorem III.l.1 

We have to compare the Lorenz curves L, of X=(x,, ..., x,) and 

1 To prove that L,.(,,>L, we have to show (denote M=-) that 

where i=1, ..., K-1 ; j=1, ..., M-1 (note that j=M-1 denotes the case where we have x(,,,,-, as last 

term in the nominator of the left hand side and note that the case i=O yields (A1 1) trivially, for 

all j=1, ..., M-1). (A1 1) gives 

where KM = N. 

In the right hand side, amongst the sum X,T+.. .+~~,+~.~T there are exactly 

multiples of M, which remain after cancellation with the left hand side. This yields the 

equivalent condition 



Hence 

Hence we have the condition 

Note that 

since X decreases, and, again since X decreases, 

Hence 



(M-1 terms in the last factor) 

Hence it suffices to show, by (A13), that 

+ 

which reduces to 

or 



But for all p=l, ..., a 

1 
X,M 5 M ( ~ @ - l ) M + I  + ... + xpM) 

and for all q=a+l, ..., K-1 

1 
X ~ M  2 M ( X q ~ + ~  + ... + X ( q + i ) ~  I 

since X decreases, yielding, since N=KM, 

since aM=[iM+j-i] 5 iM+j-i. 

Furthermore 



since i l l .  Consequently (A16) gives 

which is (A15) and hence (A1 1). Consequently L,.(,, 2 Lx in all cases. 


