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A b s t r a c t - - L o r e n z  curves were invented to model situations of inequality in real life and applied 
in econometrics (distribution of wealth or poverty), biometrics (distribution of species richness), and 
informetrics (distribution of literature over their producers). Different types of Lorenz curves are 
hereby found in the literature, and in each case a theory of good concentration measures is presented. 

The present paper unifies these approaches by presenting one general model of concentration 
measure that  applies to all these cases. Riemann-Stieltjes integrals are hereby needed where the 
integrand is a convex function and the integrator a function that  generalizes the inverse of the 
derivative of the Lorenz function, in case this function is not everywhere differentiable. 

Calling this general measure C we prove that,  ifwe have two Lorenz functions f ,  g such that  f < g, 
then C(f) < C(g). This general proof contains the many partial results that  are proved before in the 
literature in the respective special cases. (~) 2002 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - L o r e n z  curve, Concentration measure, Riemann-Stieltjes integral. 

1. I N T R O D U C T I O N  

The type of problem that  we study in this paper can be introduced-- in  its most elementary 
form--as  follows. Suppose we have a vector X = (Xl , . . . ,  XN), where xi C N, •i = 1 , . . ,  N,  and 
where we order X decreasingly. The numbers xi can represent incomes (econometrics), species 
richness (biometrics), or the number of articles written by author i (or published in journal i) 
(informetrics). The Lorenz curve of X is formed as follows (cf. [1]): connect (by lines) the points 

j=l i=l,...,N 

(:) 

The author is indebted to Prof. Dr. R. Rousseau (University Antwerpen, Belgium) for formulating the problem 
and for interesting discussions on it. 
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and (0, 0), where 
xi 

ai = N (2) 
}2 xs 

j = l  

Since the xi are decreasing, we obtain a concave polygonal increasing curve. Let f denote 
the corresponding function. If  we also have a second vector X '  = (x t , . . . ,X~v)  and apply the 
same construction on X ~ as in (1) and (2), we obtain a second Lorenz curve with corresponding 
function g. Suppose f < g. I t  is clear tha t  this is equivalent with 

i i 

E aj <_ E a}, ( 3 )  
S = l  j = l  

for all i = 1 , . . ,  N.  I t  is well known (of. [2,3]) that  f _< g and f ¢ g represents a si tuation in 
which X ~ is more concentrated (more unequal) than  X.  In this case, we say that  any function C 
on these Lorenz curves such that  C( f )  < C(g) is a good measure of concentration. There exist 
many  examples of good measures of concentration, say the coefficient of variation V, where V is 

the positive root of 
(7 2 N 

2 V 2 - _ N E a  i ù2 -- 1, (4) 
i = 1  

where (72 and # are the variance and the mean of X,  respectively, or Theil 's  measure [4) 

N 

Th = ln(N) + E ai in ai, (5) 
i = 1  

to mention just two of them. 
This theory can be extended in several ways. First of all one can replace the uniform distribu- 

tion ( 1 / N , . . . ,  1 /N)  (N  times) as abscissae in (1) by a weight vector W = ( w l , . . . ,  WN) (w~ > O, 
Vi = 1 , . . , N ,  and }-~~N 1 wi = 1). Here, the weighted Lorenz curve is constructed as follows: 
rearrange the vector X = ( x l , . . . ,  XN) in such a way that  

Xl ~ X2 ~ ~ XN 
. . . . .  - -  - - 7  

wl  - w2 wN ( 6 )  

and connect the points (~ ~) w s , a s (7) 
S = I  

and (0, 0). Also, in this case one obtains a (weighted) Lorenz curve which is concavely increasing 
and polygonal. Let us again denote its corresponding function by f .  If  we have two such 
functions f ,  g then we say tha t  C is a good measure of (weighted) concentration if f _< g, 
f ¢ g ~ C ( f )  < C(g). Applications of this are given at the end of the paper. We also refer 
to [5,6], where, in the latter reference, a proof is given that ,  e.g., the measures 

and 

are good measures in this case. 

N 2 

V 2 = E - -  ai - 1  (8) 
i = 1  wi 

N ~h~=~a~ln(a~) ~~~ 
i = 1  
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T h e  funct ions f and g ment ioned  so rar all have the  p rope r ty  t h a t  f ( 0 )  = g(0) = 0 and 
f (1 )  = g(1) = 1. One can also cons t ruc t  the  Lorenz curve of the  difference of two vectors  X 
and X ' .  Here,  we order  the  numbers  ai - a~ decreasingly (note t h a t  these numbers  can be 

negat ive) .  I f  we form the  Lorenz eurve (weighted or not)  based on the  numbers  (ai - a~)~=l ..... N, 
we ob ta in  a funct ion f t h a t  still is 0 in 0 but  for which we have f (1 )  = 0. This  has appl ica t ions  

as we will see at  the  end of the  paper .  
Ano the r  general izat ion is ob ta ined  by  s tudying  cont inuous processes (as, e.g., in econometr ics) ,  

hereby  using funct ions f ,  g which are cont inuously differentiable (so-called C 1 functions).  

DEFINITION i.I. A c o m m o n  generalization o f  all the  above-ment ioned  cases is given by  func- 

t ions f on [0, 1] such tha t  f (O)  = O, which are concave and piecewise C 1, i.e., 3 x],  . . , x N E ]0, 1[ 
such tha t  x l  < x2 < .." < XN and such tha t  f][zk,Xk+l] is cont inuous ly  dif ferentiable,  V k  = 

O , . . . , N  where  we p u t  xo = O, XN+l = 1 .  

For such general  funct ions f ,  g such t ha t  f (0 )  = g(0) = 0 and f (1 )  = g(1), we will s t udy  the  
p rob lem of finding measures  C such t h a t  f < g, f ~ g ~ C ( f )  < C(g) .  A general  solut ion will be  
given, using cont inuous convex functions ~ as the  in tegrand and an extension of f , - 1  (which does 

not  always exist)  as the  in tegra tor  of  a Riemann-St ie l t jes  integral  over the  interval  [ f r ( l ) ,  fr(0)].  
For the  m a n y  results  on Riemann-St ie l t jes  integrat ion,  we refer the  reader  to the  classical 

book  [7] or the  more  recent  [8]. The  following inequali ty of H a r d y  et al. [9] will be  used (in its 
fu l l - - less  k n o w n - - g e n e r a l i t y  using Riemann-St ie l t jes  in tegra l s ) - - see  also [10]. 

THEOREM 1.2 [9]. Le t  x : t --+ x ( t )  on the  interval  [a,b] and y : t --+ y( t )  on the  interval  [c,d] be 

func t ions  o f  bounded variation. Then,  we have 

a b ~( t )  dx( t )  <_ 

for all ~ cont inuous  convex  funct ions  on a closed 

f (i) a ~ ( t )  = 

f (ii) t d x ( t )  = 

fa  b (iii) [t - u] + dx( t )  <_ 

Piere, we denote 

c d ~( t )  dy( t ) ,  

interval  «ontaining la, b] and [c, d] iff 

B d dy( t ) ,  

c d t dy( t ) ,  

B d[t -- u] + dy( t ) ,  • V u  R. 

(10) 

(11) 

(12) 

(13) 

[s] + = m a x ( s , 0 ) ,  Vs  E ]~. (14) 

In  the  next  section,  we will present  the  general  formula  for a good concent ra t ion  measure  C 
which is defined on all functions f as given in Definition 1.1. We also present  some general  
proper t ies .  In  Sect ion 2, we present  then  the  main  result: f < g and f ~ g ~ C ( f )  < C(g) .  

Also, the  direct  p roof  for the  special  case of weighted polygonal  Lorenz cu rves - -wh ich  is far more  
e l e m e n t a r y - - i s  given, for t'hose who want  a direct proof  in the  discrete case. Section 4 closes the  

p a p e r  by  present ing applicat ions.  

2. G E N E R A L  F O R M  OF A C O N C E N T R A T I O N  M E A S U R E  
O N  A P I E C E W I S E  S M O O T H  (I.E.,  C 1) F U N C T I O N  

2.1. Definitions 

Let  f be  a piecewise smoo th  funct ion on [0,1] as described in Definit ion 1.1. In  order  to deal 
wi th  the  discrete  and  cont inuous cases as described in the  in t roduct ion  and in view of (10) in 
T h e o r e m  1.2, we are led to the  following definitions. 
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DEFINITION 2 .1 .1 .  We denote by D I the following function on [0, 1]: 
N-1 

Df(x )  = f ' ( x ) ,  x e U ]Xk'Xk+I[ U [0, Xl[  iß ]ZN,1]  ' 
k=l 

D f ( x k ) =  lim f ' ( x ) =  f ' ( x k - ) ,  V k =  I , . . . N  + I. 
X ~ X k  

< 

(15) 

DEFINITION 2.1.2. Denote by R (Df )  the range of Dl .  Define 

D}(t) = sup{x [[ f ' ( x )  = t } ,  

i f t  E R(Df ) .  I f t  ¢ R (Di ) ,  define 
D}(t) = D}(to), 

(16) 

(17) 

with to > t, to E R ( D f  ), and to is the smallest number with this property. By  Definition 2.1.1, 
D} exists on everr t e [b, a] such tha t  a = D f ( 0 )  = f ( 0 )  a n d  b = D A 1 )  = f1 (1)  < f ' ( 0 )  s in«e  f 

is concave (we exclude the case f'(O) = f ' (1)  in which case f is the first bissectrice oi  the square 
[0, 1] × [0, 1]: f ( x )  = x). 

The function D} is nothing else than the cumulative distribution function of the given situation 
(on which one builds the Lorenz curve). Hence, here our approach is opposite to the ones adopted 
in [11,12] or [13]: they start  from the cumulative distribution function and build the Lorenz 
curve; we start  from the Lorenz curve and construet the cumulative distribution function. Both 
approaches are equivalent but the latter one is more logical in our framework where the task is, 
given two Lorenz curves, based on functions f < g, to construct good concentration measures C 
such that  C ( f )  < C(g). C will be constructed using D} (see (20) further on). 

EXAMPLE 2 .1 .3 .  

(1) The case of the weighted polygonal Lorenz curve as described by (7), 

i 

D}(t) = E wj, (18) 
j = l  

for 

(i = 1 , . .  , N -  1) and D}(t) = 1 for t --  aN/WN. Note that  ai+l/W~+l < a~/wi since f is 
concave. 

(2) The case that  f is C 1. Hence, D I = f '  attains all values between fl(1) and f'(O) and is 
injective (again we exclude f ( x )  = x). Hence, by definition D} = f~-l .  

DEFINITION 2.1.4. For f as in Definition 1.1 and with D} as in Definition 2.1.2 we define, for 
every continuous convex funetion qg on an intervM that contains [fr(l), fr(0)], 

_ ff'(o) fr'(1) 
C ( f )  = Jf'(1) ~(t) d [D}(t)l Jf'(0) ~(t) d [D}( t ) ] ,  (20) 

in the Riemann-Stieltjes sense. 

Note that  D} decreases, and hence, if ~ > 0, C( f )  >_ 0 by the properties of Riemann-Stieltjes 
integrals (RSI). For ease:of notation we write for f and g, piecewise C 1, 

« = f ' ( 0 )  > b : : ' ( 1 ) ,  z = D } ,  
I c = 9'(0) > d = g'(1), y = D 9. 

Since f is piecewise C 1, Df  exists. Note that Df  is not necessarity injective. We therefore define 
a kind of generalized inverse of Dl .  
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2.2. C o n c r e t e  E x p r e s s i o n s  o f  C(f) in Class ica l  Cases  

2.2.1.  W e i g h t e d  p o l y g o n a l  L o r e n z  c u r v e s  

Since the integrator is a step function with jumps wi (see Example 2.1.3(1)), the RSI reduces 

to ~(~) C(f) ~ ~(t) dx(t) E ~ ai = = wi. (21) 
i=1 

This is a convex generalization of (8) and (9) (and hence, also of (4) and (5)), where we use 
B(t) = t 2 and ~(t) = t In t, respectively, for V~ + 1 and Thw. Alternatively, one can use ~(t) = 
t 2 - 1 for V~. 

2 .2 .2 .  C 1 f u n c t i o n s  f 

Using Example 2.1.3(2) and substitution, we have 

ffäa b ff'(1) ~01 C(f) = ~(t) dx(t) = ~(t) d [ y - l ( t ) ]  = ~ (y(y)) dy. (22) 
Jf«(O) 

Analogous to the discrete case, we hence define 

/01 V7 = f,2(y) dy - 1 (23) 

(hence, we obtain V7 + 1 by using ~(t) = t 2 in (22)) and 

11 T h f  = I'(Y) in (f'(y)) dy (24) 

(henee, we obtain T h f  by using ~(t) = t In t in (22)), showing that  these measures can be t reated 
by the general formula (22) or (20). 

With these expressions we feel that  we arë heading in the right direction in the construetion of 
good concentration measures for pieeewise 6 '1 funetions. The general proof that  indeëd f <_ g, 
f ¢ g =~ C(f)  < C(g) for 6' as in (20) will be given in Seetion 3. We first eontinue Seetion 2 by 
presenting an alternative form for formula (20) in the two special cases above. 

2.3 .  O t h e r  F o r m s  o f  C(f) 

PROPOSITION 2.3.1. In case f is the function of a polygonal curve or in case f is C 1, we haue 
the following alternative formula for C(f): 

B1 df, (25) ~(Df) 
C(f)  = Df 

C ( f ) -  f r ( l )  

PROOF. Tha t  (26) equals (25) follows from partial integration on the RSI (25) and using that  

f (0)  ---- 0. 

(i) f is the function of a polygonal (i.e., weighted Lorenz) curve. We use (26) and note that  
~(Df) /Df  is a step function. Hence, (26) can be evaluated as 

( f ' ( 1 ) )  _ ~ (a~/wN) 
f ' (1)  aN/WN (27) 
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and 

L D /  J L ai+l/Wi+l ai lw{  J i = 1  j = l  

Equations (27) and (28) in (26) yield 

B (aN/wg) aj ai+l/Wi+l + aj aN~Wg i=1 j=l i=l ai/wi 

_ i - 1  ~ ( a U w ~ )  + a j  

B (aN~Wg) aj a i /w i  a i /w i  aN~Wg i = 2  i = l  j = l  

[ N - ~ ]  N-1 ~(al/Wl) 
( a g ~ w g )  + E ai qo ( a jw~)  + al - C ( f ) ,  

= 1 -  aj aN~Wg i = 2  ai/wi al/Wl 

by (21) and the fact that  ~-]~N=l ai = 1. 
(il) f is C 1. Now, we use (25), yielding (by Example 2.1.3(2)) 

/01~ù'/ /01 df = qo(f'(y)) dy, 

since f t  is continuous. Hence, this is C ( f )  by (22). 

(28) 

3. G E N E R A L  P R O O F  T H A T  C ( F O R M U L A  (20)) 
IS A GOOD C O N C E N T R A T I O N  M E A S U R E  

THEOREM 3.1. Let f and g be, as in Definition 1.1, piecewise smooth  [unctions such that  f(O) = 

g(O) = O, f(1) = g(1), f ,  g concave, f <_ g, and f # g. Then, we have that  

c( f )  < c(g), 

where C is given by (20). 

PROOF. 

1. We first assume that f and g are C 1 (i.e., continuously differentiable). We will check equa- 
tions (11)-(13) for z = DIf, y = Dä, a = f '(O), b -- f ' (1),  c = g'(0), d -- g'(1). We have 

d y ( t )  - d x ( t )  = g ' - l ( d )  - g ' - l ( e )  - ( f ' - l ( b )  - f ' - t ( a ) )  = 0,  ( 2 9 )  

sinee D~ = g ' -1,  D} = f , -1  (of. Example 2.1.3(2)). Next, 

d b 1 1 

(substitute t = g'(s) and t = f ' ( s ) ,  respectively) 

= g(1) - g(O) - (f(1) - f(O)) = O. (30) 

It remains to show the nontrivial inequality (13). Now, 

[t - u] + dx( t )  = [b - u]+ f ' - l ( b )  - [a - u]+ f ' - Y ( a )  - d[t - u] +, 

using partial integration for RSI. The same is true for g. We have several cases for u E R. 

(31) 



(i) u e [b, a] C [d, c]. 
g'(0). Now, [b - u] + : 0 and 

[t - u] + = { 0, u >_ t, 
t - u ,  u < _ t .  

Hence, 
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Note that  the last inclusion is always valid since g'(1) _< f ' (1)  < f ' ( O )  <_ 

b[t -- U] + d x ( t )  = - f ' - l ( t )  dt .  

Since also u E [d, c], we have the same for g, 

d[t -- u] + d y ( t )  = - g , - 1  ( t)  dt .  

Inequality (13) will be proved if we can show that  

- f ' - ~ ( t ) d t  < - g ' - l ( t ) d t ,  

or, using substitution and partial integration, 

f0 f0 s d f ' ( s )  < - s d g ' ( s ) .  
' - - I (u  ) ' - - I(u ) 

Hence, 
- - u f ' - l ( u )  -q- f ( f / - l ( u ) )  ~ - - U g ' - l ( u )  q- g ( g ' - l ( U ) )  • 

To simplify the notation, we put Xl = f ' - l ( u ) ,  x2 = g ' - l (u) .  Then, (34) reduces to 

g'(X2)(X2 -- Xl)  ~ g(x2)  -- f ( X l ) .  

(32) 

(33) 

(34) 

(35) 

(a) x2 > xl. Now, 

(b) 

g(x2)  -- f ( X l )  >__ g (x2 )  -- g ( x l )  = g'(oz)(X2 -- Xl)  __> g ' (X2)(X 2 -- Xl)  , 

B a E ]xl, x2[ by the mean value theorem and by the fact that  c~ < x2 implies gr(c~) > g~(x2) 
(g concave). 
X 1 ~ X 2. NOW» 

g (x2 )  -- f ( X l )  ~ g (x2)  -- g ( x l )  = g'(ot)(X2 -- Xl)  ~ g'(X2)(X2 -- Xl) ,  

Bc~ E ]x2,Xl[ by the mean value theorem and the fact that  a > x2 implies g '(a)  < g'(x2) 
and that  x2 - Xl < 0. 

This proves (35) in Case (i). 
(il) d < u < b. Now, we have 

f b ~ b  f , _ l  It - u] + d z ( t )  = b - u - ( t )  d t ,  

since t E [b,a] =~ t > u. Since u E [d,c], we have (cf. (33)) 

f d f d [t - u] + d y ( t )  = - g , - 1  ( t )  dt .  
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We hence have to  show 
b d 

b - u - l a  f ' - l ( t ) d t < - ~  g ' - l ( t ) d t .  

As in (i), we can deduce  the  condit ion 

U ( g ' - - l ( ? . t )  - -  f ' - l ( b ) ) )  < g ( g ' - l ( u ) )  - f ( f ' - l ( b ) ) ,  

or, denot ing  x2 = g ' - l ( u )  and the  fact t h a t  f ' - l ( b )  = 1, 

! 
g(x2) - f (1 )  _> g (x2)(x9~ - 1). 

(36) 

(37) 

(a) x2 > 1. 

g(x2) - f (1 )  > (even = )  g(x2) - g ( 1 )  = g ' (a) (x2  - 1) > g'(x2)(x2 - 1), 

B a  • ] l ,x2[  by the  mean  value t h e o r e m a n d  a < x 2 @ g ' ( a )  > g ' (x2) .  

(b) x2 < 1. 

g(x2) - f (1 )  > g(x2) - g ( 1 ) = g ' ( a ) ( x 2  - 1) ~ g'(x2)(x2 - 1), 

B a  E ]x2, 1[ by the  mean  value t heo rem and a > x2 ~ g ' (a)  < g'(x2) and x2 - 1 < 0. 

Th is  proves (13) in Case (il). 
(iii) u < d < b. Now, we have the  condit ion 

b -  u +  ( - b +  f (1 ) )  < d -  u + ( - d + g ( 1 ) ) ,  

which is trivial.  Hence,  (13) is checked. 

(iv) a < u < c. Now, V t  e [b,a] : t < u, and hence, [ t - u ]  + = 0 on [b,a]. Since 

f / [ t  - u] + dy(t)  > O, inequal i ty  (13) is checked. 
(v) u _> c. Now, bo th  sides in (13) are 0, and  hence, (13) is checked. Since (13) is now checked 

Vu E R we have, by (10), 

/j // B(t) dx( t )  < ~v(t) dy(t) ,  

for every cont inuous convex funct ion ~. I t  is clear tha t  in this case, if f < g, f # g, t h a t  the  

above inequal i ty  is strict .  
2. General case: f and g are piecewise C 1. Let En > 0, Vn E N, be such t h a t  limn--.~o en = 0. 

Since f is piecewise C 1, we have a finite number  of  points  x 1 , . . ,  xN as expressed in Definit ion 1.1, 
where  possible discontinuit ies of  the  t angen t  line of f occur. Define a funct ion fn  as follows: 

N 
fn = f outs ide  [Jk=l]xk -- eN,Xk + eN[, fn < f ,  on this set and such t h a t  fn  is C1; i.e., fn  is 
t angen t  .to f in the  points  xk - en, xk + e,~, k = 1 ,  . . ,  N - - s e e  Figure  1 as an i l lus t ra t ion of one 
point  x l .  

We do the  s ame  for g and,  since f < g we can cons t ruc t  gn such t h a t  fn  < gn, V n G N. Note  

= Uk=l  ] f ' (xk  + en), f'(XÆ -- en)[. Fur ther ,  t h a t  D } ( t )  D } . ( t ) ,  V t  e [0,1] \ N 

= t x t x _ ] f ' ( x Æ + e n ) , f ' ( x k - e ù ) [  ]f~( k + e n ) , f ~ (  k en)[ ,  

Vk = 1 . . . .  ,N  and Vn  E N. Hence, on such an interval we have 

f 'n- l ( t )  = Dil l( t )  E ]Xk - «n ,xk  + e n [  
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I f 

/qy-- 

/ 

I I I 
I I I 
I I I 
I I I 

/ 
I I I 

I I I 

0 4 X1 I 
, -) 

1 
xi- % 

Figure 1. C’ approximation of a piecewise C1 function. 

and D;(t) E ]zk -sn, Xk +E,[. Hence, Vt E [b, a] = [f’(l), f’(O)] = [f;(l), f;(O)], Vn E W we have 

ID:(t) - Di,Z(t)] < 2~~. Hence, limn--too Dj,, = D$, uniformly on [b, o]. Hence, by the property 

of RSI on uniform convergence and using pxtial integration, 

converges to 

On fn 5 gn, we apply the Cl-case, and hence, 

for all n E N. We hence can conclude that 

/” cp@> d [q(t)] I 1” v(t) d [D,‘(t)] 9 

a c 
(38) 

with strict inequahty if f # g. This proves Theorem 3.1. 

NOTES 3.2. 

I 

(1) As noted already, (38) reduces to the following in case of vectors X = (x1,. . . , xN), 

weighted by W = (WI,. . . , WN) and X’ = (xi,. . . , !I&), weighted by W’ = (wi, . . . , a&), 

such that the weighted Lorenz curve of X’ is above the one of X; then we have 

where 
Xi 

ai = - 
N 

c xk 

and 

(39) 

k=l e=l 
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In the Appendix, we present a direct proof of this, which is more elementary than the one 
of Theorem 3.1. 

(2) Also as noted already, (38) reduces to 

/01 /01 ( f ' ( y ) )  dy < ~ (g'(y)) dy, (40) 

in the Cl-case. 

(3) In the general case that  f and g are piecewise C 1, (38) can be evaluated as follows 
(explained on f ) :  

O 5(t) = xÆ, 

Vt  E [f'(xk+ ) , f ' ( x k -  )], k = 1 , . .  , N .  On the other values o f t  c [b,a], we have 

D}( t )  = f ' - l ( t ) ,  

which exists there. So, D} is a piecewise continuous function so that  f~ ~(t)d[D}(t)]  for 
continuous ~ can be evaluated using the following result on RSI, derivable from Theo- 
rem 9.9 in [7, pp. 198,199] (we omit the simple proof). 

PROPOSITION 3.3. Let h be RS-integrable w.r.t, a on the interval [a, bi and that  a is cont inuous 
on [a, bi except  in the points  c 1 < . . .  < c n in ]a, b[. Then, 

b N+ 1 c~ N 

/a  gdo~ : E ~c ffd°li -~ E g ( c i ) [ ° t ( c i +  ) -  )], (41) 
i = l  i -1  i=1 

where co = a, C N + I  -'~ b, and a l  is defined on [a, cl] as 

OL 1 = OL, on la ,  Cl [, 

Oll(C1) = O~(C1-),  

~~ (i = 2 , . .  , N )  on [ci-l,ci] as 

OLi = 0~, 01"1 ]Ci_l,Ci[ , 

~ i ( c i - 1 )  = ~ ( c i - l ÷ ) ,  

~ i ( c i )  = ~ ( ~ i - ) ,  

OLg_[_ 1 --- o~, on ]CN, b], 
O~N+I(CN) --~ OL(CN+ ). 

O~N+ 1 01] [CN, b] a s  

4.  A P P L I C A T I O N S  

This section reviews some applications of concentration theory, known so rar in the literature, 
where separate proofs have been given for the fact that  the used concentration measures (all 
special cases of the ones given here) are good. Hence, out present theory comprises all these 
theories. 

4.1. D i s c r e t e  N o n w e i g h t e d  L oren z  Case  

This is the "historical" case and it is impossible to mention all applications. They  are found 
in econometrics, biometrics, informetrics, and sociometrics or virtually in any situation where 
inequality, elitarism, etc. occurs. It suffices to give some key references, [14,15] in economet- 
rics, [3] in sociometrics, [16] in biometrics, and [17,18] in informetrics. 
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4.2. C 1 C a s e  

This case is orten used by econometricians in order to model experimental data. The main 

references here are [11,12] and [19]. In soeiometries we can refer to [20]. Also in information sei- 

ente, this model is orten used, mainly to describe the entropy measure H = - Thf  (formula (24)). 
Here, entropy measures diversity rather than eoneentration. We refer to [21] and [22] for a thor- 
ough study of the entropy (hence Th) measure. It is remarkable that in eeonometrics, one almost 
always uses the Gini index (which is twice the area between the Lorenz eurve and the first bis- 

sectriee) or Theil's measure (formula (24)) rather than using the variation eoeffieient V or V 2 

(formula (23)). 

4.3.  D i s c r e t e  W e i g h t e d  L o r e n z  Case  

An application of this in econometrics is found in [15, pp. 428-430], where one works with 

grouped data: if one only has income data of a whole group or country (rather than individual 

income data) one has to weight each group or country, leading to weighted Lorenz curves. 

In [5], one uses weighted Lorenz curves in order to be able to deal with N-dependence, where N 

denotes the total number of items. 
In [6], one applies weighted Lorenz curves (and corresponding concentration measures) to de- 

scribe asymmetric relative concentration. Relative concentration intends to compare two vectors 

X = ( x l , . . . ,  XN) and Y = (Yl, . . - ,  YN). A relative concentration measure gives zero if X = Y 
and the highest values for very different vectors X, Y (such as X _l_ Y for instance). Case 4.1 is 

contained here by taking for Y a constant vector. In general, asymmetric relative concentration 

compares many vectors Xj with one "reference" vector Y (used as weight vector W in this arti- 

cle), such as in the case of the distribution of several topics over fixed sites (e.g., in distributed 

documentary systems, i.e., a set of autonomous distinct document collections (sites)). These 

sites form the fixed reference frame with which comparisons are made. This goes as follows: for 
an arbitrary topic, one checks how many documents on this topic exist in the different sites. 

Then, one compares these relative scores with the relative sizes of these sites. Using the model 

of weighted Lorenz curves, Egghe and Rousseau were able to improve an earlier solution of Viles 

and French [23] for the problem of measuring content locality. 

In [24], weighted Lorenz curves are applied as follows: suppose one wants to compare two 

vectors X = ( x l , . . . , x n )  and Y = ( Y l , . . . , Y n ) .  One can then compare X w.r.t. Y, where Y is 
considered as the reference vector, leading to one weighted Lorenz curve, or, one can compare Y 

w.r.t. X,  where now X is considered as the reference vector. Also here, we have a weighted 

Lorenz curve. One then takes the minimum of both curves, leading to a kind of "symmetric" 

comparison of X and Y. It was this paper that  presented the idea of studying the problem as 

done in the present paper. 
Another way to compare X and Y in a symmetric way is given in Section 4.4. 

4.4.  A n  A p p l i c a t i o n  o f  t h e  C a s e  in w h i c h  f (1)  = 0 

So rar all our applications were dealing with functions f such that  f(0)  = 0, f (1)  = 1. In [6], 

an application is given to Lorenz curves such that  f(0) = f(1) = 0. It is an application on 
symmetric relative concentration theory. Here, as already described in Section 4.3, one wants to 

compare two vectors X = ( x l , . . . ,  xN)  and Y = (Yl,- . . ,  YN) but now, we want X and Y to play 
an equivalent role: there is no reference vector, and the comparison of X with Y should be the 
same as the comparison of Y with X,  hence the name symmetric relative concentration. 

If A x  = ( a l , . . . ,  aN) with ai as in (2) and if Ay  = (b i , . . . ,  bw) is defined in a similar way 
for Y, we now take Ax  - Av and construct the Lorenz curve based on this vector (as in (1) but 
replacing aj by aj -- bi). Hence, we obtain a Lorenz curve that ends in (1,0) rather than (1, 1). 
In [6], one develops the theory of symmetric relative concentration hereby also defining good 
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concentration measures for it. An example is the measure 

N 

V~ = N E ( a i  - bi) 2, (42) 
i=1 

which is contained in out model (20) and even in (21), where we take W = ( 1 / N , . . . , 1 / N )  
(N  coordinates), replace ai by ai - bi, and use p(x)  = x 2. It  is contained there since in our 

general Theorem 3.1 we only required f (0)  = g(0) = 0, f (1)  = g(1) (any value allowed here). 
A concrete application of this is also given in [6] where a good measure of symmetric  relative 

concentration is used to compare two documents or a query and a document,  using the vector 
model for queries and documents, hereby improving the classical "cosine" formula for comparison 

(see [25] or [26]). 
In [27], the theory of symmetric  relative concentration is extended to vectors X = (xl . . . . .  XN), 

Y = (Yl , . . . ,  YM), where possibly M ~ N.  Also in this case, the general theory as developed in 
this paper  is applied. This theory is then applied to truncation of bibliograpbies where vectors 

of the type ( x l , . . . ,  x~) and ( x l , . . . ,  xi, xi+l) ,  i = 1 , . . ,  N,  are compared (the x j s  represent the 
number  of items in source j) .  

4 . 5 .  A New Application 

As rar as we are aware, the following application is new. In Section 4.4, one compares two 
vectors, unweighted, and a good measure of symmetric  relative concentration then compares two 
such situations. These relative differences might be related to a reference vector, which can be 
variable in t ime (as, e.g., the relative sizes of sites in a documentary system). So, here we want 
to compare a situation X - Y w.r.t. W (reference vector) at t = t l  with the analogue situation 
X '  - Y '  w.r.t. W '  (reference vector) at t = t »  Also, this is included in (21). We remind the 

reader tha t  in the Appendix, a separate proof of the fact tha t  C in (20) is a good measure is 
given. I t  is simpler than the general proof of Theorem 3.1, and hence, the reader who is only 
interested in the discrete case can avoid the calculations with RSI! 

NOTE. In [13], one deals with general Lorenz curves, but only the generalized Gini index is 

studied there. 

A P P E N D I X  

Proof  of Theorem 3.1 in the case of the discrete weighted Lorenz curve. We give a formulation 
in this case. 

THEOREM.  L e t  X = ( X l , . . .  , X N ) ,  w e i g h t e d  b y  W = ( W l , . . .  ,Wn) ,  alld X l = ( X t l , . . . ,  XtM), 
weighted by W '  = (w~, .. , w ~ ) ,  such that  the weighted Lorenz  curve o f  X '  is above (and not 
equal to) the one o f X .  Then, we have 

N M / ~ ~  (a~) 
i = l  j = l  ~%l);] w j '  

(A1) 

for all convex  funct ions 9~ and where 

x i  
ai ---- N 

xk 
k=l 

! 
I Xj aj - --~----, 

E z'e 
~=1 

i = 1 , . . , N ,  (A2) 

j = 1 , . . , M .  (A3) 
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PROOF. 
(1) If suffices to prove (A1) for W = W !. Indeed, each break point of the Lorenz curve f of X 

(i.e., jump of f ! )  can be considered as one of the Lorenz curve g of X t and vice versa. In this 
way one subdivides the weights into several smaller ones. This has no influence on the left- or 
right-hand side of (A1). Let us prove this for the left-hand side, by cutting wi into p pieces with 

P 1) (see Figure 2), where p 2. weight a~ (r = 1 , . . , p ,  Y~«=I a r  = = 
In this transformation, ~ ( a i / w i ) w i  is replaced by 

r = l  \ OgrWi ] r = l  

w i  

a i t, 
~ o~2a i 

J 

C~lW i "~ 
(~lai 

F igure  2. C u t t i n g  wi into two pieces. 

(2) Given X ,  X ! and W, W ! as above, we have to prove (11)-(13) of Theorem 1.2. Now, 

d b N N 

i=1 i=1 

t d y ( t )  - t d z ( t )  = - ~  w ~  - - - w ~  = O, 

i=1 w i  i=1 w i  

showing ( i l )  and (12). For (13) we have 

[ t -  u] +dx( t )  = w~ - u • 

(i) Let a i+l /Wi+l  <_ u < a i / w i .  Noting that  the a j / w j  decrease, we have 

I t -  ui ÷ dx(t) = Z wj u a~ ~ ~, 
j=l  ~ j=z j= l  

~_~o,,_ ~, o :  ~ , ( ° ' ,  - u  
j = l  j = l  .= k, w j  

Since arg <_ aN al  all 
- -  < - -  - <  - -  r ~ ,  

W N  WN Wl  Wl  

(since f < g, f ,  9 concave and polygonal), we have 3 i '  E { 1 , . . ,  N} such that  

at+-----kl <_ u < - - .  
Wi~ -F 1 Wi' 

(a) Case i = i'. Then, 

i 
d 

(A4) = [t - u] + dy( t ) .  

(A4) 

(A5) 

(A6) 
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(b) Case  i '  > i. Now by (A6) and since also the  a } / w j  decrease,  we have u < a~ /wj ,  
V j  = i + 1 . . . .  , i t, and hence, 

( A a ) < ~ w j  - u  = [ t - u ]  + d y ( t ) .  
= \ wj 

(c) Case i '  < i. Now, u > a } / w j ,  V j  = i' + 1, . . , i ,  so 

j•l - u  = I t - u ]  +dy ( t ) .  (A4) <_ wj  \ w j  

This  shows (13) in Case (i). 

(il) Let  aIN/WN < U < aN/WN.  Now, 

f i t  - u]+ ~x(t) = ~ ~j aj _ u = ~ aj - wj u 
j = l  \Wj j = l  

= Z ° ~ -  ~J u - -  Z ~ ,  - ~ 
j = l  j = l  \Wj  

(AT) 

By  (A5), we have 3 i '  E { 1 , . . ,  N }  such tha t  

a~,+l « - -  < u <  ai---2' 
Wi, + l Wi' 

Then,  a~/wj  - u <_ O, V j = i t + 1 , . . ,  N ,  and hence, 

(A7) < ~ w j  - u  = [ t - u ]  +du( t ) .  
~1= \ wj  

(iii) Let  u < a¢N/WN . Hence, u is smaller  t h a n  all a i /w i  and a'3/w j ( i , j  = 1 , . . ,  N) .  Hence,  

(~)~ (°~)i ~ f b[t _ u]+ ex(t  ) Z w j aj = - u  = wj - u  = [ t - u ]  + d y ( t ) .  
j=l j=l \ w j  

(v) Let  u > a~/wl .  
sides of  (13).are 0. 

This  concludes the  proof  of (13) and hence of this theorem.  

(iv) Ler a i / w l  < u <_ a ] / w l .  Now, 

bit f ä  B - u] + d x ( t )  = 0 < [ t -  u] + d y ( t ) .  

Now, u is larger than  all ai /wi ,  a~j/wj ( i , j  = 1 , . .  , N ) ,  and hence,  b o t h  

| 
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