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ABSTRACT

Ordered sets of documents are encountered more and more in information distribution
systems, such as information retrieval systems (IRS). Classical similarity measures for
ordinary sets of documents hence need to be extended to these ordered sets. This is done in
this paper using fuzzy set techniques. First a general similarity measure is developed which
contains the classical strong similarity measures such as Jaccard, Dice, Cosine and which

contains the classical weak similarity measures such as Recall and Precision.
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Then these measures are extended to comparing fuzzy sets of documents. Measuring the
similarity for ordered sets of documents is a special case of this, where, the higher the rank
of a document, the lower its weight is in the fuzzy set. Concrete forms of these similarity
measures are presented. All these measures are new and the ones for the weak similarity
measures are the first of this kind (other strong similarity measures have been given in a

previous paper by Egghe and Michel).
Some of these measures are then tested in the IR-system Profil-Doc. The engine SPIRIT®

extracts ranked documents sets in 3 different contexts, each for 600 request. The practical

useability of the OS-measures is then discussed based on these experiments.

I. Introduction

The following similarity measures are well-known measures to compare sets of documents

A,B (subsets of a documentary system, , the universe).

Jaccard’s index J

JANB|
JAB) = 1
Dice’s index D
2|AnB|
D(AB) = (2)
|A|+ B
Cosine function Cos
Cos(A,B) = JACEI 3)
|A|[B|
The measure N
N(A.B) = 2Bl @

AP+ BI?



Overlap measures O, and O,

|AnB|

0AB = ——— (&)
(AB) = T TATIBD
|AnB|
0(AB) = ——— ()
2 max(|A],[B)
Recall R and Precision P
|ANB|
R(AB) = 7
(AB) = “5 @
|ANB
P(AB) = (8)
(A,B) A

Of course here one must add that A =ret, the set of retrieved documents and B=rel, the set

of relevant documents.

Most of these measures are classical and well-known. For the readers who wish a longer
introduction on these measures we refer to van Rijsbergen (1979), Salton and Mc Gill
(1987), Boyce, Meadow and Kraft (1995), Tague-Sutcliffe (1995), Grossman and Frieder
(1998), Losee {1998) or Egghe and Michel (2002).

All of the above measures are of the form

¥,(ANBI)
v,(ALIBLJAUB])

F(A,B) = ©)
where V, is a strictly increasing function and , is an increasing function of 3 variables.

Let us consider the following general properties for a general measure F : for all A,BcQ :

(F) O0=<FAB)=<1 (10)
(F), FAB)=1<A=B (11
(F) FAB) =0«ANB=9@ _ (12)



(F,) If the denominator of F is constant then F is strictly increasing with |ArB]|.

The measures J, D, Cos, N, O, satisfy these four requirements and are called strong

similarity measures. If we replace (F,) by the weaker
(F) F(AB)=1- AcBorBcA (13)

then we have that O,, R and P satisfy (F,), (F '2), (F,), (F,) and are therefore called weak
similarity measures. Not that they are less important than the strong ones : the applications
of e.g. R and P in IR are well-known ! Note that the reverse of (13) is OK for O, but not
for R or P. Indeed suppose AcB (and not BcA). Then P(A,B)=1 but R(A,B) < 1. The same
can be said when A=B (and not B>A) with R and P reversed. That is why we kept = in
(13).

So far for unordered sets (i.e. ordinary sets) of documents.

In Michel (2000) and Egghe and Michel (2002} one considers ordered sets of documents as
e.g. the output of an IR query. The most general case can be depicted as in Fig. 1 where
one has a "chain" of unordered disjoint sets C,cQ,VieN but such that every document in C,,
is before (i.e. has a lower rank) every document in C, for every i. In terms of IR, the
documents in C,, are retrieved before {(or read before) the ones of C;, for every i. Of course

C,=@ will always be the case, in practise, from a certain i on (since € is finite in practise).

Fig. 1 An ordered set C=(C,),.y where --<-- symbolises the order induced

on the sets C; via the order between the documents.



We work here with a very general set-up, comprising the IR extremes :

(a) the unordered case : C,#Q, C,=0, Viz2
(b)  the total linear case : Vi:|C;| =1 or C;=0

As explained in Egghe and Michel (2002), case (a) represents "classical”" IR (e.g. Boolean
retrieval) and the total linear case (b) refers to a ranked list of documents as e.g. given by
browsing machines in WWW. The very general situation is needed in Boolean retrieval
with OR-ed key words (say N in number) and where C, is the set of documents that contain
N-i+1 of the N given key words (i=1,...,N) (all the other C, are empty) : here there is no
natural order within each C, but, as in our model, every document in C,, is before (is
potentially more important) than every document in C,, since the former contains more

requested key words than the latter.

In Egghe and Michel (2002) we used the above model to construct ordered similarity (OS)
measures, i.e. measures that can compare every two such chains C=(C),.y and C'=(C'j)jeN.
They were derived from existing good similarity measures for unordered sets, applied to
each C, and C'j and then "combining” everything together by summing over each i and j in
N. Here the sets C, and C'j on the higher ranks receive a lower weight than the ones on the
lower ranks. We were then able to construct good strong OS measures, i.e. measures Q on
chains C and C such that several "natural" properties are satisfied. One of them is that
Q(C,C)=1 if and only if C=C’ (as a chain, i.e. C;=C, VieN) and no C; or C, is empty.
This boils down to the property (F,) in the case of unordered sets. It is obvious then that the
method used in Egghe and Michel (2002) only works when strong similarity measures are

concerned.

Since we do not have a natural analogue of (F,) for chains (i.e. what is the meaning of
C<C' 7), we are, in this paper considering the chains as fuzzy sets, where inclusion () is a
clearly defined thing. This will yield a new model for good OS measures. Our technique
will work for weak as well as strong measures. Note that we will here present good weak

OS measures for the first time.
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The next section deals with a classification and a generalization of strong and weak
similarity measures. These generalized measures enable us to present one fuzzy model for
weak and strong OS measures, which is then applicable to all the measures encountered so

far.

The third section presents a general theory of weak and strong similarity measures on fuzzy
sets. It is new in itself and more general than the application given in section four to
ordered sets. There we interpret our "chains" (as in Fig. 1) in the sense of fuzzy sets and
give concrete formulae in this case. In this way new good OS measures (weak and strong

ones) are created, hence producing good weak OS measures for the first time,

The last section reuses the IR-system Profil-Doc and the engine SPIRIT’, where ranked
document sets for 600 requests in 3 different contexts are given. On these sets some of the
measures, obtained in this paper, are calculated and based on graphical representations of

the values of these OS-measures, qualitative conclusions on these OS-measures are given.

II. Generalized forms of weak and strong similarity measures on
ordinary sets.

In the introduction, we mentioned already that the measure F, defined on 2% x 2% (2% = the

set of all subsets of () as

v,(AnB])
v,(A]JBLJAUB)

F(A.B) = (14)
, where yr, is strictly increasing and 1, is increasing in each of its 3 variables is a common
generalization of all measures encountered here : J, D, Cos, N, O, O,, R, P. In this list
there are weak and strong similarity measures. In the next two theorems we will describe
the properties of {, and y, that will make F a good weak or strong similarity measure. We

start with the latter one.



Theorem 1I.1.
Let F be as in (14), with y,, , functions R*-~R™* such that
(i) 20, ¢,20, §, strictly increasing, , increasing (in its 3 variables), {,(0)=0,

. <X <X
(ii) a{<y OR a{sy

2 X

implies {,(a) < P,(x,y,z) for all z { >y

<X .. > X
(iii) a { <y implies {,(a)<{,(x,y,z) for all z { >y
(iv) a=x=y implies y,(a)=1y,(x,y,z) for all z=x=y.
Then we have

I All strong similarity measures J, D, Cos, N, O, satisfy the above requirements

(I)  Fis a good strong similarity measure, i.e. satisfies the requirements (F,), (F,), (F;),

(Fy).

Proof :
48] As mentioned already, all measures J, D, Cos, N, O, are of the type (14). We will
investigate if the functions {, and y, (in each case) satisfy the properties announced

in this theorem.

J Here {,(a)=a and {,(X,y,2)=2z, hence (i} is satisfied. Let now
a {i; or a {:;.Then, since forJ : z = |AuUB| {i Ilgllz;,we

have a<z and hence {r,(a) < {,(x,y,z) proving (ii). The proof of (iii) and (iv)

is similar.
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D Here {,(a)=a and ¥,(x,y,z)= x_;y Hence (i) is satisfied. Let now
<
a { Sy o a {( - This implies a< =Y. hence
Vr,(2) <P,(x,y,z), proving (ii). The proof of (iii) and (iv) is similar.
Cos  Here y(a)=2a and P,(x,y,z)=/xy. Hence (i) is satisfied. Let now
<
a { i ;‘ or a { < ; This implies a< /Xy proving (ii).
The proof of (iii) and (iv) is similar.
x2+y? :
N Here y,(a)=a and ¢,(x,y,z}= 5 Hence (i) is satisfied. Let now
<X <X g 122 xi+y?
alcy or ay . - This implies 2a* < x*+y*, hence a<

proving (ii). The proof of (iii) and (iv) is similar.
0o, Here y,(a)=a and y,(x,y,z)=max(x,y). Hence (i) is satisfied. Let now
<X <X . e
ay. y or ay v’ Then a <max(x,y) implying (ii). The proof
of (iii) and (iv) is similar.
We now show that F satisfies (F)), (F,), (F,), (F,).
(F,)) (iii) implies, since |ANB| {i I‘gll that §r,(|AnB|)<y,(|A|,|B],2)
> |Al .
vz i, IB| Hence also for z=| AuB|. This proves F(A,B)<1. Of course,

since J; and {, are positive, so is F.



(F,) F(A,B)=1 implies

Vi(|AnB|)=y,([A[,|B].| AuB]) (15)

If |AnB| < |A| or |AnB| <|B| we see, by (ii), that

U, (|AnB|)<y,(]A|,|B|,|AuB]), since |AUB| { i :gll contradicting (15).

Hence |AnB|=|A|=|B|

hence A=B.

Converseley, if A=B then |AnB| =|A|=|B]|, hence, by (iv)
U(JAUB[)=1U,(|A[,|B|,|AuB|)

since A=B implies |AuB|=|A|=|B]|.

Hence F(A,B)=1.

(F)) F(A,B)=0 iff §,(|AnB|)=0 iff | AnB| =0 (Y, is injective and },(0)=0) iff
AnB=0.

(E,) This is clear from (14) and the fact that {, strictly increases. O

Theorem I1.2.

Let F be as in (14), with §,, ¥, functions R*-~R" such that

() Y, 20, Y,20, P, strictly increasing, s, increasing (in its 3 variables), ,(0)=0 (i.e.
the same condition as (i) in the previous theorem),

(ii) a<min(x,y,z) implies y,(a) < P,(x,y,z) for all a,x,y,z

(ili)  a<min (x,y,z) implies y,(a)<{P,(x,y,z) for all a,X,y,z.
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Then we have

@ All the weak similarity measures O,, R and P satisfy the above requirements

(II)  Fis a good weak similarity measure, i.e. satisfies the requirements (F,), (F,), (F,),
(Fy).

Proof :
I Again, the measures O,, R, P are of the type (14). We will now check if the

functions vr,, §, (in each case) satisfy the requirements in this theorem.

O, Here y(a)=a, J,(X,y,z)=min(x,y). Hence (i) is satisfied.

Let now a<min(x,y,z). Hence a<min(x,y) implying ¥,(a)<¥,(x,y,2),

hence proving (ii). The proof of (iii) is similar.

R Here y,(a)=a, {,(x,y,z)=y, hence (i) is satisfied.
Let now a<min(x,y,z). Hence a<y and hence (ii) is satisfied. The proof of
(iii) is similar.

P This proof is similar to the one of R.

()  We will show that F satisfies (F), (F5), (F,), (F,).

{F) F>0 since P, and ¢, are positive. Further, since |AnB|s
min(|A|,|B[,|AuB|) we have, by (iii), that

U, (|AnB|)<y(|Al,|B],|AuBJ)

hence F(A,B)<1.

(F) Let F(A,B)=1. Hence §,(|AnB|)=y,(|A|,|B|,|AuB|). By (ii) and (iii)
and since |AnB|<min(|A|,|B|,|AuB|), we have that
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|AnB| = min(|A|,|B]|,|AuB])
= min{|A|,|B|)

implying that A>B or AcB.

(F)  F(A,B)=0iff ¢,(|AnB|)=0 iff | AnB| =0 (¢, is injective and {,(0)=0) iff
AnB=@.

(E,)  This is clear from (14) and the fact that {5, strictly increases. O

We think that these results are important since they considerably generalize the known
similarity measure and also - even more importantly in the author’s opinion - show the real

nature of strong and weak similarity measures.

In addition to this we can deduce from it a general theory of good similarity measures
(strong or weak) for fuzzy sets. Here we only have to study the single form (14), thereby
generalizing all the mentioned similarity measures to fuzzy sets. This will be done in the

next section.

III. Theory of weak and strong similarity measures for fuzzy

sets.,

Fuzzy sets are well-known in mathematics and we suffice by mentioning the elementary
definitions. Readers who are interested in more facts on fuzzy sets and their applications are
referred to Zadeh (1975). Ordinary sets can be described via their so-called characteristic
function : for AcQ, y,(x)=1 if xcA and y,(x)=0 if x¢A. Hence the range of y, is {0,1}.
To allow for "fuzzy" membership (as e.g. is the case in an ordered set : elements with high
ranks belong "less” to the set than the ones with low ranks) we now allow the membership

function to range in the interval [0,1].
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Hence a fuzzy set is an ordinary set Ac(), equiped with a function
P, : Q- [0,1]

where P,(x)=0, Vxef\A. Note that the case of ordinary sets is contained in this model :

here P,(x)=1<x€eA.

Fuzzy intersection of the fuzzy sets A and B is the ordinary intersection AnB, with the

membership function.
Py p(X) = min(P,(x), Pg(x)). (16)

Fuzzy union of the fuzzy sets A and B is the ordinary union AuB, with the membership

function

Py s(x) = max(P,(x), Pp(x})). an
For A and B fuzzy sets, we say that AcB (fuzzy inclusion) if

P,o(x) < Py(x) (18)

vxeQ (in fact it is enough to require this VxeA as is easily seen). If AcB and BcA (fuzzy
inclusion) then we say that A =B (fuzzy equality).

The extension of the cardinality of a set, to fuzzy sets is as follows :

Al = X P (19)

XEA

Note that all these definitions boil down to the classical ones in case of ordinary sets.
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In Buell and Kraft (1981a,b) these notions were used to define R and P for fuzzy sets. They
also formulated the conjecture that "rank-order comparison measures might be more
appropriate for evaluation”. We give an answer to this conjecture in Egghe and Michel
(2002) and in this paper : the rank-order approach works well for strong similarity
measures (Egghe and Michel (2002)) (but not for weak similarity measures) and in this
paper we will show that the fuzzy approach works for both weak and strong similarity

measures (and in fact is applicable to every measure that we encountered).

In fact, defining the fuzzy variants of the weak and strong similarity measures is very easy :
they are simply (14), interpreted in the fuzzy way : let A and B be fuzzy sets. We define
v, (|ANBJ)

FAB) = GALBIAE) 20

where we use definitions (16), (17), (19) and where {r, and Y, are as in the previous

section. Hence (20) is

wl( 2 min(PA(x),PB(x))]

F*(AB) = @1

v, ; PA(x),g P, (x), EB max(PA(x),PB(x)))

xXeAu

We say that F* is the fuzzy similarity measure, derived from F. We will prove that F" is a
good weak or strong similarity measure under the same conditions as in theorem II.1 and
II.2 for ordinary sets. The definitions of good strong and weak similarity measures for

fuzzy sets are the same as in the case of ordinary sets :

Definition III.1.

We say that F” is a strong similarity measure for fuzzy sets if, for all A,B fuzzy sets :

(F'}) 0<F(A,B)<1 (22)
(F,) F(AB)=1-A=B (23)

(Fy) F(A,B)=0-AnB=0 (24)
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(F",) If the denominator of F" is constant then F” is strictly increasing with | AnB|.

Definition II1.2.

We say that F* is a weak similarity measure for fuzzy sets if F satisfies (F"), (F), (F',)
above and

(F',) F(AB)=1-AcB or BcA
All these notations have to be interpreted in the fuzzy way.

We have the following results.

Theorem III.3.
Let F" be as in (20) and let §,, §, have the same properties as in theorem II.1. Then F is a

good strong similarity measure for fuzzy sets.

Proof :

(F') Obviously F">0. Since |ANB| { :

Al
B|’ we have that

P, (|ArB| )<y (|A|,|B{,|AuB|) since |AUB| { i l]%! We use here the definitions

(16)-(19). Hence F <1,

(F*z) Let F'(A,B)=1. Hence y,(|AnB|)=y,(]A|,|B]|,|AuB|)
Hence

|AnB|=|A|=|B| (25)
by (ii) and (iii) in theorem II.1. (25) means

Y. min(P,(x),P,(x)) = ; P,(x) = 3 P.(x).

xeANB xeB



< P,(x)

Since ¥x€ANB : min(P, (x),P,(x)) {< P (x)
- B

and

VXeAV(ANB) : Pu(x) = O
VXeB\(ANB) : Py(x) = 0

we have that
VxeAnB : min(P,(x),Py(x)) = P,(x) = Pg(x)
and

VXeAWANB) : P,(x) = 0
VxeB\(ANB) : Py(x) = 0.

15

(26)

@7)
(28)

(27) and (28) imply that AnB=A=B as ordinary sets and then (26) implies that

A =B as fuzzy sets.

Conversely, if A=B as fuzzy sets then |AnB|=|A|=|B| in the fuzzy sense.

Hence (iv) in theorem II.1 yields
Ui(|AnB[)=1y,(|A[,|B|,|AUB)),
hence F'(A,B)=1
(F'y) F(A,B)=0iff ¢,(| AnB|)=0 iff | AnB|=0 ({, injective and ,(0)=0) iff

Y min(P,(x)P,x) = 0.

x£ANB
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This is equivalent with : VxeAnB :

min(P,(x),Py(x))=0

= AnB=0O
(F’,) is trivial. J
Theorem 111.4.

Let F* be as in (20) and let §,, , have the same properties as in theorem I1.2, Then F" is a

good weak similarity measure for fuzzy sets.

Proof :
(F) Obviously F'>0. Since |AnB|<min(|A|,|B|,|AUB]|), (iii) in theorem I1.2 implies

U, (|AnB)<y(|A|,|B|,|AUB|)

hence F'<1,

(F,) F(A,B)=1 implies ¥,(|AnB|)=y,(|A|,|B|,|AuB|). Properties (ii) and (iii) in
theorem I1.2 imply

|AnB| = min(|A|,|B|,|AuB|)

= min(|A[,|B])

obviously. Hence |AnB|=|A| or | AnB|=|B]|. In the first case we have

3, min(,(Py(x) = 3 P,(x). (29)

Since
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Vx€ANB : min(P,(x),Py(x)) < P,(x)
VxX€A\(ANB) : 0 < P,(x)

it follows from (29) that

VXeANB : min(P,(x),Pe(x)) = P,(x) (30)
vxeA\(ANB) : P,(x) = 0. G1)

(31) implies that AnB=A as an ordinary set and (30) implies then that AnB=A as
fuzzy sets. Since P, < Py we hence have P, < Py or AcB in the fuzzy sense. In

case |AnB|=|B| we can show in a similar way that BcA in the fuzzy sense.
(F,),(F") The proof is the same as in theorem III.3. ]

From theorems III.3 and II.1 it now follows that J, D, Cos, N, O, (formulae (1), (2), (3),
(4), (6)) but now interpreted in the fuzzy sense, are good strong similarity measures for
fuzzy sets. From theorems III.4 and II.1 it follows that O, R and P (formulae (5), (7), (8))

but now interpreted in the fuzzy sense, are good weak similarity measures for fuzzy sets.

We have now established the theory of weak and strong similarity measures for general
fuzzy sets. In the next section we will apply this theory to ordered sets of documents of the

type of Fig. 1.

IV. Application to ordered similarity measures.

Let C=(C),. be an ordered set (chain) as described in the introduction. We consider

U, = Uc, (32)

i=1

as an ordinary set, equiped with the membership function
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P, (%) = (i) = xeC, (33)

where ¢(i) strictly decreases in i. This means that documents in C, have a lower weight, the

higher i, a logical requirement.
There is a lot of freedom to choose the concrete ¢ but in this paper we will use
. 1
@) = e (34
21

a decreasing power of the rank i. We feel that it is better to use (34) than e.g. a linear
decrease in i. Indeed, there should be a larger difference in comparing C, with C, than e.g.
Cyo With C'yg, in case C,=C,, and C,=C'y, as sets. This is also linked to the sensation
law of Weber-Fechner stating that the sensation is proportional to the logarithm of the
stimulus (see Egghe (1994), Egghe and Rousseau (1990)). A similar approach has been
followed in Egghe and Michel (2002).

Let now C=(C);y and C'=(C));.y be two ordered sets as described in the introduction,

Based on (32), (34) and (20) we define

QC.CY = F(Ug, U.)

v, (U AU,
- 1 C C (35)
v,(U_0_ H0 00, ]

Here (35) is in the fuzzy sense, of course. We need concrete expressions for U0,

|Uc|,/U.| and [UwU_|. This is given in the next lemma.

Lemma IV.1.

M UAU = 3 lenC] min[ ! 1 ] =Y Yicnc) _1 (36)

T L
i=1 j=1 2717 9id
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) Uc| = X €] i (37)
~ |
Gy [U | = JZ; IC;l o (38)
. 2 . 1 = -1 1
(iv) |[ULU_ | = CnC| — + CAC| —

U U §§| Gl > §§| Gl 5

o o ) 1 a , . 1

CA\UC| — + C\VJUC} — 39
gl 1 J-L;Jl Jl 21-1 lel ] H || 21-1 ( )

Here all |.| involving C;, C or combinations thereoff are in the ordinary sense (i.e.
number of elements in) since the sets C,, C'j are ordinary sets, and U denotes

disjoint union.
Proof :
The proofs of (i), (ii), (iii) are obvious from the definition of the fuzzy sets U. and UC'
(note that the ordinary sets CNC’, (i,jeN), C; (ieN),C| (jeN) are disjoint).

The proof of (iv) requires more work. We have

(40)

Here ('] denotes the union of disjoint sets and all unions are meant in the normal (non fuzzy
way). The problem is to write (40) as a disjoint union of (ordinary) sets. This Way it will be

easier to calculate the membership functions for UcuU,-. We have

Now
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n-
-n

Blﬂ@pd):CJDKWC) D mpC)

-
H
P
—
1l
—
—
i
=
e
1}
-
—
_‘
‘_.

Hence (41) becomes

rmll

Ue=U U ey o U L

i=1 j=i i=l j=

@oc)uﬁ[qxﬂq)oﬂ(q\OQ(n)
- j=1 i=1

(i) For the sets CnC in U U(C mC)
i=1 j=i

Here each element of CNC/, receives the same weight for the membership function

1 1
max | —,——| .
[21—1 2_]—1]

Since j>i, we find for all xeC,nC; as in (i)

for U.uU,, namely

= » (43)

(i) For the sets C,NC| in U U cnc, )

111-

Here each element of C,nC’ ; receives the same weight for the membership function

1 1
max | —,——| .
21-1 2]-1

Since j<i we find for all xeC,NC] as in (ii)

for UcUUc‘ , hamely

- —. @4)
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(iii) For the sets C, \Uc in U(c \UC)
j=1

Here each element of C \ UC receives the same weight for the membership
j=1
function for U uU, namely

Hence, for all xeC \ U C as in (iii) we have
j=1

1
5i-1 ’

Py, & 45)

(iv) For the sets C, \Uc mU (o \UC)
i=1 =j=1

Here each element of C \ UC receives the same weight for the membership
i=1

function for U LU, narnely

max[io)
2i-1

1

Hence, for all xe C \ U C as in (iv) we have
i=1

1
PUCUU . ) = RN (46)

Since in (42) all unions are disjoint, all these values add up, leading to

— + ylc/vUej —. @47
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This concludes the proof of the lemma. &

We can now present concrete (but intricate) formulae of good weak or strong similarity

measures for ordered sets (considered as fuzzy sets), based on (35) and the lemma.

I. Weak measures
I.1. Recall
We have

RC.C) = —— 12 (48)
j=1 2
1.2. Precision
U NU_ |
PC,CY= & ¢
U,
Y Y icnc _1
i=1 J:] 1 J 2max(1,])—l
P(C,C) = - 1 (49)
Z |Ci| i-1
i=1 2
1.3, Overlap measure O,
[UcnU,
0,(C,CY) = —
‘ min(|U J,[U,. )
lel |Clm _]| 2max1(l,j)-l
i= =
0,(C,C") = : (50)




23

I1. Strong measures

II.1. Jaccard J

U U
Jc,cn= =5 c
[U0U,
-] -] , 1
YYiene] — L
i=1 j:l 1 ] zmax(l,])—l
JI(C,C) = (51)
a
where
)53 L3y 1
o = CnC| — + CnC,| — +
i=1 J=l| ! ’|| 21“1 i=1l j=l| ! Jl 21_1
- 7 - 7 1
ciyyc + C \QycCJ| —
§| 1 JL=J1 JI 21‘1 lel 9 ll 2_]—1
II1.2. Dice D
2lU nU |
D(C,C") cC 7C
[U+HU

DEC,C)= (52)

I1.3. Cosine Cos

[U U
Cos(C,Cy = —E c!
C UC

O

= L1
2 210G S
Cos(C,C’) = (53)

= 1 it o1
(et B
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11.4. N
2lU nU |
N(C,CY = ‘/_C—C
|Ucl2+|Uc'|2
ok 1
2
25 Y1000
N(C,C') = (54)
2| J“r“r) *[;' Jgti]
I1.5. Overlap measure O,
o,y = _ Uelel
maX(lUcl,lUC 'D
. 1
gj‘;lc,ﬂ Jl 2max(i,j)—1
0C,CH =

o : (55)
mv{ZICiI ) S LE

Note :

It can readily been checked that the measures J, D, Cos and N (and only these) satisfy the
following interesting property of similarity measures for ordered sets (denote by Q one of
the above mentioned measures) :

Let iy, j, €N be fixed arbitrarily, iy#j,. Let

¢ = (Con
. |
C 0) = (CG )ﬂeN

be ordered sets such that C,n CQ' =@, vk,leN except for k=i, and ¢=j,. If we let i, and j,
vary (but not the sets Cio and C’jo) then Q(Cﬁ"), C’G")) is strictly decreasing in j,>1i, (i
fixed) and in iy>j, (j, fixed). The easy proof is left as an exercise. The above property was
also studied in Egghe and Michel (2002).
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V. Experimentation

V.1. Presentation of the context

The context of experimentation is the same as the one presented in Michel (2000) and
Egghe and Michel (2002). The IR-system Profil-Doc (Lainé-Cruzel et al. (1996)) linked
with the SPIRIT® search engine (Fluhr (1997)) is used with four different filtering profiles
(called TO,T1,T2 and T3) and predefined queries (approximately 600). TO corresponds to
classical interrogation without any filtering, T1, T2 and T3 correspond to interrogations
where three different filtering processes are effective. The choice of four profiles is made to
reproduce different IR processes or IR systems contexts. TO is considered as the system of
reference. Indeed, for each query, we compute the similarity between answers given by the
system submitted to profile TO and answers given by the system submitted to profile T1, T2
or T3. Answers given for TO (resp. T1, T2 or T3) are called A (resp. B) if sets are

considered in a usual way and C (resp. C) if sets are considered in a fuzzy way.

We draw curves of similarity results of the type of Fig. 2 :

Similarity degree
between answers  [~"TTT v
AandB |

or
CandC

Number of the query

Fig. 2 A type of curve of similarity results.

Number of queries are read on the X-axis and corresponding similarity results are read on

the Y-axis. The similarity is calculated according to the following measures.

SPIRIT (Syntactic and Probabilistic Indexing and Retrieval Information System) is a
commercial product of T.GID. Searches about SPIRIT are made according to the CEA-DIST
(Atomic Energy Commission - Scientific and Technic Information Direction) -
hitp://www.dist.cea.ft/
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V.2. Measures tested

V.2.1. Fuzzy approach and classical measures

We test the five strong ordered similarity measures considered in the fuzzy context and
presented before in equations (51), (52), (53), (54), (55). Measures derived from Jaccard,

Dice, Cosine, N, Overlap O, are respectively denoted as Jg, Dy, Cos;, N; and O,;.

We test also the three weak OS measures considered in the fuzzy context and presented in
equations (48), (49), (50). Recall, Precision and Overlap O, are respectively denoted as R .,
P and Oy

Each strong fuzzy OS measure is compared with two other measures :

- its classical corresponding indicator : Jaccard, Dice, Cosine, N, Overlap O,,
respectively denoted as J, D, Cos, N, O, and have been presented before in
equations (1), (2), (3), (4), (6).

— one strong "simple" OS measure : the one derived from Jaccard with an exponential

weight (Egghe and Michel (2002)).

Each weak fuzzy OS measure is compared with :

- its classical corresponding indicator : Recall, Precision and Overlap O,, respectively
denoted as R, P, O, and have been presented before in equations (7), (8) and (5).

- one strong "simple” OS measure : the one derived from Jaccard with an exponential

weight.

Why did we only choose this "simple" OS measure in all the comparisons ?

V.2.2. The choice of one strong "simple” OS measure

We have seen in Egghe and Michel (2002) how to construct 10 strong "simple" OS
measures, derived from the 5 classical ones, by using an exponential or a linear weight. For
example, the strong "simple"” OS measure derived from Jaccard with an exponential weight

is:
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’
m

JHCC) = El 2 J(C,C)0,() (56)
with
:Nx N~ R ;@i = 4% 3 (57)
(pp . 4 (pP J 411'10 1 2l2j2|ljl|

where m=|C|, m’=|C’| and my=max(m,m’).

Strong "simple" OS measures derived from Jaccard, N measure, Dice, Cosine and O, are
called I7, NS, DS, Cos,’, 02‘0’ respectively when they have an exponential weight. Weak
"simple" OS measure derived from Recall with an exponential weight is called R,°. Strong
"simple" OS measures derived from Jaccard, N measure, Dice, Cosine and O, are called

15, NS, D), Cos/, 02: and R, respectively when they have a linear weight.
We briefly repeat some results of Egghe and Michel (2002).
We proved that
JF =Dy and I = D
After experimentation we have seen that :
17 = Cosy” = Ry and I = Cosy’ = Ry

By considering that J*Cos#R#D, one of the conclusions of the experimentation was that the
weight function suppresses the particularity of classical indicators. So all exponential (resp.
linear) "simple" OS measures are sensibly similar to J,* (resp. J,). Because the exponential
weight @, (equation (57)) is of the same nature than the concrete membership function ¢
chosen in this paper (equation (34)), we choose J;©. To simplify notations, we call it J, in
the sequel. Similarly we note Cosy, N, Dice,, 020, R, P, and 010 for the "simple" OS
measures J;", Cos,”, N, Dice/’, 02':, RS, P and 01’:. So we compare all strong and

weak measures considered in a classical and in a "fuzzy" way with J,.
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For each of the three profiles and for each of the 600 queries, we made similarity
computations as explained in Fig. 2. We draw curves and group them in several ways in
order to make comparisons. Firstly, we group the measure by construction in order to make
appear a possible general tendency, that is, for each profile, we compare in the same figure
all the classical strong measures (i.e. N, D, J, O,, Cos) and in another one all the strong
fuzzy OS measures (i.e. N, Dy, J, OzF, Cosg). Secondly, we group measures according
the native indicator considered : Jaccard’s one, N measure’s one, Dice’s one ... in order to

see If the type of construction has an influence.

VY.3. Results

V.3.1. Comparison of strong measures by construction
Classical measures N, D, J, O, Cos are presented together in Fig. 3 for profile T1, in Fig.

5 for profile T2 and in Fig. 7 for profile T3. In order to make the curves readable, queries
on the X-axis are ranked by increasing Js. Similarly, measures Ng, Dg, Jg, 02,,’ Cosg are
presented together in Fig. 4 for profile T1, in Fig. 6 for profile T2 and in Fig. 8 for profile
T3. Queries on the X-axis are ranked by increasing J. s. Queries’ rank in figures make
only comparisons possible between curves drawed on the same figure and not those

coming from different figures.

T1
N —D =y — 02 —— Cos
P 1
% 09
£ 081
5e 0,7 4
ez %67
3 & 054
SE 044
EB o3
g 0,2
E o
@ 0

Queries' number ranked according to J growing

Fig. 3
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Simllarity measure for answers of
Tidand TO

Querles’ numbar ranked by Increasing J's

Fig. 7

Simltarity measure for answers of

> a~ = I~ I~ f~ 6w
IS EabsgsobE I
o (] o Y

Queries' number ranked by Increasing JI's

Fig. 8

We can potice that measures have specific values due to the different normalization
functions §, (see Equation (14)) but share the same shape regarding the profile. Indeed, we
can see a J-shape curve for profile T1 (Figs. 3, 4), an inverse J-shape curve for profile T2

(Figs. 5, 6) and an S-shape curve for profile T3 (Figs. 7, 8).

Moreover, we can see for most values that measures are ranked as J<0,<D<N<Cos in the
classical case and Jp< OstDFsNFsCosF in the fuzzy case. Let us remember that, in the
strong case (Egghe and Michel (2002)) we had J,=D,=Cos,. So we can say that fuzzy OS
measures are more sensitive than the "simple" OS one because they respect the natural

properties of classical measures j.e. the normalization function ,.
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Let us compare now each strong "fuzzy" OS measure with its classical correspondent and

with the strong "simple” OS measure J,.

V.3.2. Comparison of strong measures grouped by native indicator
In the five following figures, curves of measures computed in the T1 profile case are

grouped according to there native indicator. Indeed, curves of J, J; and J; are presented
together in Fig. 9, curves of N, N, and J, (regarding experimentation results of Egghe and
Michel (2002) we suppose that Ny=J,) are presented in Fig. 10, curves of D, Dy and J,
(indeed D,=1,) are presented in Fig 11, curves of O,, 02lr and J; (as before, se suppose that
Ozon(,) are presented in Fig. 12 and curves of Cos, Cos; and J; (indeed Cos,=];) are
presented in Fig. 13. In all figures, queries numbers are ranked by increasing J.. So Figs.

3, 4 and 9 to 13 have the same rank for queries and can be compared together.

In annexes, the same curves, computed for profiles T2 (Figs. Al, A2, A3, A4 and A5) and
T3 (Figs. A6, A7, A8, A9, A10), are presented.

T
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Fig. 9
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The shape of the curve of Fig. 4 is naturally noticed on each figure in the "fuzzy" case (i.e.
for Jg, Ng, Dy, O2.= and Cosg). On the contrary, J, N, D, O,, Cos and J, do not have a
regular shape. Indeed, we see that the classical curves and "simple" OS curves oscillate
strongly around the fuzzy OS one. The same observations can be made by looking on
figures relating to profile T2 ( Figs. A1-A5) and T3 (Figs. A6-A10). So, we can say that

"fuzzy" OS, "simple" OS and classical strong measures are really different.

Let us observe now the fundamental characteristics, i.e. characteristics noticed for the 3
profiles. We begin comparisons with the 3 measures J, J; and J, computed for the profile
T1, T2 and T3. They are presented in Figs. 9, 14 and 15 respectively. In the sequel we will

see whether conclusions are extensible to other measures than the one derived from J.
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The Jg curve is always very regular ; indeed queries are ranked according to increasing I;s.
The amplitude of the oscillations of J, and J curves are really different depending on the
profile. Indeed they are most of time very small in T1 and T2 and larger in T3.
Nevertheless, we do not think that there is a characteristic of the profile but rather a

characteristic depending on the J.’s distribution function. Indeed, let us define 4 zones :
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- Zone 1 : J tends towards 0
~ Zone 2 : J;. takes variable values from O to 1
- Zone 3 : J tends towards 1

- Zone 4 : I is equal to 1

Vertical lines in Fig. 15 make zone 2, zone 3 and zone 4 visible ; there is no zone 1 in this
case. We let the reader do the same in Fig. 9 (zone 1 and 2 are noticable) and Fig. 14 (zone

2, 3 and 4 are noticable).

In zone 1 and 3, amplitude of oscillations of J;, and J are really small and no oscillation is
observed in zone 4. J values usually are between J, and J. In a more precise way in zone 1
we observe most of time that the 3 type of values are ranked as J>J.>J, and on the
contrary in zone 3 they are ranked as J<Jz <], the permutation being effective in zone 2
(see Fig. 15). This observation is really interesting if we take into account the fact that the
number of common documents is the first similarity criterion in the classical case and the
rank of presentation of common documents is the one in the strong "simple” OS case. So
this observation makes us believe that J; takes into account the criteria of rank and number

of common documents in a more precise and representative way than do ¥ and J;,.

This observation is noticeable also in the figures presented in annexes. So we can say in a
general way that fuzzy OS measures are more precise and representative than classical

and simple OS ones on criteria of rank and number of common documents.

Let us observe now curves of weak measures : Recall, Precision and O, measures.

V.3.3. General comparison of weak measures by construction
In the six following figures we can see curves of R, P and O, computed for profile T1 in

Fig. 16, for profile T2 in Fig. 17 and for profile T3 in Fig. 18. Curves of Ry, Pr and O,

F
are presented for profile T1 in Fig. 19, for profile T2 in Fig. 21 and for profile T3 in Fig.
22.
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We cannot notice any regularity linked with profile or measures. P and O, oscillate wildly

around R. Pz and O, do the same around Rg.
F

Previous studies have shown that, often, recall and precision vary in an inverse proporttonal
way (see Fig. 22 or Fig. 23). It is not true in our case. Indeed we give curves (recall,
precision) for each profile in annexes (Figs. A11-A16) and none of them is like Fig. 22 or

Fig. 23.

Precision
Precigion

Recall Recall

Fig. 22 Fig. 23

This phenomenon is explained by the context of the experimentation. Indeed, recall and
precision are usually computed in a collection test context. It is not the case in our
experimentation where precision is calculated by taking the answers without filtering (i.e.
the answer given by profile TO) as set of "retrieved documents" (corresponding to A in
Equation (8) and to C in Equation (49)) and recall is calculated by taking the answers with
filtering as set of "relevant documents" (corresponding to B in Equation (7) and to C in
Equation (48)). The fact that C' and B are not real sets of relevant documents in a semantic
sense (regarding for example experts’ judgement) is a source of biases and explain partially
why we do not refind the shape of curves shown in Fig. 22 or Fig. 23. We have no

conclusion by comparing R with P and R; with Pp.

Moreover we can notice that P is very similar to O, and P is very similar to Olp' This
particularity cannot be seen as a characteristic of P and O, because of the biases induced by
data of experimentation. Indeed, if we place ourselves in the fuzzy case, C corresponds to
answers linked with the neutral profile TO and C to answers obtained by the filtering

process of profiles T1, T2 or T3. So in most of the cases we have |C| > |C'|, which means
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that |C'| =min(|C|,|C’|) and so Pr=0, . Because of the experimentation biases, we are
F

not able to give any conclusions about weak fuzzy OS measures construction.

Nevertheless, comparisons of R with R and R, ; P with P; and R,,, and finally O, with 011,
and R, are possible by observing natural characteristics of measures. (The choice R, in the
P or O, case is justified by conclusion of Egghe and Michel (2002). Indeed, we suppose
that P,=R, and OlozRo.

V.3.4. Comparison of weak measures grouped by native indicator

Curves of measures R and Ry and R, are presented in Figs. 24, 25, 26 (for the profiles T1,
T2 and T3 respectively). Queries are presented by increasing Ry s. Curves of measures P
and P, are presented in Figs. 27, 28, 29 (for the profiles T1, T2 and T3 respectively).
Queries are presented by increasing Pg s. Curves of measures O, and O, are presented in
Figs. 30, 31, 32 (for the profiles T1, T2 and T3 respectively). Queriesgare presented by
increasing 0lF 8.

In general, curves of R, R; and Ry have the same characteristics as the strong measures

presented before. Zones 1, 2, 3, 4, noticed in Figs. 9, 14, 15 are present in Figs. 24, 25,
26.

On the contrary, measures P and O, have not the characteristics of strong measures. Indeed,
oscillations of P and R, around Py are larger and more irregular than the ones of R and R,

around R;. Observation is the same with measure O,.
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V.4. Conclusion

Experimentation analyzes the characteristics of fuzzy OS measures by comparing them to
classical measures and "simple" OS one. Comparisons between all the classical and all the
fuzzy OS measures (i.e. comparisons by construction) are made to see general tendencies.
We observe that, in the strong measures case, general shape of curves are conserved
varying the profile, so the fuzzy process is stable and representative of the profile or of the
IR-system used. More precisely, if we look on the values, we notice that the natural
properties of classical strong measures, defined by the normalization function v,, are lost in
the "simple" OS case (conclusion of Egghe and Michel (2002)) but conserved in the fuzzy
case. Indeed, J<O,<D<N<Cos in the classical case, Jp< 02l= <DpsNp<Cos; in the fuzzy case,
but J,=D,=Cos, in the "simple" OS case. So the strong "fuzzy" OS measures are more

sensitive than the strong "simple" OS one.

Comparisons of classical and weak fuzzy OS measures are not valid for two different
reasons. Firstly, in the analysis of recall and precision, we attempted to find a usual
regularity but we did not observe any for R and P or for R and P.. We suppose that this
"anomaly" is a bias of the experimentation. Indeed, recall and precision regularities are
observed for collection test evaluations, which is not our context. Secondly, in the analysis
of precision and O,, we have showed that, for most values, Pp= Oll= and P=0,, which is
not normal and is due to the experimentation context. So, to give pertinent conclusions on
the general tendency of weak fuzzy OS measures we need to work on a real collection test

evaluation context.

In the second step, we group measures according the native indicator considered, in order
to see if the type of construction has an influence on the measure or not. Theses
comparisons show that, for the five strong measures and the three weak ones, fuzzy OS
values are most of the time between "simple" OS values and classical values. Considering
that "simple"” OS measures are principally depending on the rank of common documents
and classical measures are only depending on the number of common documents, we can

believe that, strong (resp. weak) fuzzy OS measures are more precise and representative on
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the two criteria of rank and number of common documents than classical and "simple" OS

strong (resp. weak) measures.

Finally, we can say that strong fuzzy OS measures seem to be better than classical and
"simple" OS strong ones : they are stable, more precise and more representative. In the
weak case, we must be more prudent. We have the conviction that the preceding conclusion
can be extended but we cannot confirm this before having made complementary tests in a

real collection test evaluation context.
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