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ABSTRACT 

Ordered sets of documents are encountered more and more in information distribution 

systems, such as information retrieval systems (IRS). Classical similarity measures for 

ordinary sets of documents hence need to be extended to these ordered sets. This is done in 

this paper using fuzzy set techniques. First a general similarity measure is developed which 

contains the classical strong similarity measures such as Jaccard, Dice, Cosine and which 

contains the classical weak similarity measures such as Recall and Precision. 
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Then these measures are extended to comparing fuzzy sets of documents. Measuring the 

similarity for ordered sets of documents is a special case of this, where, the higher the rank 

of a document, the lower its weight is in the fuzzy set. Concrete forms of these similarity 

measures are presented. All these measures are new and the ones for the weak similarity 

measures are the first of this kind (other strong similarity measures have been given in a 

previous paper by Egghe and Michel). 

Some of these measures are then tested in the IR-system Profil-Doc. The engine SPIRIT" 

extracts ranked documents sets in 3 different contexts, each for 600 request. The practical 

useability of the OS-measures is then discussed based on these experiments. 

I. Introduction 

The following similarity measures are well-known measures to compare sets of documents 

A,B (subsets of a documentary system, Q, the universe). 

Jaccard's index J 

Dice's index D 

Cosine function Cos 

The measure N 



Overlap measures 0, and 0, 

Recall R and Precision P 

Of course here one must add that A=ret, the set of retrieved documents and B=rel, the set 

of relevant documents. 

Most of these measures are classical and well-known. For the readers who wish a longer 

introduction on these measures we refer to van Rijsbergen (1979), Salton and Mc Gill 

(1987), Boyce, Meadow and Kraft (1995), Tague-Sutcliffe (1995), Grossman and Frieder 

(1998), Losee (1998) or Egghe and Michel(2002). 

All of the above measures are of the form 

where Q, is a strictly increasing function and IJJ, is an increasing function of 3 variables. 

Let us consider the following general properties for a general measure F : for all A,BcQ : 

(F,) 0 s F(A,B) s 1 

(F,) F(A,B)= 1 - A = B  

(F,) F ( A , B ) = O - A n B = 0  
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(F,) If the denominator of F is constant then F is strictly increasing with I AnB I . 

The measures J, D, Cos, N, 0, satisfy these four requirements and are called strone 
similarity measures. If we replace (F,) by the weaker 

' F(A,B) = 1 - AcB or BcA (13) 

then we have that O,, R and P satisfy (F,), (F',), (F,), (F,) and are therefore called yg& 

similarity measures. Not that they are less important than the strong ones : the applications 

of e.g. R and P in IR are well-known ! Note that the reverse of (13) is OK for 0, but not 

for R or P. Indeed suppose AcB (and not BcA). Then P(A,B)= 1 but R(A,B) < 1. The same 

can be said when AzB (and not B3A) with R and P reversed. That is why we kept - in 

(13). 

So far for unordered sets (i.e. ordinary sets) of documents. 

In Michel(2000) and Egghe and Michel (2002) one considers ordered sets of documents as 

e.g, the output of an IR query. The most general case can be depicted as in Fig. 1 where 

one has a "chain" of unordered disjoint sets CicQ,Vi~N but such that every document in C,., 

is before (i.e. has a lower rank) every document in Ci, for every i. In terms of IR, the 

documents in C,, are retrieved before (or read before) the ones of Ci, for every i. Of course 

Ci=O will always be the case, in practise, from a certain i on (since R is finite in practise). 

Fig. 1 An ordered set C=(C,),,, where --<-- symbolises the order induced 

on the sets Ci via the order between the documents. 



We work here with a very general set-up, comprising the IR extremes : 

(a) the unordered case : C,*0, Ci=O, Vi22 

(b) the total linear case : Vi: I Ci I = 1 or Ci =0 

As explained in Egghe and Michel (2002), case (a) represents "classical" IR (e.g. Boolean 

retrieval) and the total linear case (b) refers to a ranked list of documents as e.g. given by 

browsing machines in WWW. The very general situation is needed in Boolean retrieval 

with OR-ed key words (say N in number) and where Ci is the set of documents that contain 

N-i+ 1 of the N given key words (i= 1,. . . ,N) (all the other C are empty) : here there is no 

natural order within each Ci but, as in our model, every document in Ci., is before (is 

potentially more important) than every document in Ci, since the former contains more 

requested key words than the latter. 

In Egghe and Michel (2002) we used the above model to construct ordered similarity (0s) 

measures, i.e. measures that can compare every two such chains C=(CJiCN and C'=(C;),,,. 

They were derived from existing good similarity measures for unordered sets, applied to 

each Ci and C; and then "combining" everything together by summing over each i and j in 

N. Here the sets Ci and C; on the higher ranks receive a lower weight than the ones on the 

lower ranks. We were then able to construct good strone OS measures, i.e. measures Q on 

chains C and C' such that several "natural" properties are satisfied. One of them is that 

Q(C,C')=l if and only if C=C' (as a chain, i.e. C,=C',, VicN) and no Ci or C; is empty. 

This boils down to the property (F,) in the case of unordered sets. It is obvious then that the 

method used in Egghe and Michel (2002) only works when strong similarity measures are 

concerned. 

Since we do not have a natural analogue of (F'J for chains (i.e. what is the meaning of 

CcC' ?), we are, in this paper considering the chains as fuzzy sets, where inclusion (c) is a 

clearly defined thing. This will yield a new model for good OS measures. Our technique 

will work for weak as well as strong measures. Note that we will here present good weak 

OS measures for the first time. 



The next section deals with a classification and a generalization of strong and weak 

similarity measures. These generalized measures enable us to present one fuzzy model for 

weak and strong OS measures, which is then applicable to all the measures encountered so 

far. 

The third section presents a general theory of weak and strong similarity measures on fuzzy 

sets. It is new in itself and more general than the application given in section four to 

ordered sets. There we interpret our "chains" (as in Fig. 1) in the sense of fuzzy sets and 

give concrete formulae in this case. In this way new good OS measures (weak and strong 

ones) are created, hence producing good weak OS measures for the first time. 

The last section reuses the IR-system Profil-Doc and the engine SPIRIT", where ranked 

document sets for 600 requests in 3 different contexts are given. On these sets some of the 

measures, obtained in this paper, are calculated and based on graphical representations of 

the values of these 0s-measures, qualitative conclusions on these 0s-measures are given. 

11. Generalized forms of weak and strong; similarity measures on 

ordinarv sets. 

In the introduction, we mentioned already that the measure F, defined on 2" x 2" (2" = the 

set of all subsets of Q )  as 

, where $, is strictly increasing and $2 is increasing in each of its 3 variables is a common 

generalization of all measures encountered here : J, D, Cos, N, 0 , ,  O,, R, P. In this list 

there are weak and strong similarity measures. In the next two theorems we will describe 

the properties of $, and $, that will make F a good weak or strong similarity measure. We 

start with the latter one. 



Theorem 11.1. 

Let F be as in (14), with @,, $, functions R+-R+ such that 

(i) @,zO, @,zO, @, strictly increasing, @, increasing (in its 3 variables), $,(O)=O, 

implies $,(a) < @,(x,y ,z) for all z 1: ; 
(iii) a { ' " Implies ' @,(a)~$,(x,y,z) for all z 

< Y  1: ; 
(iv) a=x=yimplies@,(a)=@,(x,y,z)forallz=x=y. 

Then we have 

(I) All strong similarity measures J, D, Cos, N, 0, satisfy the above requirements 

(11) F is a good strong similarity measure, i.e. satisfies the requirements (F,), (FJ, (F,), 

(F4). 

Proof : 

(I) As mentioned already, all measures J, D, Cos, N, 0, are of the type (14). We will 

investigate if the functions @, and @, (in each case) satisfy the properties announced 

in this theorem. 

J - Here @,(a)=a and @,(x,y,z)=z, hence (i) is satisfied. Let now 

or . Then, since for J : z = IAuBl 

have a <  z and hence @,(a) < @,(x,y,z) proving (ii). The proof of (iii) and (iv) 

is similar. 



D Here $,(a)=a and $,(x,y,z)= X f y  . Hence (i) is satisfied. Let now 
2 

or . This implies a < - '+' hence 
2 

$,(a) <$,(x,y,z), proving (ii). The proof of (iii) and (iv) is similar. 

Cos Here $,(a) = a and $,(x,y ,z) = fi. Hence (i) is satisfied. Let now 

a {z; or . This implies a < fi proving (ii). 

The proof of (iii) and (iv) is similar. 

N Here $,(a)=a and $,(x,y,z)= . Hence (i) is satisfied. Let now 

or . This implies 2a2 < x2 +y2, hence a < 

proving (ii). The proof of (iii) and (iv) is similar. 

0 Here $,(a)=a and $,(x,y,z)=max(x,y). Hence (i) is satisfied. Let now -2 

or . Then a < max(x,y) implying (ii). The proof 

of (iii) and (iv) is similar. 

(11) We now show that F satisfies (F,), (F,), (F,), (F,). 

V { . Hence also for z= 1 AvB 1 . This proves F(A,B)r 1. Of course, 

since $, and q2 are positive, so is F 



F(A,B) = I implies 

If I AnB 1 < I A ( or I AnB I < I B I we see, by (ii), that 

Hence (AnBI =IAl =JBI  

hence A = B. 

Converseley, if A=B then I AnB I = I A ( = I B I , hence, by (iv) 

since A =B implies I AuB I = I A 1 = I B 1 

Hence F(A,B) = 1. 

F(A,B)=O iff $,(I AnB I)=0 iff I AnB I = O  ($, is injective and $,(0)=0) iff 

AnB=0. 

This is clear from (14) and the fact that g, strictly increases. 0 

Theorem 11.2. 

Let F be as in (14), with $,, $, functions IW+-IW' such that 

(i) $,>O, $+O, $, strictly increasing, increasing (in its 3 variables), $,(0)=0 (i.e. 

the same condition as (i) in the previous theorem), 

(ii) a<min(~,y,z)implies$,(a)<$~(x,y,z)foralla,x,y,z 

(iii) acmin (x,y ,z) implies $,(a)c$,(x,y.z) for all a,x,y,z. 



Then we have 

(I) All the weak similarity measures O,, R and P satisfy the above requirements 

(11) F is a good weak similarity measure, i.e. satisfies the requirements (F,), (F'J, (F,), 

(F,). 

Proof : 

(I) Again, the measures 0 , ,  R, P are of the type (14). We will now check if the 

functions $, (in each case) satisfy the requirements in this theorem. 

0 Here $,(a)=a, $,(x,y,z)=rnin(x,y). Hence (i) is satisfied. -1 

Let now a < min(x,y ,z). Hence a<min(x,y) implying $,(a) < $,(x,y ,z), 

hence proving (ii). The proof of (iii) is similar. 

R Here $,(a) =a, $,(x,y,z) =y, hence (i) is satisfied. - 

Let now a < min(x,y ,z). Hence a < y and hence (ii) is satisfied. The proof of 

(iii) is similar. 

P - This proof is similar to the one of R. 

(11) We will show that F satisfies (F,), (F',), (F,), (F,). 

El) F>O since $, and $, are positive. Further, since I AnB 1 c 

min(1 A I, I B I, I AuB 1) we have, by (iii), that 

hence F(A,B)i 1. 

Let F(A,B)= I .  Hence Jr,(lAnBI)=$,(lAI, IBI, IAuBI). By (ii) and (iii) 

and since I AnB I <mh( I A I, I B I , I AuB I), we have that 



implying that A2B or AcB. 

F(A,B)=O iff $,(I AnB I)=0 iff I AnB I = O  (9, is injective and $,(0)=0) iff 

AnB=0.  

This is clear from (14) and the fact that I$, strictly increases. 0 

We think that these results are important since they considerably generalize the known 

similarity measure and also - even more importantly in the author's opinion - show the real 

nature of strong and weak similarity measures. 

In addition to this we can deduce from it a general theory of good similarity measures 

(strong or weak) for fuzzy sets. Here we only have to study the single form (14), thereby 

generalizing all the mentioned similarity measures to fuzzy sets. This will be done in the 

next section. 

111. Theorv of weak and strong similaritv measures for fuzzv 

sets. 

Fuzzy sets are well-known in mathematics and we suffice by mentioning the elementary 

definitions. Readers who are interested in more facts on fuzzy sets and their applications are 

referred to Zadeh (1975). Ordinary sets can be described via their so-called characteristic 

function : for AcQ, xA(x)= 1 if XEA and xA(x)=O if x@A. Hence the range of X ,  is {0,1}. 

To allow for "fuzzy" membership (as e.g. is the case in an ordered set : elements with high 

ranks belong "less" to the set than the ones with low ranks) we now allow the membership 

function to range in the interval [O, 11. 



Hence a fuzzy set is an ordinary set AcQ, equiped with a function 

where PA(x)=O, b'x~61\A. Note that the case of ordinary sets is contained in this model : 

here PA(x) = 1-XEA. 

Fuzzy intersection of the fuzzy sets A and B is the ordinary intersection AnB, with the 

membership function. 

Fuzzy union of the fuzzy sets A and B is the ordinary union AuB, with the membership 

function 

For A and B fuzzy sets, we say that AcB (fuzzy inclusion) if 

Vxd2 (in fact it is enough to require this VXEA as is easily seen). If AcB and BcA (fuzzy 

inclusion) then we say that A=B (fuzzy equality). 

The extension of the cardinality of a set, to fuzzy sets is as follows : 

Note that all these definitions boil down to the classical ones in case of ordinary sets. 



In Buell and Kraft (1981a,b) these notions were used to define R and P for fuzzy sets. They 

also formulated the conjecture that "rank-order comparison measures might be more 

appropriate for evaluation". We give an answer to this conjecture in Egghe and Michel 

(2002) and in this paper : the rank-order approach works well for strong similarity 

measures (Egghe and Michel (2002)) (but not for weak similarity measures) and in this 

paper we will show that the fuzzy approach works for both weak and strong similarity 

measures (and in fact is applicable to every measure that we encountered). 

In fact, defining the fuzzy variants of the weak and strong similarity measures is very easy : 

they are simply (14), interpreted in the fuzzy way : let A and B be fuzzy sets. We define 

where we use definitions (16), (17), (19) and where IJ, and IJ2 are as in the previous 

section. Hence (20) is 

We say that F" is the fuzzy similarity measure, derived from F. We will prove that F* is a 

good weak or strong similarity measure under the same conditions as in theorem 11.1 and 

11.2 for ordinary sets. The definitions of good strong and weak similarity measures for 

fuzzy sets are the same as in the case of ordinary sets : 

Defmition 111.1. 

We say that F* is a strong similarity measure for fuzzy sets if, for all A,B fuzzy sets : 

( F )  OSF'(A,B)S 1 (22) 

( F )  FS(A,B)=1-A=B (23) 

(Fa )  Fb(A,B) =0-AnB =0 (24) 
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(F*) If the denominator of F* is constant then F* is strictly increasing with I AnB I . 

Definition 111.2. 

We say that F* is a weak similarity measure for fuzzy sets if F* satisfies (F',), (F*,), (F;) 

above and 

(F*') F*(A,B) = I-ACB or BcA 

All these notations have to be interpreted in the fuzzy way. 

We have the following results. 

Theorem 111.3. 

Let F* be as in (20) and let I$,, $2 have the same properties as in theorem 11.1. Then F* is a 

good strong similarity measure for fuzzy sets. 

Proof : 

{ ' IAI  we have that (F*)  Obviously FV>O. Since lAnBl IBI,  

$l(lAnB()sI$,((A(,(BI,(A~B() since (AuB( { : 1;; . We use here the defloitions 

(16)-(19). Hence F'I 1. 

( F )  Let F*(A,B)=~ .  HenceI$,(IAnBI)=I$,(lAl,IBI,IAuBI) 

Hence 

IAnBI = IAI = IBI 

by (ii) and (iii) in theorem 11.1. (25) means 



PA(4  
Since Vx€AnB : min(P,(x),P,(x)) 

P,(x) 

and 

we have that 

VxcAnB : min(PA(x),PB(x)) = PA(x) = PB(x) 

and 

(27) and (28) imply that AnB=A=B as ordinary sets and then (26) implies that 

A=B as fuzzy sets. 

Conversely, if A=B as fuzzy sets then I AnB I = I A I = I B I in the fuzzy sense. 

Hence (iv) in theorem 11.1 yields 

hence Fa(A,B) = 1 

( F )  F*(A,B)=O iff *,(I AnB I)=O iff I AnB I =O (I$, injective and @,(0)=0) iff 



This is equivalent with : VxcAnB : 

(F;) is trivial. 0 

Theorem 111.4. 

Let F' be as in (20) and let $,, q2 have the same properties as in theorem 11.2. Then F* is a 

good weak similarity measure for fuzzy sets. 

h f  : 

(F*) Obviously F*>O. Since I AnB I <min( I A I , I B I , I AuB I ), (iii) in theorem II.2 implies 

hence F*s 1. 

F * '  F*(A,B)= 1 implies $,( I AnB I )=I$,( I A 1 , I B I , I AuB I ). Properties (ii) and (iii) in 

theorem 11.2 imply 

obviously. Hence I AnB I = I A 1 or I AnB I = I B I . In the first case we have 



it follows from (29) that 

(3 1) implies that AnB = A  as an ordinary set and (30) implies then that AnB =A as 

fuzzy sets. Since PA,,, < PB we hence have PA < PB or AcB in the fuzzy sense. In 

case I AnB I = I B I we can show in a similar way that BcA in the fuzzy sense. 

( F ) ( F )  The proof is the same as in theorem 111.3. 0 

From theorems 111.3 and 11.1 it now follows that J, D, Cos, N, 0, (formulae (I), (2), (3), 

(4), (6))  but now interpreted in the fuzzy sense, are good strong similarity measures for 

fuzzy sets. From theorems 111.4 and 11.1 it follows that 0, R and P (formulae (3, (7), (8)) 

but now interpreted in the fuzzy sense, are good weak similarity measures for fuzzy sets. 

We have now established the theory of weak and strong similarity measures for general 

fuzzy sets. In the next section we will apply this theory to ordered sets of documents of the 

type of Fig. 1. 

IV. A~~l icat ion to ordered similaritv measures. 

Let C=(C,),,, be an ordered set (chain) as described in the introduction. We consider 

as an ordinary set, equiped with the membership function 



where q(i) strictly decreases in i. This means that documents in Ci have a lower weight, the 

higher i, a logical requirement. 

There is a lot of freedom to choose the concrete cp but in this paper we will use 

a decreasing power of the rank i. We feel that it is better to use (34) than e.g. a linear 

decrease in i. Indeed, there should be a larger difference in comparing C, with C', than e.g. 

C,,, with C',, in case C,=C,,, and C',=C',, as sets. This is also linked to the sensation 

law of Weber-Fechner stating that the sensation is proportional to the logarithm of the 

stimulus (see Egghe (1994), Egghe and Rousseau (1990)). A similar approach has been 

followed in Egghe and Michel (2002). 

Let now C=(Ci),, and C'=(C;),,, be two ordered sets as described in the introduction. 

Based on (32), (34) and (20) we define 

Here (35) is in the fuzzy sense, of course. We need concrete expressions for IUcnUc.I, 

I U, I , JU, , I  and IUcuUc .I. This is given in the next lemma. 

Lemma IV.l. 



(ii) 

(iii) 

(iv) 

Here all 1 .  I involving Ci, C; or combinations thereoff are in the ordinary sense (i.e. 

number of elements in) since the sets Ci, C; are ordinary sets, and u denotes 

disjoint union. 

Proof : 

The proofs of (i), (ii), (iii) are obvious from the definition of the fuzzy sets U, and Uc. 

(note that the ordinary sets C,nC; (i,jdV), Ci (kBJ),C; (~EBJ) are disjoint). 

The proof of (iv) requires more work. We have 

uc"Uc, = [ s c ]  i= l  " [ljc:) j-1 J 

Here u denotes the union of disjoint sets and all unions are meant in the normal (non fuzzy 

way). The problem is to write (40) as a disjoint union of (ordinary) sets. This way it will be 

easier to calculate the membership functions for U,u Uc.. We have 

Now 



Hence (41) becomes 

- - 
(i) For the sets CinC', in (Ll U (c.~c.') 

i;l j=i 1 J 

Here each element of CinCi receives the same weight for the membership function 

for U,uU,., namely 

max [L 2i-I 1 L] 2 j - ~  . 

Since j l i ,  we find for all x€CinC; as in (i) 

1 
P (x) = - . Uc"Uc' 2i-L 

- i-1 

(ii) For the sets C,nC; in (Ll (Ll (cinCjs) 
i=1 j$ 

Here each element of Cinc; receives the same weight for the membership function 

for U,uU,. , namely 

max [ -- 2:-, 2:-1] 

Since j < i we find for all xeCinCi as in (ii) 

1 
P (x) = -. 

Uc"Uc 2~-1 



ca - - 
(iii) For the sets C. \ u c.' in (1) (Ci \ (1) c.') 

j;l J i;l , = I  J - 
Here each element of Ci \ c,' receives the same weight for the membership 

j=1 
function for UcuUc, , namely 

- 
Hence, for all XE C. \ (1) c,' as in (iii) we have 

j=1 

1 
P (x) = -. 
UCuUc, 2i-l (45) 

(iv) Forthesets c.' \ u C i  in u (c.' \ u C J  
J i;] -,=I J i -1 - 

Here each element of c,' \ u Ci receives the same weight for the membership 
i= l  

function for U,uUC. , namely 

- 
Hence, for all XE c,' \ u Ci as in (iv) we have 

i=l  

1 
P (x) = -. 
ucuuc. 2,-1 

Since in (42) all unions are disjoint, all these values add up, leading to 



This concludes the proof of the lemma. 0 

We can now present concrete (but intricate) formulae of good weak or strong similarity 

measures for ordered sets (considered as fuzzy sets), based on (35) and the lemma. 

I. Weak measures 

I. 1 .  Recall 

We have 

1.2. Precision 

1.3. Overlap measure 0, 



11. Strone measures 

11.1. Jaccard J 

where 

11.2. Dice D 

11.3. Cosine Cos 



11.5. over la^ measure 0, 

Note : - 
It can readily been checked that the measures J, D, Cos and N (and only these) satisfy the 

following interesting property of similarity measures for ordered sets (denote by Q one of 

the above mentioned measures) : 

Let i,, jo EN be fixed arbitrarily, ipj,. Let 

be ordered sets such that c,~c,' =0, %,PEN except for k=i ,  and P=jo. If we let i, and jo 

vary (but not the sets C. and C '. ) then Q(C(id, C'") is strictly decreasing in j,> i, (i, 
'0 Jo 

fixed) and in 6 > j, (io fixed). The easy proof is left as an exercise. The above property was 

also studied in Egghe and Michel (2002). 



V. Experimentation 

V.1. Presentation of the context 

The context of experimentation is the same as the one presented in Michel (2000) and 

Egghe and Michel (2002). The IR-system Profil-Doc (Laink-Cruzel et al. (1996)) linked 

with the  SPIRIT^ search engine (Fluhr (1997)) is used with four different filtering profiles 

(called TO,Tl,T2 and T3) and predefined queries (approximately 600). TO corresponds to 

classical interrogation without any filtering, TI ,  T2 and T3 correspond to interrogations 

where three different filtering processes are effective. The choice of four profiles is made to 

reproduce different IR processes or IR systems contexts. TO is considered as the system of 

reference. Indeed, for each query, we compute the similarity between answers given by the 

system submitted to profile TO and answers given by the system submitted to profile TI ,  T2 

or T3. Answers given for TO (resp. TI ,  T2 or T3) are called A (resp. B) if sets are 

considered in a usual way and C (resp. C') if sets are considered in a fuzzy way. 

We draw curves of similarity results of the type of Fig. 2 : 

Fig. 2 A type of curve of similarity results. 

Number of queries are read on the X-axis and corresponding similarity results are read on 

the Y-axis. The similarity is calculated according to the following measures. 

'SPIRIT (Syntactic and Probabilistic Indexing and Retrieval Information System) is a 
commercial product of T.GID. Searches about SPIRIT are made according to the CEA-DIST 
(Atomic Energy Commission - Scientific and Technic Information Direction) - 
htto://www.dist.cea.fr/ 



V.2. Measures tested 

V.2.1. Fuzzv aDDr0ach and classical measures 

We test the five strong ordered similarity measures considered in the fuzzy context and 

presented before in equations (51), (52), (53), (54), (55). Measures derived from Jaccard, 

Dice, Cosine, N, Overlap 0, are respectively denoted as J,, D,, Cos,, N, and O,,. 

We test also the three weak OS measures considered in the fuzzy context and presented in 

equations (48), (49), (50). Recall, Precision and Overlap 0, are respectively denoted as R,, 

P, and o,,. 

Each strong fuzzy OS measure is compared with two other measures : 

- its classical corresponding indicator : Jaccard, Dice, Cosine, N, Overlap 0,, 

respectively denoted as J, D, Cos, N, 0, and have been presented before in 

equations (I), (21, (31, (4), (6). 
- one strong "simple" OS measure : the one derived from Jaccard with an exponential 

weight (Egghe and Michel (2002)). 

Each weak fuzzy OS measure is compared with : 

- its classical corresponding indicator : Recall, Precision and Overlap 0 , ,  respectively 

denoted as R, P, 0, and have been presented before in equations (7), (8) and (5). 

- one strong "simple" OS measure : the one derived from Jaccard with an exponential 

weight. 

Why did we only choose this "simple" OS measure in all the comparisons ? 

V.2.2. The choice of one strong "simde" OS measure 

We have seen in Egghe and Michel (2002) how to construct 10 strong "simple" OS 

measures, derived from the 5 classical ones, by using an exponential or a linear weight. For 

example, the strong "simple" OS measure derived from Jaccard with an exponential weight 

is : 



with 

where m= IC 1 ,  m'= I C'I and q=max(m,mf).  

Strong "simple" OS measures derived from Jaccard, N measure, Dice, Cosine and 0, are 

called J:, N:, D:, COS:, 0 respectively when they have an exponential weight. Weak 
20 

"simple" OS measure derived from Recall with an exponential weight is called bP. Strong 

"simple" OS measures derived from Jaccard, N measure, Dice, Cosine and 0, are called 

Jd, N:, D:, COS;, 0' and R,,' respectively when they have a linear weight. 
2o 

We briefly repeat some results of Egghe and Michel(2002). 

We proved that 

J: = DOP and J: = D: 

After experimentation we have seen that : 

J: = Cos: = bP and J: = Cosd = R,,' 

By considering that J+Cos+R+D, one of the conclusions of the experimentation was that the 

weight function suppresses the particularity of classical indicators. So all exponential (resp. 

linear) "simple" OS measures are sensibly similar to J: (resp. J:). Because the exponential 

weight cp, (equation (57)) is of the same nature than the concrete membership function cp 

chosen in this paper (equation (34)), we choose J:. TO simplify notations, we call it Jo in 

the sequel. Similarly we note Cos,, No, Dice,, 0 , R,,, Po and 0, for the "simple" OS 
20 0 

measures J:, COS:, N:, Dice:, o:, ROP, P: and 0:. So we compare all strong and 
0 0 

weak measures considered in a classical and in a "fuzzy" way with J,. 



For each of the three profiles and for each of the 600 queries, we made similarity 

computations as explained in Fig. 2. We draw curves and group them in several ways in 

order to make comparisons. Firstly, we group the measure by construction in order to make 

appear a possible general tendency, that is, for each profile, we compare in the same figure 

all the classical strong measures (i.e. N, D, J,  0,, Cos) and in another one all the strong 

fuzzy OS measures (i.e. N,, D,, J,, 0 , Cos,). Secondly, we group measures according 
2, 

the native indicator considered : Jaccard's one, N measure's one, Dice's one . . . in order to 

see if the type of construction has an influence. 

V.3. Results 

V.3.1. Com~arison of strong measures by construction 

Classical measures N, D, J, 0, Cos are presented together in Fig. 3 for profile TI ,  in Fig. 

5 for profile T2 and in Fig. 7 for profile T3. In order to make the curves readable, queries 

on the X-axis are ranked by increasing Js. Similarly, measures N,, D,, J,, 0 , Cos, are 
2, 

presented together in Fig. 4 for profile T1, in Fig. 6 for profile T2 and in Fig. 8 for profile 

T3. Queries on the X-axis are ranked by increasing J, s. Queries' rank in figures make 

only comparisons possible between curves drawed on the same figure and not those 

coming from different figures. 

I Queries' number ranked aceording to J gmwing 

Fig. 3 



1 

0,s 

P 0,2 
5 0.4 

0 
N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - , ~  m - % - o w r z f Z E  

N L D N N l C l  

QUCrles' number ranked accowlng to Jf growlng 

Fig. 4 

Fig. 5 
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I Q~erles'nuni7er ranked by Increasing J's 

Fig. 7 

I Qusrler' number ranked by lncrearlng Jlr 

Fig. 8 

We can notice that measures have specific values due to the different normalization 

functions llrz (see Equation (14)) but share the same shape regarding the profile. Indeed, we 

can see a J-shape curve for profile T1 (Figs. 3, 4), an inverse J-shape curve for profile T2 

(Figs. 5, 6 )  and an S-shape curve for profile T3 (Figs. 7, 8). 

Moreover, we can see for most values that measures are ranked as Js0,sDsNsCos in the 

classical case and JFs O,psD,sNFsCosF in the fuzzy case. Let us remember that, in the 

strong case (Egghe and Michel (2002)) we had Jo=Do~Cos,. So we can say that fuzzy OS 

measures are more sensitive than the "simple" OS one because they respect the natural 

properties of classical measures i.e. the normalization function 6,. 



3 1 

Let us compare now each strong "fuzzy" OS measure with its classical correspondent and 

with the strong "simple" OS measure J,. 

V.3.2. Com~arison of strong measures grou~ed bv native indicator 

In the five following figures, curves of measures computed in the T1 profile case are 

grouped according to there native indicator. Indeed, curves of J, J, and J, are presented 

together in Fig. 9, curves of N,  N, and J, (regarding experimentation results of Egghe and 

Michel (2002) we suppose that Nodo) are presented in Fig. 10, curves of D, D, and J, 

(indeed Do= J,) are presented in Fig 11, curves of 0,, 0 and J, (as before, se suppose that 
2, 

0 =J,) are presented in Fig. 12 and curves of Cos, Cos, and J, (indeed Cos,=J,) are 
20 

presented in Fig. 13. In all figures, queries numbers are ranked by increasing J,. So Figs. 

3,  4 and 9 to 13 have the same rank for queries and can be compared together. 

In annexes, the same curves, computed for profiles T2 (Figs. A l ,  A2, A3, A4 and AS) and 

T3 (Figs. A6, A7, A8, A9, AlO), are presented. 

I Queries' number ranked by lncreaslng JPs 

Fig. 9 
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Fig. 10 
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Fig. 11 

Queries' number ranked by lncreaslng JFs I 
Fig. 12 



Queries' number ranked by increasing Jrr 

Fig. 13 

The shape of the curve of Fig. 4 is naturally noticed on each figure in the "fuzzy" case (i.e. 

for J,, N,, D,,O and Cos,). On the contrary, J, N, D, 0,, Cos and Jo do not have a 
2, 

regular shape. Indeed, we see that the classical curves and "simple" OS curves oscillate 

strongly around the fuzzy OS one. The same observations can be made by looking on 

figures relating to profile T2 ( Figs. A1-A5) and T3 (Figs. A6-A10). So, we can say that 

"fuzzy" OS, "simple" OS and classical strong measures are really different. 

Let us observe now the fundamental characteristics, i.e. characteristics noticed for the 3 

profiles. We begin comparisons with the 3 measures J, J, and Jo computed for the profile 

TI ,  T2 and T3. They are presented in Figs. 9, 14 and 15 respectively. In the sequel we will 

see whether conclusions are extensible to other measures than the one derived from J. 



I Queries' number ranked by increasing Jfs  

Fig. 14 

I Querler' number tanked by lncreaslng Jfs I 

Fig. 15 

The J, curve is always very regular ; indeed queries are ranked according to increasing J,s. 

The amplitude of the oscillations of J, and J curves are really different depending on the 

profile. Indeed they are most of time very small in T1 and T2 and larger in T3. 

Nevertheless, we do not think that there is a characteristic of the profile but rather a 

characteristic depending on the J,'s distribution function. Indeed, let us define 4 zones : 



- Zone 1 : J, tends towards 0 

- Zone 2 : J, takes variable values from 0 to 1 

- Zone 3 : J, tends towards 1 

- Zone 4 : J, is equal to 1 

Vertical lines in Fig. 15 make zone 2, zone 3 and zone 4 visible ; there is no zone 1 in this 

case. We let the reader do the same in Fig. 9 (zone 1 and 2 are noticable) and Fig. 14 (zone 

2, 3 and 4 are noticable). 

In zone 1 and 3, amplitude of oscillations of J, and J are really small and no oscillation is 

observed in zone 4. J, values usually are between J, and J. In a more precise way in zone 1 

we observe most of time that the 3 type of values are ranked as J>J,>J, and on the 

contrary in zone 3 they are ranked as J < J, < J,, the permutation being effective in zone 2 

(see Fig. 15). This observation is really interesting if we take into account the fact that the 

number of common documents is the first similarity criterion in the classical case and the 

rank of presentation of common documents is the one in the strong "simple" OS case. So 

this observation makes us believe that J, takes into account the criteria of rank and number 

of common documents in a more precise and representative way than do J and J,. 

This observation is noticeable also in the figures presented in annexes. So we can say in a 

general way that fuzzy OS measures are more precise and representative than classical 

and simple OS ones on criteria of rank and number of common documents. 

Let us observe now curves of weak measures : Recall, Precision and 0, measures. 

V.3.3. General com~arison of weak measures bv construction 

In the six following figures we can see curves of R, P and 0, computed for profile T1 in 

Fig. 16, for profile T2 in Fig. 17 and for profile T3 in Fig. 18. Curves of R,, P, and 0 

are presented for profile T1 in Fig. 19, for profile T2 in Fig. 21 and for profile T3 in Fig. 

22. 
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Fig. 21 



We cannot notice any regularity linked with profile or measures. P and 0, oscillate wildly 

around R. P, and 0 do the same around R,. 
1, 

Previous studies have shown that, often, recall and precision vary in an inverse proportional 

way (see Fig. 22 or Fig. 23). It is not true in our case. Indeed we give curves (recall, 

precision) for each profile in annexes (Figs. All-A16) and none of them is like Fig. 22 or 

Fig. 23. 

Fig. 22 Fig. 23 

This phenomenon is explained by the context of the experimentation. Indeed, recall and 

precision are usually computed in a collection test context. It is not the case in our 

experimentation where precision is calculated by taking the answers without filtering (i.e. 

the answer given by profile TO) as set of "retrieved documents" (corresponding to A in 

Equation (8) and to C in Equation (49)) and recall is calculated by taking the answers with 

filtering as set of "relevant documents" (corresponding to B in Equation (7) and to C' in 

Equation (48)). The fact that C' and B are not real sets of relevant documents in a semantic 

sense (regarding for example experts' judgement) is a source of biases and explain partially 

why we do not refind the shape of curves shown in Fig. 22 or Fig. 23. We have no 

conclusion by comparing R with P and R, with P,. 

Moreover we can notice that P is very similar to 0, and P, is very similar to 0 This 
1, ' 

particularity cannot be seen as a characteristic of P and 0, because of the biases induced by 

data of experimentation. Indeed, if we place ourselves in the fuzzy case, C corresponds to 

answers linked with the neutral profile TO and C' to answers obtained by the filtering 

process of profiles T1, T2 or T3. So in most of the cases we have 1 C I > I C' 1 ,  which means 
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that I C' I =min( I C I , I C' I ) and so P,= 0 Because of the experimentation biases, we are 
1, ' 

not able to give any conclusions about weak fuzzy OS measures construction. 

Nevertheless, comparisons of R with R, and R,, ; P with P, and R,,, and finally 0, with 0 
1, 

and R,, are possible by observing natural characteristics of measures. (The choice R,, in the 

P or 0, case is justified by conclusion of Egghe and Michel (2002). Indeed, we suppose 

that Po=& and 0 =R,,. 
'0 

V.3.4. Comvarison of weak measures erouved by native indicator 

Curves of measures R and R, and R,, are presented in Figs. 24, 25, 26 (for the profiles TI ,  

T2 and T3 respectively). Queries are presented by increasing R, s. Curves of measures P 

and P, are presented in Figs. 27, 28, 29 (for the profiles TI ,  T2 and T3 respectively). 

Queries are presented by increasing P, s. Curves of measures 0, and 0, are presented in 
B 

Figs. 30, 31, 32 (for the profiles TI ,  T2 and T3 respectively). Queries are presented by 

increasing 0, s. 
F 

In general, curves of R, R, and R, have the same characteristics as the strong measures 

presented before. Zones 1, 2, 3, 4, noticed in Figs. 9, 14, 15 are present in Figs. 24, 25, 

26. 

On the contrary, measures P and 0, have not the characteristics of strong measures. Indeed, 

oscillations of P and R,, around P, are larger and more irregular than the ones of R and R,, 

around R,. Observation is the same with measure 0 , .  
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V.4. Conclusion 

Experimentation analyzes the characteristics of fuzzy OS measures by comparing them to 

classical measures and "simple" OS one. Comparisons between all the classical and all the 

fuzzy OS measures (i.e. comparisons by construction) are made to see general tendencies. 

We observe that, in the strong measures case, general shape of curves are conserved 

varying the profile, so the fuzzy process is stable and representative of the profile or of the 

IR-system used. More precisely, if we look on the values, we notice that the natural 

properties of classical strong measures, defined by the normalization function qz,  are lost in 

the "simple" OS case (conclusion of Egghe and Michel (2002)) but conserved in the fuzzy 

case. Indeed, J<O,<D<N<Cos in the classical case, .IF< 0 ID,<N,~COS, in the fuzzy case, 
2, 

but J,=D,=Cos, in the "simple" OS case. So the strong "fuzzy" OS measures are more 

sensitive than the strong "simple" OS one. 

Comparisons of classical and weak fuzzy OS measures are not valid for two different 

reasons. Firstly, in the analysis of recall and precision, we attempted to find a usual 

regularity but we did not observe any for R and P or for R, and P,. We suppose that this 

"anomaly" is a bias of the experimentation. Indeed, recall and precision regularities are 

observed for collection test evaluations, which is not our context. Secondly, in the analysis 

of precision and O,, we have showed that, for most values, P,= 0 and P=O,, which is 

not normal and is due to the experimentation context. So, to give pertinent conclusions on 

the general tendency of weak fuzzy OS measures we need to work on a real collection test 

evaluation context. 

In the second step, we group measures according the native indicator considered, in order 

to see if the type of construction has an influence on the measure or not. Theses 

comparisons show that, for the five strong measures and the three weak ones, fuzzy OS 

values are most of the time between "simple" OS values and classical values. Considering 

that "simple" OS measures are principally depending on the rank of common documents 

and classical measures are only depending on the number of common documents, we can 

believe that, strong (resp. weak) fuzzy OS measures are more precise and representative on 



the two criteria of rank and number of common documents than classical and "simple" OS 

strong (resp. weak) measures. 

Finally, we can say that strong fuzzy OS measures seem to be better than classical and 

"simple" OS strong ones : they are stable, more precise and more representative. In the 

weak case, we must be more prudent. We have the conviction that the preceding conclusion 

can be extended but we cannot confirm this before having made complementary tests in a 

real collection test evaluation context. 
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