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Abstract 

Relative concentration theory studies the degree of inequality between two vectors 

(a,,. . . ,aN) and (a,, . . . ,aN). It extends concentration theory in the sense that, in the latter 
1 1 

theory, one of the above vectors is (- ,..., -) (N coordinates). 
N N 

When studying relative concentration one can consider the vectors (a,, . . . ,aN) and (a,,  . . . ,aN) 

as interchangeable (equivalent) or not. In the former case this means that the relative 

concentration of (a,, . . . ,aN) versus (a,,. . . ,aN) is the same as the relative concentration of 

(a  ,,..., a,) versus (a ,,..., a,). We deal here with a symmetric theory of relative 

concentration. In the other case one wants to consider (a,, . . . ,a,) as having a different role 
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as ( a , ,  ...,a,) and hence the results can be different when interchanging the vectors. This 

leads to an asymmetric theory of relative concentration. 

In this paper we elaborate both models. As they extend concentration theory, both models 

use the Lorenz order and Lorenz curves. 

For each theory we present good measures of relative concentration and give applications of 

each model. 

I. Introduction, 

Classical concentration theory deals with a vector (x,, ..., x,) of numbers xi. In most cases 

xizO for i =  1 ,. . . ,N. Concentration theory is a theory of how to measure inequality between 

the numbers x,, ..., x,. It originates from econometrics where it was used to measure the 

inequality of wealth in a population (a social group, a country, ...). One of the earliest 

concentration measures is the so-called Gini index, Gini (1909), later re-invented by Pratt 

(1977) in informetrics - see Carpenter (1979). Concentration theory has since then been 

studied in the context of informetric problems - see Egghe and Rousseau (1990a, 1990b, 

1991) and Rousseau (1992). 

By its very definition, studying inequality (or concentration) of a vector (x,, ..., x,) is 

comparing its relative scores (a,, . . . ,aN), where 

1 1 with the vector of equality (-, ..., -) (N coordinates). In the above publications this is 
N N 

done by constructing the so-called Lorenz curve of the vector (x,, . . .,xN) or (a,,. . .,a,), 

namely by connecting in the plane the points (0,O) and 



3 

for all i= 1 ,. . . ,N (note that for i=N, (2) becomes (1,l)). Here it is understood that the ais 

are arranged monotonically, either increasing or decreasing (yielding two equivalent 

models). In this paper we will restrict ourselves to decreasing orders. In this case, a Lorenz 

curve looks like the one in Fig. 1. 

Fig. 1 Example of a Lorenz curve (N=4) 

It can be shown (but it is also intuitively appealing) that, if we have two vectors 

X=(x ,,..., x,) and Y =(y ,,..., y,) such that the Lorenz curve of X is below the one of Y, 

that the vector Y represents a more concentrated situation. If this is the case we write 

X---<Y. It is then clear that a good concentration measure must respect this order. 

Therefore we define 

f : WN-R 

X = (x, , . . . , x,) - f(X) = f(x, , . . . , x,) 

to be a good concentration measure if X--- < Y and XtY imply f(X) < f(Y). Many examples 

of good concentration measures can be given. We restrict ourselves to Pratt's measure (or 



the Gini index), the coefficient of variation and Theil's measure. To start with the 

coefficient of variation V is just 

where o is the standard deviation and is the average of X=(x,, ..., x,). When we rank X 

in decreasing order, we have that Pratt's measure is given by 

where 

Gini's index is then 

Note that G is twice the area between the Lorenz curve of X and the diagonal of the unit 

square connecting (0,O) and (1,1), i.e. the Lorenz curve of the vector of equality 
1 1 

(- , . . . , -). Equation (6) in fact shows that Pratt re-invented G, as explained in Carpenter 
N N 

(1979). 

Finally, Theil's measure is given by (Theil (1967)) 

1 N X. Th = - -l log 
N i=l  N 

( ;) 
The problem that we will address in this paper is extending concentration theory (or theory 

of inequality) to the case of comparing two vectors X=(x,, . . . ,x,) and Y = (y,, . . . ,y,), in the 

sense that we want to develop measures of inequality between these vectors. The intuitive 

idea is that - to mention only two extreme cases - if X=Y,  the measure should be zero 



while if, say X=(1,0) and Y=(O,l), the measure of inequality should be maximal. We will 

go into this further on. Let us first of all indicate that such a theory of relative concentration 

- besides its mathematical challenge - is needed in practise, as will be explained now. 

Take the case of information retrieval (IR) where documents and queries are represented by 

vectors of the type X=(xl, ..., x,). Here xi is the weight of key word i in this document or 

query - see e.g. Salton and Mc Gill (1987). If we have a measure of relative concentration 

we are able to give values to the relative similarity (i.e. the opposite of inequality, 

concentration or dissimilarity) of two documents or of two queries or, most importantly, 

between a document and a query. Documents with high similarity values can be retrieved 

based on a threshold that can be put on these values. This method has been applied in Egghe 

(1990). Certainly, when comparing two documents dl and d, or two queries q, and Q, their 

roles are symmetrical in the sense that the relative inequality between dl and d, is the same 

as the relative inequality between d, and dl. The same goes for q, and Q. Hence here we 

need symmetric relative concentration theory. In the case of comparison of a query q with a 

document d one could be inclined to say that now there is asymmetry since we are dealing 

with different objects. Then asymmetric relative concentration theory is needed. But in the 

light of a dual vision between queries and documents (see Egghe and Rousseau (1997)) one 

could also argue for applying symmetrical measures. 

Another application is given in Viles and French (1999). The authors want to find a 

measure of content locality in distributed document collections or in digital libraries. Digital 

libraries are here considered as a set of autonomous, distinct document collections (so-called 

sites) that cooperate to support IR. The relative sizes of these sites constitute a first vector 

X. Next, one is interested in how a certain topic is distributed over these sites. This gives a 

second vector Y and topic locality is nothing else than the relative concentration between X 

and Y. Some remarks are in order. First of all, since one is interested in the topic locality, 

it is our feeling that an asymmetric measure of relative concentration is needed. Indeed, we 

do not compare different topics but all topics are compared with X, the distribution of the 

sizes of the sites. We will go into this further on but it is our feeling that Viles and French 

attempt a symmetric approach. But their measure (see later) is not fully explained. Indeed, 



only fragmentary properties are described and proofs are hardly given and only in the case 

that all the sites have the same size. In view of the above they only deal with concentration, 

but even this (well-known) theory is not used. We will discuss this further on, once we have 

established our relative concentration models. 

In the next section we will introduce a theory of symmetric relative concentration. We will 

include measures that can be used in this connection. The measure used in Viles and French 

(1999) appears here (the measure of relative variation) but also the relative Pratt measure as 

was introduced already in Egghe (1988), improving Pratt's own relative concentration 

measure. 

The third section is devoted to the study of asymmetric relative concentration. Here we use 

the notion of weighted concentration (see Rousseau (1992)) which is interpreted (explained) 

as overlap concentration (overlap in the sense of collection overlap). 

The last section is devoted to applications of these measures. It is shown that the classical 

cosine formula is not a good measure of symmetric relative concentration. We also include 

a discussion of the measures that are needed in Viles and French (1999) to describe content 

locality, hereby giving more fundamental support for the experiments that are done in that 

paper. We argue that Viles and French better use asymmetric relative concentration 

measures instead of the symmetric one that is used now. 

11. Spm metr -m 

Let us consider two vectors X=(x,, ..., x,) and Y=(y,, ...,y,) with NEN fixed. Here the xis 

and yis are real numbers but in practical applications these numbers will be positive. Denote 

by 



the relative scores. Vectors of relative scores are denoted as A, and A, respectively. If we 

want to compare X and Y in a symmetric way we will, in analogy with concentration 

theory, work with the vectors A, and A, and study the difference Ax-Ay=(ai-ai)i=l,,,.,N. 

1BJ. Symmetric r e r  i 

Definition II.1J : We say that f, is a good measure of symmetric relative concentration i f f  

is symmetric and if for any two situations (X,Y) and (X1,Y') such that 

Ax - A, ---< A,. - A,. 

and such that A, - A, + A,. - A,., we have that 

f,(X,Y) < f,(X',Yf) 

Here --- < is the Lorenz order, meaning that the Lorenz curve of A, - A, is never above the 

Lorenz curve of A,. - A,.. It is trivial to see that this is equivalent with (cf.(2)) 

I: 
, . 

al-aI  5 a l p ,  
, , , , 

(a, +%)-(al +a2) < (a, +a2)-(a 1 +ad 



Here we have ordered A,-A, and A,.-A,, decreasingly as assumed in this paper (we kept 

the notation for the indices, however, for reasons of simplicity). 

Note that from definition 11.1.1 it already follows that f, attains its smallest value in case 

X=Y (or, more generally, in case Ax=A,) and that f, attains its largest value in cases 

where Ax=(Sd,=l,.. ,, and AY=(6jk)k=I....,N where i+j (i.e. X and Y differ maximally). This 

is readily seen by drawing the Lorenz curves. Here 6 denotes the Kronecker delta which 

takes the value 1 if the indices are equal and 0 if they are unequal. 

Erpposition 11.1.2 : For any two situations (X,Y) and (X',Y1) we have that 

iff 

A, - A, --- < A,. - A,. (14) 

b f  : By interchanging the roles of X and Y it suffices to prove only one of these 

implications. Suppose (1 1). This is equivalent with 

N - l  N - l  N-I  , N-I , 

aj 2 C aj-C a j  
j=1  j= l  

Since 

we have that (15) is equivalent with 



Now since (%-ai); , decreases, the same is true for (a,.,+, - a,,,, )i =,,.,., , . This together 

with (18) proves (14). 0 

Corollarv 11.1.3 : For any pair of vectors (X,Y), the Lorenz curve of A,-A, coincides with 
1 the reflection of A,-A, with respect to the vertical line x=-. 
2 

1 b f  : Abscissae have the form L ,  i =  1 ,. . . ,N. Hence the point that is symmetrical to - 
N 2 

i . N-i w.r.t. - IS -. The value of the Lorenz curve of A,-A, in is & a , - k a l .  According 
N N N 1 -1  1-1 

N-i . to the above proof, the value of the Lorenz curve of A,-A, in- is (see (18)) 
N 

1 again using (16). So the Lorenz curves of A,-A, and of A,-A, are symmetric w.r.t. x=- 
2 

in the points i, i=1, ..., N. Hence connecting these points yields symmetric Lorenz 
N 

curves.0 



The above result can be illustrated as follows. Let X be such that A,=(!, 1 1) and Y such 
1 1 3  3 1  1  

2 4 ' 4  
that A,=(-, -, -). Then A,-A,=(-, -, --) and A,-A -( 

8 8 4  8 8  2 
) (decreasing order). "- Z' -8' 8 

The h renz  curves are shown in Fig. 2 

Fig. 2 Lorenz curves of A,-A, (*) and A,-A,("). 

Note that proposition 11.1.2 is the reason why we want to have symmetric functions f, as 

good measures of symmetric relative concentration. 

The following results show that if we restrict our relative concentration theory to the case 

where one vector is constant, we obtain concentration theory. 

. . 
osltlon 11.1.4 : 

1 1  1. Let A,=A,.=(- ,..., -) (N coordinates) and AY =(L-&~ ,.., N, AY=( C L ~ ) ~ = ~  ,,,,, N. N N We 

have 

iff Y --- < Y' 
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1 1  2. Let Ay=Ay=(- ,..., -) (N coordinates) and AX=(a,)i=I ,,,,, ,, Ax.=(ai )i=l ,,,,, ,. 
N N 

We 

have 

A, - A, --- < AX< - A,, 

iff X --- < XI. 

W : Upon switching the roles of X and Y and using proposition 11.1.2 it suffices to 

prove only the second assertion. Now 

A, - A, ---< A,. - A .  

iff 

iff (decreasing order) 

for all i=1, ..., N-1. This is equivalent with 

1 for a i = l . . , N - 1  Now (aJi=l ,.., , and ,..., , decrease iff (a,--)i,l ,..., , and 
, 1 N (ai --). ,=,,, , , ,  , decrease. Hence A,-A, ---< A,.-A,, is equivalent with X --- < X'. 

N 

C h d a r y  11.1.6 : if f, is a good measure of symmetric relative concentration then f,l,=f is 

a good measure of concentration. Here f,(, denotes the restriction off,  to the set D, where 

D is the set 



or the set 

Ilrnnf : This follows readily from the above proposition and the definitions of good 

measures of symmetric relative concentration and of concentration. 

As is the case in concentration theory, the above theory can only have value if there exist 

concrete measures f, satisfying the above properties. This will be examined in the next 

subsection. 

In Pratt (1977) there was an attempt to define a measure of relative concentration. The 

formula is 

where A,=(aJi ,,,,,,, and A,=(aJi ,,,,,,, , as above. It was already noted in Egghe (1988) 

that this measure is not extreme in the extreme situations (i.e. of relatively equal or 

relatively opposite vectors. We also see immediately that the function in (20) is not even, a 

necessity for good symmetric relative concentration measures. The remedy for (20) is given 

in Egghe (1988) (we multiply by 2 for reasons which will become clear later on) : 

2 N 

C,(X,Y) = - max cp(i)(ai-ai) , 
N-l qt-n, i=l  

where n, denotes the set of all permutations of {I ,.. . ,N). 



However, at the time of the writing of Egghe (1988) we did not have the requirements 

developed in the previous subsection : in Egghe (1988) we only made sure that C, is 

extreme in the extreme cases. This is however implied by definition 11.1.1, which we will 

check now. 

Proposition 11.2.1 : C, is a good measure of symmetric relative concentration. 

b f  : First we note that C, is symmetric. Indeed, let+mN be such that 

Now 

2 N 

Cr(Y,X) 2 - C 4(i)(ai-ai) 
N-1 i = l  

for any EmN. This is in particular the case for 

for every i ~ { l ,  ..., N). Note that [EX,. Now 

N N 

Since z ai - x ai = 0. Hence 
i= l  i = l  



The other inequality follows by reversing the roles of X and Y. Hence C, is symmetric. 

This result was already proved in Egghe (1988). All we have to do now is to verify if 

A, - A, ---< A,. - A,. (22) 

and if they are unequal, we have 

Suppose we have arranged A,-A, and A,.-A,, in decreasing order, as required for the 

Lorenz curves. Then (21) reduces to 

2 N  

C,(X,Y) = - C @-i+l)(ai-ai) 
N-1 i,l 

2 N  , , 
C,(X',Yr) = - C w-i+l) (a i -a  ,) 

N-1 i;l 

Now (22) is equivalent with 

N - l  N - l  N-I  , N - l  , 
C a i  - Cai 5 C a i  - Cai 
i=l  i= l  i = l  i = l  

If we add all these lines we get 
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(< since at least one of the inequalities is strict, since A,-Ay+A,.-A,.) This proves (23). 

From this result we know that C,ID (D as in corollary 11.1.6) is a good measure of 

concentration. This can indeed be seen directly from the next proposition. 

m o s i t i o n  11.2.2 : C,ID = C = Pratt's measure of concentration. 

&f : By the fact that C, is a good measure of symmetric relative concentration it suffice 

to prove this for one set D from corollary 11.1.6.. Let 

Then 

if AY=(ai)i=1 ,.., N is arranged decreasingly. It now follows that 

the classical Pratt measure of Y (cf. Egghe and Rousseau (1990a,b, 1991), Rousseau 

(1992)). For the other set D we find 

N-l As G = ---C (formula (6)) is Gini's index, it is clear that 
N 



is a good measure of symmetric relative concentration too and we also have that, in the 

notation of proposition 11.2.2, G,ID=G. 

In absolute concentration theory, the coefficient of variation 

where a and p is the standard deviation and the mean of the vector X, is one of the most 

important concentration measures. We refer to Egghe and Rousseau (1991) for a study of its 

many good properties. For X=(x,,. . . , x N ) ,  the square of (4) reads 

This result gives a clear hint how to construct a possibly good measure of symmetric 
1 1  relative concentration : replace the constant vector (-, ...,- ) by a second one Ay=(~ i ) i , l , , , , ,N .  

N N 
We. therefore define 

We have the following result 

Pro~osition 11.2.3 : V: (and hence also V,) is a good measure of symmetric relative 

concentration. 
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m f  : It is clear that V: is symmetric. Suppose now that we have two situations (X,Y) and 

(Xr,Y') such that 

A, - A, --- < A,. - A,. (27) 

and that these vectors are unequal 

The required inequality 

follows from the fact that any function of the form 

with f strictly convex satisfies Y ---<Y' =. F(Y) 5 F(Yf) ; see Hardy, Littlewood and 

Polya (1988), p. 89. 0 

We leave it open to construct other good measures of symmetric relative concentration (e.g. 

based on existing good concentration measures). 

Rmuk : From the above it seems to be a good device - in order to construct new measures 

of symmetric relative concentration - one starts from a good concentration measure, tries to 
1 1 rewrite it so that it contains factors or terms of the form a,-- in it and then replace - by 

N N 
ai. This is a "rule of thumb" which might be useful but in any case, the final result must still 

be investigated and a mathematical proof that the measure is a good one (of symmetric 

relative concentration) must still be given. 

We will now study the asymmetric case. 



111. Asymmetric relative conc- 

1 Introduction : Overlw 

As in the symmetric case we want to compare two vectors but one of these vectors is fixed, 

a kind of reference vector. An example could be obtained by considering a fixed database 

consisting of N fixed parts. Their relative sizes yield this reference vector. Then we can fix 

an arbitrary topic and study how many documents on this topic are retrieved from each of 

these parts. Their relative sizes then form the (variable - according to the different topics) 

second vector. 

Because of these conceptual differences we will denote the reference vector of the relative 

values by W=(w,, ..., w,) and, as usual, the variable vector by X, resulting in the vector of 

relative values A, = (a,, . . . ,a,). 

By asymmetric relative concentration, we mean the concentration study of the QY&Q 

vector of A, with respect to W. Overlap is a well-known informetric topic but is not so easy 

to study. However its definition is easy. It originates from overlap of collections (libraries,. 

documentary systems, and so on). Let us consider two collections, symbolized by the sets A 

and B. Overlap of B with respect to A is the conditional probability of B, given A : 

P(B (A). Conditional probabilities are calculated as follows : 

where P(AnB) denotes the fraction of documents that are in A and B and where this number 

is divided by the fraction of documents that are in A. We refer to Fig. 3 for a visualization 

of this. 

Note that overlap is asymmetrical : P(AIB)+P(BIA). Fig. 4 illustrates this : here P(AIB)=O 

and P(BIA)=l. 



Fig. 3 Overlap of B w.r.t. A 

Fig. 4 P(A I B)=O and P(B I A) = l 

Translated into our framework we hence look, for every "location" i, to 3, in other words, 
wi 

the tangent of the angle Pi in Fig. 5. We assume that all wi>O (it is pointless to consider 

empty parts when studying overlap !). 

Fig. 5 Graphical illustration of overlap. 
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It is now clear how asymmetric relative concentration theory must be defined : Fig. 5 is one 

element in the cumulative weighted Lorenz curve that must be constructed using the 
N 

normalized weight vector W=(w,, ..., w,) with wi = 1. 
i=l  

Based on the observations in the previous subsection we have the following definitions. 

Definition 111.2.1 : The Lorenz curve of a vector X with respect to the normalized weight 

vector W is the broken line connecting (0,O) with the points 

Here A, = (a,, . . . ,a,) as usual and we have ordered the coordinates such that 

as usual. Such a curve is also called a weighted Lorenz curve. 

1 1  
An illustration of a weighted Lorenz curve is given in Fig. 6. Note that if W= (-, ...,-) (N 

N N 
coordinates) we obtain the classical Lorenz curves. 



Fig. 6 Illustration of a weighted Lorenz curve. 

Let X and X' be two vectors of N coordinates and denote, as usual, A,=(a,, ..., a,), 
A,.= (a ,,..., a,). The weights W=(w ,,..., w,) are fixed. We say that X --- < X' if the 

weighted Lorenz curve of X is never above the one of X'. We are now in a position to 

define what are good meausres of asymmetric relative concentration. In view of the above 

they also measure overlap concentration or overlap inequality. 

Definition 111.2.2 : Let g, : WN - W 
x - PAX) 

be any function. We say that g, is a good measure of asymmetric relative concentration (or 

a good measure of overlap concentration) if, for any two vectors X, X' such that X ---< 
Xi and X+X' we have that g,(X) <g,(Xf). 



It already follows from this definition that g, must attain its smallest value in case A y W  

and its highest value (within a given W) for the vector A,=(1,0, ..., 0) where w, is the 

smallest weight. 

It is also trivial that, if W =  -,...,- (N coordinates) our theory of asymmetric relative [ A  A] 
concentration reduces to the classical theory of concentration. 

Note 111.2.3 : It is not the purpose of interchanging the roles of A, and W. It can even be 

impossible if some 4s are zero (which is allowed). If we do interchange these roles we are 

in fact interested in symmetrical results but some measures of asymmetric relative 

concentration (see further) might give different values. 

111.3 Measures of a s p  

Measures of asymmetric relative concentration are also known as 'weighted' concentration 

measures (Patil and Taillie (1982), Theil (1967), Rousseau (1992)). If one starts with a 

concentration measure that satisfies the cell replication axiom (Dalton (1920), Rousseau 

(1992)) or with the opposite of an eveness measure (Nijssen et al. (1998)) then a rule of 
1 thumb to obtain a measure for asymmetric relative concentration is to replace - by wi. 
N 

This leads to the following measures that all respect the partial order imposed by weighted 

Lorenz curves. 

1. The asymmetric (or weighted) Theil measure : 

2. The asymmetric (or weighted) squared coefficient of variation : 

Another form of the weighted squared coefficient of variation is : 



3. The asymmetric (or weighted) Gini index : 

Its meaning is the same as that of the (unweighted) Gini index, namely twice the area 

between the Lorenz curve and the diagonal. This index has been used in studies of the 

localization of industry, under the name of 'locational Gini coefficients' (Krugman (1991)). 

Note that, if we compare V: (formula (34)) with V: (formula (26)), we see that V: is a 

global measure while V: is an average measure, in the sense of Egghe and Rousseau 

(1996). Indeed (34) rewrites as 

N 

while (26) rewrites (since C wi= l )  
i = L  

where we replace here ai by wi for comparison reasons. From Egghe and Rousseau (1996) 

we know that V: can be >, < or = V: according to the sign of the slope r of the 

regression line of the cloud of points 

We have v : > v : - r < 0  

v:< V ; - ~ > O  
2 2 V , =  V r o r = O .  



This difference between V, and V, clearly underlines the difference between symmetric and 

asymmetric theory of relative concentration. 

That the above measures are good measures of asymmetric relative concentration is 

implicite in Theil (1967) and Patil and Taillie (1982) but their proofs are unclear. We 

present now a new and self-contained proof. 

Let g, denote any of the measures Th,, V: (V,) or G,. We first prove a lemma and a 

consequence of this lemma. Then we will state and prove the major result. 

Lemma 111.3.1 : Let g,(X) be the value of g, in X=(x,, ..., x,), where the fixed weight 

vector is given by W=(w,,. . . ,w,), where wj€Q+ (the positive rational numbers), 
n 

j = I , . .  .,N. Denote w =A, n,, dj EN for all j=l , . .  . ,N. Then g,(X) is equal to the 
dl a 

unweighted value of g, for A,=(a,, ..., a,) replaced by the vector consisting of Fj times ', 
N 

where Fj=Pwj (i=l,  ..., N) and P=IIdJ. 
FJ 

1-1 

PraPf : Note first that the latter vector has length P. We will prove the assertion for the 

measures Th,, V: (hence V,) and G ,  separately. 

(i) g, = Th,. 

Th, in the unweighted vector 

F, times F, times 



2 (ii) g, = V, 

V: in the unweighted vector above equals 

(iii) g, = G, 

G, in the unweighted vector above equals 

Corollary 111.3.2 : Let X, W and Y, W' be two weighted systems yielding the same Lorenz 

curves and where the coordinates in W and W' are rational. Then g,(X) = g,(Y). 



Ehmf :The proof follows the lines of the above lemna. Another argument is simply 

applying the above lemna twice and noting that the unweighted version of the measures g, 

are only dependent on the Lorenz curves and not on the number N of divisions of [O, 11. 

Proposition 111.33 : The measures Th,, V: (hence V,) and G, are good measures of 

asymmetric relative concentration. 

b f  : That the above measures (commonly denoted by gJ are good measures for rational 

weight vectors W is clear from the above lemma and the fact that the unweighted versions 

of g, are good measures of concentration (see e.g. Egghe and Rousseau (1990a,b), 

Rousseau (1992)). Let now X=(x, ,..., x,) ---< Xi= (x ,,..., x,), X2X1, where ---< is 
defined via W =(w,, . . . ,w,), where wiclW+ for all i= 1 ,.. . ,N. 

It is then easy to see that vectors Y 2Y' exist and a weight vector W'= (w,, ..., w .), where 

w ;EQ + for i = 1,. . ,N such that Y --- < Y' (here --- < is defined via W') and such that the 

Lorenz curve of Y (via W') is above the one of X (via W) and the Lorenz curve of X' (via 

W) is above the one of Y' (via W'). Let us denote this, shortly, by X --- < Y --- < Y' --- 

< Xi.  Since g, is good for rational weight vectors, we have that g,(Y) < g,(Y1). Let 

6=g,(Y1)-g,(Y)>O. Note that the considered functions above are all continuous on the 

space of all Lorenz curves with distance function (between two Lorenz curves) the 

maximum of the distances between the corresponding points with the same abscissa. It is 

hence easy to construct vectors Z, Z' such that Z --- < Y --- < Y' --- < Z' and such that 
6 6 I g,(~)-g,(X) I < q and I g,(Z')-g,(X') I < q . 

Here all --- < are with respect to an existing W" = (w ,,. ..,w .), w j ~ Q  ' for all j = 1,. . . ,M 

where W" refines W', i.e. the Lorenz curves w.r.t. W' are the same as w.r.t. W" but the 

latter one is "cut" into more pieces. Note that the value of g, is only dependent on the 

Lorenz curve and not on the number of rational pieces, as follows from corollary 111.3.2. 

Hence, the values of g,(Y) and g,(Yf) are unchanged when going from W' to W". 



Consequently, we now have : 

since g,(Y1) <g,(Z1) and g,(Y) >g,(Z), again since g, is good for rational weight vectors. 

This shows that the measures g, are good for all weight vectors. It also follows that g,(X) 

is only dependent on the weighted Lorenz curve and not on the weight vector W itself. 

IV. Applications 

IV.l Indexin? a n d o n  retrieval, 

A very classical model of indexation and of information retrieval (IR) is the vector space, 

model, see e.g. Salton and Mc Gill (1987) or Egghe and Rousseau (1998). Here we have a 

document space DS and a query space QS both being subsets of [0,1IN. Here N is the total 

number of key words used in the system. A document dcDS or a query qeQS is then of the 

form (x,, ..., x,) where xi denotes the degree of importance of key word i in d or q. Most 

classical xi=O (key word i does not appear in d or q) or xi=l  (key word is appearing in d 

or q). 

The degree of similarity between a document d=  (dl,. . . ,dN) and a query q=(ql, . . . ,&) can 

be described via the cosine of the angle between d and q : 



(see the references given above for an explanation). By taking 

we express dissimilarity between d and q (note that since the angle between d and q is 

between 0 and radians, c o ~ ( d ? ~ )  > 0). Studying (38) is equivalent to studying (37), so 
2 

we will study (38) since in this paper everything has been expressed in the context of 

concentration. 

(37) is a very famous measure of similarity between a document and a query, so (38) is 

expected to be a good measure of relative concentration between d and q. It is clear that 

(38) is symmetric. However we can prove the following result. 

. . 
w o n  IV. I .  1 : The function 

is a good measure of symmetric relative concentration. 

k f  : The proof is essentially contained in Egghe (1990) (section 11.2) but in other 

terminology. Therefore we give a direct proof here. Proving that 1 - cos(dAq) is not a 

good measure of symmetric relative concentration only requires a counterexample. A whole 

set of counterexamples is given as follows. Let 

N 
such that M, < - 

2 



N 
such that M, < - 

2 

such that M; < M I ,  and 

such that M; < M,. We assume that all vectors have length N. 

Then it is easy to see that 

and 

1 1 1 ,..., -,o ,... ,,-- ,..., - 
M2 

where there are more 0s in A,.-A,, than in Ad-A, @ut also in this vector, 0 occurs). 

1 L 
The Lorenz curve of A,-A, has the following values in the abscissae-,--, ..., l : 

N N 

The one of A,.-A,, has the following values in the same abscissae 



and the set of abscissae where we have 1 in (39) is a strict subset of the set of abscissae 

where we have 1 in (40). Since M; < MI and M; < M, we see that the Lorenz curve of 

Ad.-A,, is always strictly above the one of AJAq (except in (0,O) and (1,O) where they 

coincide of course). This is readily seen for the sequence 

k in (40). At the last 1 in (40), the corresponding value in (39) is of the form 1 --<I and 
%. 

from the next coordinate on both curves then decrease to zero in a linear way, showmg that 

indeed 

Ad - A, --- < Ad' - A,. (41) 

Furthermore Ad-A, + A,.-A,.. Hence, in order to be a good measure of symmetric relative 

concentration we must have that 

N But it is trivial to see, since MI, M,, M; ,M, < - that cos(dAq) = ~ o s ( d ' ~ q ' )  =0, 
2 

contradicting (42). 

The intuitive idea behind this is that cos(dAq) is insensitive for the degree of broadness of a 

document (or a query). Let us illustrate this by giving some examples (see also Egghe 

(1990)). 

1. d = (1,O ,..., O), q = (0 ,..., 0,l) 

2. d = ( l ,  ..., l ,O) ,q=(O ,..., 0,l)  

3. d = (1 ,..., 1,o ,..., O), q = (0 ,..., O,l, ..., 1) 

where the coordinate of the last 1 in d is smaller than the coordinate of the first 1 in 

'4. 



It is trivial to see that in all these cases, c o ~ ( d i \ ~ )  =0 while d in example 1 is very 

specialized in a wrong topic for q but d in example 2 is a document with a very broad 

scope. So, from IR point of view, although no d matches no q very well, we think that d of 

example 2 has "some" (low) interest w.r.t. q, certainly more than d of example 1. Example 

3 represents a more "real life" example. In a ranked output we would like to see d of 

example 2 to have a smaller rank (i.e. ranked earlier) than d of example 1 and with d of 

example 3 somewhere between them. This is important when thresholds apply to cut off a 

list of documents (e.g. provided by a search engine in WWW). Formulae (37) or (38) are 

not capable of doing this as proved in proposition IV. 1.1. 

We know already that all good measures of symmetric relative concentration (e.g. C,, V,) 

will yield such "fine tuned" rankings. In Egghe (1990) we examined the similarity measure 
c r Dr=l -- (since 05Cr52, we have that O<D,<l) 
2 

proposition IV. 1.2 ( &&& Let 

d = (1 ,..., 1,O ,..., 0) and 
7 

M, 

such that M, s N-M,, then 

Hence D, is sensitive with respect to changes in M, and M,, contrary to 1 - co~(d"~) .  Of 
v, course also V, could be used here (or rather 1 --). We leave it as an open problem (and a 
2 

challenge !) to investigate the retrieval power of these new measures. 



In this subsection we have restricted our attention to the study of the symmetric relative 

concentration of (d,q). In exactly the same way we can study the symmetric relative 

concentration (or rather similarity) of two documents (d,,dJ or two queries (q ,q ), 

Especially the similarity between two documents (d,,d,) is interesting for indexing purposes. 

IV.2 Content localitv. 

In Viles and French (1999), the authors want to study content locality in distributed 

documentary systems, i.e. a set of autonomous distinct document collections (sites). These 

sites form a reference frame with which comparisons are made. This goes as follows. For 

an arbitrary topic one checks how many documents on this topic exist in the different sites. 

Then one compares these relative scores with the relative sizes of these sites. 

When the topic is evenly distributed over the sites, both vectors of relative numbers are 

equal. Content locality wants to measure the opposite : how "different" is the vector of 

relative number of documents in each site from the vector of relative site sizes ? 

In other words the latter vector is the fixed reference vector with which each topic is 

compared. Again in other words, one is interested in the overlap of the topic in the different 

sites. From this it directly follows that Viles and French want to compare these vectors 

from the asymmetric relative concentration point of view. Instead they used a (admittingly 

good) measure of symmetric relative concentration, namely a measure proportional to V,. It 

is indeed easy to see that their measure o, (Viles and French (1999), p. 321) is nothing else 
v 

than 2 as given by formula (26) here. Hence the inequality in topical overlap is not 
" @ .  

measured in the exact way. Our advise is e.g. to use any of the measures (33)-(36), being 
v, good measures of asymmetric relative concentration (and since they used - we even 
fi. 

advise to use V, or 3). Note that in section 111.3 we already remarked the difference 
fi . .  

between V, and V,, underlinmg the different nature of these measures and the fact that one 

measure cannot be used as a substitute for the other. This is another argument to use V, and 

not V, in this connection. 



Finally we want to make a few remarks on the arguments given by Viles and French (1999) 

concerning the quality of their measures 0,. First of all we admit that o, is a good measure 

of symmetric relative concentration. Hence the qualities are simply given by definition 

11.1.1 ; nothing else is needed. The two properties given in Viles and French (1999) 

discussed on p. 321 are not correct properties and, in addition, they are only verified by 

Viles and French in the very special case that all sizes are equal. In our frame work this 

means concentration and hence the results of concentration theory apply (Egghe and 

Rousseau (1990 a,b, 1991), Rousseau (1992)), which are much more general than these two 

properties. 

With this in mind let us discuss these two properties (the text in quotes (") is the assertion 

of Viles and French) 

1. "As fewer (more) sites contain members of some topic t, measured locality should 

increase (decrease)." As said this is only true in case all sites have the same size. 

When this is not the case, measured locality can be very high even if topic t appears 

in every site. This happens if t has (relatively) the most documents in the smallest 

sites. This property is covered by the general definition 11.1.1. 

2. "Given that k sites contain members of t, the more asymmetric the distribution of 

these members, the higher measured locality should be". Again this is only true in 

case all sites have the same size. Assertion 2 only talks about the distribution of the 

topic vector. It is obvious that - for general site sizes - we must make a relative 

comparison between the topic vector and the site vector. Note the term "asymmetric" 

in their assertion 2. 

In short, the only correct way of describing content locality is by applying one of the 

existing good measures of asymmetric relative concentration. 

We have extended the theory of concentration of a vector to the case of relative 

concentration of one vector to another. We found that, for practical applications, there is a 



need for (at least) two models of relative concentration : symmetric and asymmetric relative 

concentration. 

In the first model the measures f, are symmetric : f,(X,Y)=f,(Y,X) for all vectors X and Y. 

The basic requirement for f, to be a good measure of symmetric relative concentration is 

that 

A, - A, --- < A,. - A,. 

(and not equal) implies 

Concrete measures are given : the relative Pratt measure C, and the relative variation 

coefficient V,. It is proved that the cosine matching function has major drawbacks and 

hence cannot be used to measure symmetric relative concentration. 

In the second model a variable vector X is compared with a fixed reference vector W. In 

this theory, measures g, are good measures of asymmetric concentration if 

and X#X' imply g,(X)<g,(X'). Here ---< denotes the weighted Lorenz order (weighted 

by the reference vector W). Concrete measures are given and we show that content locality 

(of Viles and French) is nothing else than measuring asymmetric relative concentration of a 

topic vector with the vector of relative sizes of the sites in documentary systems. 

As an open problem we can ask for the construction of other good measures of symmetric 

or asymmetric relative concentration. The rules of thumb to do so (given in the respective 

sections) should be examined. The Viles and French calculations with their o, should be 

redone, now using any good measure of asymmetric relative concentration. In addition, 



from the IR side, performance analyses should be executed using different good measures 

of symmetric relative concentration, instead of using Salton's cosine formula. 
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