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Abstract

Recent developments in the consumer market have indi-
cated that the average user of a personal computer is likely
to also own a webcam. With the emergence of this new user
group will come a new set of applications, which will re-
quire a user-friendly way to calibrate the position of the
camera with respect to the location of the screen.

This paper presents a fully automatic method to calibrate
a screen-camera setup, using a single moving spherical mir-
ror. Unlike other methods, our algorithm needs no user in-
tervention other then moving around a spherical mirror. In
addition, if the user provides the algorithm with the exact
radius of the sphere in millimeters, the scale of the com-
puted solution is uniquely defined.

1 Introduction

In recent years, certain peripheral devices have become
more and more ubiquitous in home and office environments,
and are regarded by most as an integral part of the personal
computer. One of these devices is a camera, usually in the
form of a webcam. Although webcams are most commonly
used in their role as a video conferencing tool, their use
is not limited to people-to-people communication only. As
the webcam user group will continue to expand, new appli-
cations for this device will begin to emerge. Vision based
user interfaces are a perfect example of an alternative use
for this piece of hardware. Interesting features such as the
user’s eyes, nose, hands or even non-human objects can be
tracked in order to interact with an application [5, 7, 8].

The most common use of a TFT or CRT screen is dis-
playing images to a user. However, this device can also be
used in different contexts, e.g. it is used for environment
matting purposes [2, 13]. Environment matting techniques
compute an approximation of the light transport through-
out a scene, using information from recorded photographs
against known background patterns. Another example of

a different context in which a screen can be used, consists
of its possible function as a controllable light source. By
displaying specific light patterns, and using a camera to
capture the corresponding images of the illuminated scene,
photometric stereo algorithms can be applied in order to
reconstruct the physical scene [12, 15]. This turns a sim-
ple screen-camera setup into a cheap 3D scanning device.
Some work has already been done in this area. Tarini
et al. [14] interpreted the reflected light from patterns dis-
played on a screen, reconstructing perfectly mirroring ob-
jects. Funk and Yang [6] scanned Lambertian objects by
simulating six fixed light sources, one at a time, illuminat-
ing the scene before applying photometric stereo. To fa-
cilitate similar techniques, Clark [3] has proven that uni-
formly colored screen patches can be treated as isolated
light sources at infinity.

In many of the systems described above the position of
the screen with respect to the camera has to be known. This
is either to enable the user’s interaction with certain regions
on the screen, or to provide enough information for recon-
struction algorithms. Unfortunately, in a typical computer
setup, the camera and the screen are not facing each other.
This considerably complicates the calibration process. If
however the camera does observe the screen, calibration
can easily be achieved by filming checkerboard patterns dis-
played by the screen [11]. In a typical setup however, a
mirroring object of some form needs to be introduced.

Funk and Yang [6] determined the screen’s position with
respect to the camera using a flat mirror, partly occluded
by a checkerboard pattern. By placing this in front of the
camera and screen - displaying a calibration pattern as well
- the position of the mirror and the reflected pattern are de-
termined. The real screen coordinates are found by reflect-
ing back the reflected screen pattern over the planar mirror
plane. This technique is theoretically sound, but it comes
with a few practical drawbacks that can introduce unwanted
inaccuracies. First of all, the exact size of the two calibra-
tion patterns has to be measured. Second, the thickness of
the flat calibration pattern has to be known precisely, or has



Figure 1. Sphere localization (reduced form).
A sphere with a known radius is fitted into a
right circular cone. The cone is defined by
the camera position and the contour of the
projected spherical mirror.

to be negligible. Third, when using a black silvered mirror,
the thickness of the translucent part has to be measured, or
a surface mirror has to be used [6].

Tarini et al. [14] use a number of spherical mirrors in-
stead of a planar one. They intersect reflected screen cor-
ners from different spheres in one image to find the screen
corners. The basic idea is similar to our own, although no
precise details were included in their paper.

2 Overview

Our proposed algorithm consists of two stages: (a) lo-
cating the position of the spherical mirror, using only the
camera image of the sphere and a defined radius, and (b)
computing the 3D location of the screen surface. The first
stage is applied to two or more images with different sphere
locations and these results are passed on together to the sec-
ond stage.

3 Locating the Spherical Mirror

In order to estimate the metric world coordinates of the
spherical mirror, we first need to locate its image in camera
coordinates. More precisely, the image contour is sufficient
for our purposes. This, combined with the intrinsic camera
parameters is sufficient to locate the spherical mirror.

3.1 Contour Detection

After a background subtraction step, the pixels associ-
ated with the spherical mirror are identified. This is fol-
lowed by a set of morphological operations that provide us
with the actual contour, eliminating unwanted pixel noise
and bridging minor lapses.

Given the resulting pixel set{xi}, we want to locate the
ellipse that provides the best fit through these data points.
The equation of a general conic in homogeneous coordi-
nates isxT Cx = 0, where C is of the form

C =





a b/2 d/2
b/2 c e/2
d/2 e/2 f



 (1)

However, as the ellipse contour is the result of a sphere pro-
jected onto the image plane, this poses an additional con-
straint on our conic equation:b = 0. As standard ellipse de-
tection algorithms do not take this into account, we choose
to apply a tailored RANSAC-based [4] approach, in which
we can instantiate the model from a four point sample. We
rewrite our conic equation as

[

(xi
1
)2 (xi

2
)2 xi

1
xi

2
1
]

c = 0 (2)

wherec = (a, c, d, e, f)T is the conic C represented as a
5-vector. After the proper data normalization [10], the data
points are stacked in a4 × 5 matrix. The conic for the as-
sociated model can then be determined as the null space of
this system. During the RANSAC search, conics that do
not represent ellipses with a low eccentricity are automati-
cally rejected. After the search has completed, a final least-
squares solution from the stacked matrix of all inliers of the
found model is computed.

3.2 Sphere Detection

After the sphere contour in the camera image is located,
we need to determine its location in a Euclidean reference
coordinate system. Our system of choice places the camera
in its canonical position[I|0]. In order to precisely locate
the sphere, the intrinsic camera parametersK also need to
be computed. This is done in a separate preprocessing step,
e.g. using the camera calibration toolbox by Bouguet [1].

The back-projection of a conicC results in a degen-
erate quadric [11], the right circular coneQ with apex
(0, 0, 0, 1)T .

Q = PT CP (3)

= (K[I|0])T C(K[I|0]) (4)

In order to reduce the problem to a manageable form,
we align the cone with the Z-axis of the coordinate system,
the viewing direction of the camera. Unlike the approach of
Shiu and Ahmad [16], our change of coordinate system is
achieved by only a simple rotationR.

Q′ = RT QR (5)

After the transformations mentioned above, the obtained



Figure 2. (left) Detection of barely visible cor-
ners; (top right) Corners do not lie on de-
tected edges (white) due to a specular high-
light; (bottom right) Nearly indistinguishable
corner.

matrixQ′ is of the following form:

Q′ =









1 0 0 0
0 1 0 0
0 0 −s2 0
0 0 0 0









(6)

The projection angle of the cone center is now given by
arctan(s2) (Figure 1). The distancez from the sphere cen-
ter to the apex of the cone can now be determined, assuming
the physical sphere radiusρ is known.

z =
ρ

s cos (arctan s2)
(7)

= ρ

√
1 + s2

s
(8)

Once the distancez is determined, we are able to locate
the position of the sphere centerc in our reference coordi-
nate frame.

c = z
K−1 [x y 1]

T

∥

∥

∥
K−1 [x y 1]

T
∥

∥

∥

(9)

where[x y 1]T is the center of the detected contour, and we
reduce the viewing direction vector to its unit length.

4 Locating the Screen

Locating the spherical mirror in a frame allows for the
computation of the corresponding reflection vectors for
each of the pixels within the sphere contour. After the image
locations of the four screen corners are detected, we have a

Figure 3. The 3D Euclidean Visualization of
the 2D Corner Detection Alternate Space.

set of reflection vectors intersecting their three-dimensional
coordinates. Combining two or more sets of such vectors
associated with different mirror positions, an accurate esti-
mate of these screen corners is calculated.

4.1 2D Screen Corner Estimation

Letting the screen emit a constant luminance value in a
single color channel allows for the detection of its corre-
sponding pixels in the sphere contour (Figure 2). We per-
form a set of morphological operations to extract the edge of
the screen, similar to our approach for the sphere detection.

Accurately locating the screen corners in camera coordi-
nate space is not a trivial task. Due to the nonlinearity of
the four screen edges and possible distortions in the contour
detection due to specular highlights, commonly used cor-
ner detectors such as the Harris detector [9] are unable to
properly locate the required screen corners. To facilitatede-
tection, the contour pixels are transformed to a better suited
coordinate space (Figure 3).

4.1.1 Alternate Coordinate Space

In camera coordinate space, we label a set of three pixels
{pi

cam}. These pixels are chosen from the four - or when
two of these points collide, three - intersections of the screen
contour with its bounding box:{(x, y) | x = minx ∨ y =
miny∨x = maxx∨y = maxy}. While clockwise travers-
ing the contour, we label the selected points respectively as
p1

cam, p0

cam, andp2

cam. As the position and radius of the
spherical mirror(c, ρ) are known, we compute the corre-
sponding intersections{pi

s} of this sphere with the back-
projected lines from{pi

cam}. Because the sphere normals
in these points are also known, we can compute the result-
ing reflection directions{~ri}. Finally, we locate the points



Figure 4. By projecting the reflections of
the screen contour on an appropriately
parametrized plane, we reduce the problem
of corner detection in camera space to line
detection and intersection in an alternate
space.

{pi
pl}:

pi
pl = pi

s + k~ri (10)

wherek is a positive constant.
We will now use the plane through these three points as

the basis of our alternate coordinate space. For each screen
edge pixel, the intersection of the corresponding reflection
rays with the computed plane is determined. If a reflec-
tion ray is parametrized asxi

s + t~ri, with xi
s a point on the

sphere and~ri the associated reflection direction, the follow-
ing equation provides us with a new parametrization.




t
u
v



 =
[

−~ri (p1

pl − p0

pl) (p2

pl − p0

pl)
]−1

[

xi
s − p0

pl

]

(11)

4.1.2 Line Detection

As can be seen in Figures 3 and 4, this new parametriza-
tion has reduced the problem of locating the screen corners
to line detection and the choice of appropriate intersection
points. The four screen edges are detected using RANSAC
and a final optimization step. We then compute the six in-
tersection points, and automatically choose the four non-
collinear points from this set.

4.1.3 Original Coordinate Space

In order to map the coordinates of the screen corners back to
camera space, we first need to compute the 3D coordinates
of the corners(u, v) on the parametrized plane:

xpl = p0

pl + u(p1

pl − p0

pl) + v(p2

pl − p0

pl) (12)

Given a pointxpl, camera centero and spherical mir-
ror (c, ρ), the pointxs = ρ(n − o) + c on the mirror that

reflects the ray throughxpl into the camera is uniquely de-
fined by the reflection equation.

〈

xpl − xs

‖xpl − xs‖
, n

〉

=

〈

o − xs

‖o − xs‖
, n

〉

(13)

The unknown parameter in the equation above is the reflec-
tion normaln. If we parametrize this vector as a normalized
weighted sum of the vectorsxpl − c ando − c,

n(t) =
t

xpl−c

‖xpl−c‖ + (1 − t) o−c
‖o−c‖

∥

∥

∥
t

xpl−c

‖xpl−c‖ + (1 − t) o−c
‖o−c‖

∥

∥

∥

(14)

the three-dimensional normaln is defined by a single scalar
t ∈ [0, 1]. We estimate the correct value oft by iteratively
minimizing the energy function

E(t) =

∥

∥

∥

∥

∥

[

xpl − xs(t)

‖xpl − xs(t)‖
− o − xs(t)

‖o − xs(t)‖

]T

n(t)

∥

∥

∥

∥

∥

(15)

We initiate the process with a value oft = 1

2
. This initia-

tion is already a reasonably good estimation, as it conforms
to the assumptions made by weak perspective algorithms.
Using this initial value, the algorithm quickly converges to
a global minimum.

The camera pixel coordinatesxc of the wanted screen
corners are now given by the equation

xc = [K|0]xs (16)

An example of the accuracy of these reprojected corners
is illustrated in Figure 2.

4.2 3D Screen Corner Estimation

As the screen corners are now located for each frame
in camera coordinates, we can combine all sets of reflec-
tion rays associated with each individual corner into a least-
squares problem. Next, we shall describe the solution for
the set of reflection rays associated with a single corner,
looking for their common intersection point.

4.2.1 Single Corner Estimation

The reflection ray associated with framei can be
parametrized asli : xi

s + t~ri. The distanced(x, li) from
a pointx to line li is defined as

d(x, li) =
‖~ri × (xi

s − x)‖
‖~ri‖

(17)

=

∥

∥

∥

∥

∥

(

[~ri]×

‖~ri‖

)

x −
(

[~ri]×

‖~ri‖
xi

s

)∥

∥

∥

∥

∥

(18)



Figure 5. An overview of our calibration pipeline, using ima ges from a real-world data set.

If we formulate the problem of finding the common in-
tersection point of all linesli as finding the pointx that
minimizes the distanced(x, li) for all i, then we reduce
the problem to a least-squares minimization of the form
‖Ax − b‖. Problems of this form can be solved by using
the normal equations(AT A)x = AT b. If AT A is invert-
ible, the solution to such a problem isx = (AT A)−1AT b

4.2.2 Global Pixel Localization

Once the position of the individual screen corners is com-
puted, every pixel(u, v)|u, v ∈ [0, 1] located on the screen
surface can be mapped onto their three-dimensional Eu-
clidean coordinatesx by bilinear interpolation.

x =

[

1 − u
u

]T [

xul
screen xur

screen

xdl
screen xdr

screen

] [

1 − v
v

]

(19)

5 Results

Before we begin describing the accuracy of our calibra-
tion algorithm, an overview of all the sub-algorithms in our
pipeline is illustrated in Figure 5. Every sub-algorithm will
be subjected to a short error analysis, based on synthetic
data rendered using a ray tracer (Figure 7). These synthetic
data sets are provided with exact camera, screen and sphere
positions, making it possible to calculate the geometric er-
ror between the measurements and the exact data.

5.1 Locating the Spherical Mirror

During our first set of experiments, we used a data set
of 25 synthetic images, displaying a 50 millimeter sphere
at varying positions. In all cases, our observations agreed
with the predicted error values of the sphere: an increase in
sphere depth lead to a similar increase in error. This was

Figure 6. Locating the spherical mirror: ro-
bust ellipse detection.

to be expected because, as the distance between the cam-
era and the sphere becomes larger, the back-projected rays
intersecting the spherical mirror will become increasingly
parallel.

In addition we checked a data set of real-world images to
verify the robustness of the ellipse detection algorithm used
in this phase. An example of such a detection is shown in
Figure 6.

5.2 Locating the Screen

During the second set of experiments, we used four
data sets of 10 synthetic images, using the scale defined
in the previous experiments (by the 50mm sphere). Figure
8 shows the geometric error of our estimated world coor-
dinates versus the number of frames used to calculate this



Figure 7. An example of a rendered image
from our synthetic data set. In addition, we
have also depicted the detected screen cor-
ners and the back-projected reflection rays.

estimate. Several things are apparent from the displayed re-
sults:

• It is recommended to use more then the minimum of
two frames to perform the calibration in order to avoid
unnecessary errors.

• After a certain number of images are inserted into the
pipeline (in our example 8 or 9), the quality of our es-
timate seems to converge. After this point has been
reached, adding new images does not seem to improve
the quality of our results.

• As can be seen by the error plot of data set 2, it is pos-
sible to achieve good results using very few images.
This implies that an intelligent choice of sphere posi-
tions may facilitate convergence.

6 Conclusions and Future Work

We have presented an automatic method for screen-
camera calibration, based on the use of a single moving
spherical mirror. Unlike previous methods, our algorithm
needed no extra information in order to accurately perform
the calibration. Experimental validation has shown that
both sub-algorithms of our method - estimating the position
of the sphere and screen in Euclidean world coordinates -
can be performed within practical error bounds.

We are currently looking into ways to improve our sys-
tem, e.g. we are investigating the possibility of making the
pipeline more robust by performing an intelligent sampling
approach. Instead of taking into account every input frame,
it might prove to be useful to prune the initial group of
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Figure 8. Geometric error in function of num-
ber of frames used for calibration. Four ran-
dom subsets of samples were used.

frames, proceeding only with a limited subset of interesting
sphere locations. Another remaining open question is the
matter of determining the ideal plane on which we project
our 2D screen edge pixels, which is the basis for our al-
ternate coordinate space in which we search for the screen
corners.
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