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Abstract. In this paper we study the identification of sparse interaction networks
as a machine learning problem. Sparsity means that we are provided with a small
data set and a high number of unknown components of the system, most of which
are zero. Under these circumstances, a model needs to be learned that fits the
underlying system, capable of generalization. This corresponds to the student-
teacher setting in machine learning. In the first part of thispaper we introduce
a learning algorithm, based onL1-minimization, to identify interaction networks
from poor data and analyze its dynamics with respect to phasetransitions. The
efficiency of the algorithm is measured by the generalization error, which repre-
sents the probability that the student is a good fit to the teacher. In the second part
of this paper we show that from a system with a specific system size value the
generalization error of other system sizes can be estimated. A comparison with a
set of simulation experiments show a very good fit.
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1 Introduction and motivation

In this paper we consider the problem of identifying interaction networks from a given
set of observations. An example of such a network is a sparse gene-protein interaction
network, for more details see [1, 5, 2, 7, 10, 11].

In some engineering applications, the number of measurementsM available for sys-
tem identification and model validation is much smaller thanthe system orderN, which
represents the number of components. This substantial lackof data can give rise to
an identifiability problem, in which case a larger subset of the model class is entirely
consistent with the observed data so that no unique model canbe proposed. Since con-
ventional techniques for system identification are not wellsuited to deal with such situ-
ations, it thus becomes important to work around this by exploiting as much additional
information as possible about the underlying system. In particular, we are interested in
the relation between the number of measurements and the number of components, the
sparsity of the regulatory network and the influence of noise.

In this setting, it is natural to link network identificationto feature selection. Only
very few components influence the expression level of any given component, so one can



restate the problem as selecting exactly those few among thelarge amount of compo-
nents under consideration. Hence the results presented here will not only be applicable
to network identification, but more generally to feature selection as well.

In Section 2, we will introduce the definitions of several concepts we use. Section 3
summarizes five research questions we will answer on experimental results. A brief
discussion and our conclusions will be presented in Section4.

2 Definitions and Algorithm

In the first paragraph we translate the problem of network identification formally into
machine learning terminology [6]. In the next paragraph we introduce and elucidate the
learning algorithm. Then we elaborate on the relation to feature selection. Finally, we
discuss the issue of noisy data.

Terminology: Data and Teacher In order to formalize the problem stated in the previ-
ous section we now introduce the model which we will considermore rigorously below.
We assume that atraining setof M input/output pairsχtr = {(xm, ẋm) | m : 1, . . . ,M} is
given, wherexm, ẋm ∈ R

N. The components of the input vectorsxm are independently
and identically distributed so that they are linearly independent. Since the data is as-
sumed to be generated by some interaction network, this network will be denoted by
T = (AT , BT) whereAT ∈ RN×N andBT ∈ RN. In this context, we refer toT as the
unknownteacher. For each (xm, ẋm) ∈ χtr, ẋm = AT · xm+ BT, i.e., ẋm is the output pro-
duced by the teacherT on inputxm. In general, the teacher’s output ˙x on some inputx is
computed as follows: ˙x = T(x) ≡ AT · x+ BT . Moreover, we consider sparse networks,
for each row of the matrixAT , only KT components are non-zero. Since the latter mod-
els the interactions in the network, a non-zero value ofAT

i, j indicates that componenti
of inputx influences componentj of the output ˙x. So the sparsity constraint implies that
each component of the output is determined by exactlyKT components of the input.

Learning Algorithm The learning algorithm should return a networkS = (AS, BS),
referred to as thestudent, with AS ∈ RN×N andBS ∈ RN, that reproduces the training
setχtr: ẋm = AS ·xm+BS for m : 1, . . . ,M. More importantly however, the student should
also perform well on input that was not used by the algorithm,i.e., the algorithm should
be able to generalize beyond the training setχtr. To test the student’s generalization
ability, we use a validation setχv = {(xv, ẋv) | v : 1, . . . ,V} such that ˙xv = AT · xv + BT

for eachv : 1, . . . ,V. Thegeneralization errorεgen is defined as the ratio of the number
of tuples inχv that is not reproduced by the student to the total number of tuples. More
formally, it is the fraction of the patterns inχv for which |ẋv − AS · xv − BS|/|ẋv| > εerr,
whereεerr is the maximum deviation from zero that is considered insignificant. The
learning task can now be formulated as follows:the algorithm should produce a student
S givenχtr such thatεgen is minimal.

The algorithm we use is a reformulation of the problem in terms of linear program-
ming: the objective is to minimize‖AS‖1 subject to theM constraints ˙xm = AS · xm+BS.
In the target function,‖C‖1 denotes the 1-norm of the matrixC, i.e.,‖C‖1 =

∑

i, j |Ci, j |.
This choice is motivated by the sparsity constraint on the networks to be identified.



If the studentS reproduces the teacherT, it will be sparse, hence we prefer solutions
with as few non-zero components as possible. It is known fromthe literature [3, 4] that
the 1-norm is an acceptable approximation for the 0-norm. Since the latter can only
be computed by explicit enumeration, it is unsuitable in practice due to the ensuing
combinatorial explosion. For more details about this technique, see [8] and [9].

The constraints can be written more explicitly as:

N
∑

i=1

AS
i, j xm, j + BS

i = ẋm,i, j : 1, . . . ,N; m : 1, . . . ,M. (1)

Hence each row ofA and B is a solution to a set ofM equations and can be deter-
mined independently, an observation to which we will returnlater on. ForM ≤ N,
infinitely many solutions can be found, from which linear programming will select the
most sparse. Trivially, forM = N + 1 the set of equations will have a unique solution:
the teacherT. This implies that one can expect a generalization errorεgen ≈ 1 for very
small training sets, i.e.,M � N, while εgen≈ 0 for M ≈ N. We may conclude thatεgen

will be a function of the training set sizeM. By convention, the number of patterns such
thatεgen= 1/2 is denoted byMgen, thegeneralization threshold.

Although the generalization error is a good measure to evaluate the student’s quality,
it will nevertheless be useful to consider a measure to compare the student’s structure
to that of the teacher. Since our setting is that of identifying interaction networks, the
presence or absence of such an interaction in the inferred model S is important. This
can be characterized by the following three quantities: (1)nfneg, the number offalse
negatives, i.e., interactions that are modeled byT, but not byS; (2) nfpos, the number
of false positives, i.e., interaction modeled byS, but not byT; and (3)ncorr the number
of correlation errors, i.e., those components ofS andT that are significantly non-zero,
but have opposite sign. These three quantities measure the quality of the identification
process. By definition, 0≤ nfneg ≤ NKT , 0 ≤ nfpos ≤ N(N − KT ) and 0≤ ncorr ≤ NKT .
Note that these error measures can all be zero, even if the student does not generalize
well, i.e., εgen > 0. Also notice that 0≤ nfneg + nfpos + ncorr ≤ N2. Therefore, we
aggregate these three measures into the operatorS� T = (N2 − nfneg− nfpos− ncorr)/N2

that measures the quality of the identification.

Relation to Feature Selection From Eq. (1), it is clear that the problem of identify-
ing the interactions within a network modeled by the matrixAT can be decomposed
into identifying theN rows of that matrix. Since, apart from the sparsity constraint,
interactions in the teacher are completely random, these rows can be determined inde-
pendently. Hence we can reformulate the original problem interms ofN simpler ones:
given an input vectorx ∈ RN, which of theN components ofx will effectively con-
tribute to the output ˙x ∈ R? This can be viewed as a feature selection problem, since the
sparsity of the teacher implies that only very few components will contribute. As for
network identification, we can define the generalization error for feature selectionεfsgen.
At this point, it is useful to note that the generalization error can be interpreted as the
probability that the student will not compute the correct output on a random input. The
probability thatN independent feature selection problems willall compute the correct
answer is thus given by (1−εfsgen)

N, which allows us to compute the generalization error



for network identificationεgen from that for feature selectionεfsgen as follows:

εgen= 1− (1− εfsgen)
N (2)

Noisy data Until now, we have considered an ideal situation in the sensethat the dataχtr

used to identify the network was noise-free. Obviously, thequality of real world data is
typically far from ideal and an algorithm can only be used effectively in practice if it is
robust to noise. To model this situation, we will consider a training set with noise:χtr =

{(xm, ẋm+ δm) | m : 1, . . . ,M} whereδm ∈ RN. Theδm are identically and independently
distributed and randomly drawn from a normal distribution with zero mean and standard
deviationσnoise. To quantify the quality of a student derived from a noisy training set,
we introduce theoutput deviation, defined asδẋ =

∑

x∈χv
|T(x) − S(x)|/|T(x)|.

3 Experiments

In this section, we will consecutively address the following research questions:

1. Is it possible to identifyT with a training set that contains less thanN + 1 input-
output pairs? If so, what is the value of the generalization error εgen as a function
of the training set size?

2. Does the generalization errorεgen depend on the teacher’s sparsity?
3. What is the evolution of the student when compared with theteacher as a function

of the training set size?
4. Is the algorithm robust against noise?
5. How does the generalization errorεgen scale with the system sizeN?

All experiments have been carried out using the algebra package Maple 9.5 on a
Pentium-M class processor of 1.73 GHz and 1 GB of RAM. The standard implementa-
tion of linear programming in Maple is used, which is very convenient since it allows
to specify the objective function and the constraints symbolically.

To facilitate the discussion, we first introduce some convenient notation. The ratio
of the training set size to the system size is denoted byα = M/N. In particular,αgen =

Mgen/N. The fraction of non-zero components per row of a system is denoted byκ =
K/N. In particular,κT = KT/N. The amplitude of the noise should be considered relative
to the amplitude of the signal, i.e., we defineσ = σnoise/σẋ, whereσẋ is the standard
deviation of the output vectors’ components ˙xm,i. The components of the teacherAT ,
BT and of the inputxm are drawn from an uniform distribution over ]− 1, 1[.

Generalization error To determine the generalization error, we randomly generate a
set ofM input vectors and a random teacher system so that we can compute the output
to obtain a training setχtr . The algorithm produces a student, for which we calculate
the generalization error. Since its value depends on the particular selection of input and
teacher, we independently repeat this procedure many timesto compute the average.
Fig. 1 shows the observed generalization error as a functionof the training set sizeα.

This result is surprising in two respects: (1) the generalization error decreases to
zero for a training set sizeα < 1 and (2) the transition towards generalization is quite
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Fig. 1. The generalization errorεgen as a
function of the training set sizeα for N =
100 (◦), N = 160 (�) andN = 300 (.) for
κT ≈ 0.03.
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Fig. 2. The generalization error for feature
selectionεfs

gen as a function of the training
set sizeα for N = 100 (◦), N = 160 (�) and
N = 300 (.) for κT ≈ 0.03.
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Fig. 3. The observed (�) versus the com-
puted (◦) generalization errorεgen as a func-
tion of α for N = 80, κT ≈ 0.03. The curve
representingεfs

gen (.) is given as reference.
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Fig. 4. The generalization thresholdαgen as
a function of the sparsityκT for N = 80
(◦) and a few values forN = 160 (�). The
generalization threshold for feature selec-
tion αfs

gen (.) is given as reference.

abrupt. It is also clear from Fig. 1 that the transition is increasingly abrupt for increas-
ing system sizeN. It is instructive to relate the generalization errorεgen for network
identification to that for feature selectionεfsgen in Fig. 2. The latter figure illustrates that
αfs

gen, the training set sizeα for εfsgen = 1/2, is independent of the system sizeN and
that theεfsgen converges to a step-function forN → ∞. Hence we observe a first order
phase transition between a regime forα < αfs

genwhere the student simply reproduces the
training set, and another regime forα > αfs

gen where he is able to reproduce the teacher’s
output perfectly.

The relation between the generalization error for the network identification problem
εgenand that for feature selectionεfsgen, given by Eq. (2), is illustrated in Fig. 3. It is clear
thatεgen for the network identification problem can reliably be estimated fromεfsgen for
the feature selection problem. Values beyondαgen are less reliable since inaccuracies
for εfsgen are amplified considerably due to the mathematical form of Eq. (2).



Sparsity The next question concerns the relation between the sparsity of the teacher
and the generalization threshold. For a non-sparse teacher, i.e.,κT ≈ 1, one would need
a training set of sizeα ≈ 1 since each of theN(N + 1) components has to be deter-
mined. However, as Fig. 1 illustrated, the fact that the teacher is sparse simplifies the
identification process considerably. Fig. 4 shows the generalization thresholdαgen for
network identification as a function ofκT . It is clear that training sets of increasing size
α are required to facilitate the transition to the generalization regime asκT increases,
i.e., as the sparsity decreases. As expected, forκT ≈ 1, αgen ≈ 1. It is clear that the
advantage sparsity offers to the efficiency of the learning algorithm virtually vanishes
for κT ≈ 0.5. However, it is very pronounced forκT < 0.2. As before, these results have
been obtained for many independent instances of the training set and teacher.

Learning process To gain a better understanding of the learning process, i.e., the evo-
lution of the student with respect to the teacher as a function of the training set size we
first consider a fixed training set and teacher. Define a sequence of training setsχm for
m : 1, . . . ,M such thatχm ⊂ χm+1 and|χm+1| = |χm|+1. These sets are used to determine
a sequence of studentsSm for m : 1, . . . ,M. Fig. 5 showsSαN � T as a function of the
training set sizeα. ForαN = 1, the number of false negatives isN2κT and the number
of false positives is 0. For increasingα, the number of false positives increases ap-
proximately linearly withα, while the number of false negatives decreases very slowly.
The plot illustrates clearly that the transition to generalization is very sudden: atαgen,
SαgenN � T = 1. Fig. 6 and 7 confirm that the scenario sketched above is indeed the
typical behavior when it is averaged over many independent training sets and teachers.
The latter plot illustrates the explanation given above forthe behavior ofSαN � T.
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Fig. 5. The learning process characterized
by Sm � T as a function of the size of the
training setm/N for an individual run.
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Fig. 6. The learning process characterized
by Sm � T as a function of the size of the
training setm/N, system sizesN = 100 (◦),
N = 160 (�) andN = 300 (.) for κT ≈ 0.03.

Noisy data Noise is ubiquitous in real world applications, hence it is mandatory to test
the algorithm’s robustness. Fig. 9 shows the relative deviation of the respective output of
student and teacherδẋ as a function of the noise levelσ. As can be expected for a linear
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Fig. 8. Fig. 2 using Eq. (3) forN = 100 (◦),
N = 160 (�) computed,N = 160 observed
(.), κT ≈ 0.03.
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Fig. 9. Deviation of the student and teacher
outputδẋ as a function of the noise levelσ
on the training set.
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Fig. 10. nfneg (�), nfpos (.) andncorr (◦) as a
function of the noise levelσ for N = 100,
κT ≈ 0.03.

system, the quality is acceptable for low noise levels only.In particular,σ < 0.01 still
yields a reasonably accurate output. The breakdown for higher noise levels is explained
by Fig. 10 which shows a very large increase in the number of false positivesnfpos for an
increasing noise levelσ. Although these components are very small, they nevertheless
preclude perfect identification of the network.

Scaling with system size How the system scales with the system size has already been
illustrated in Fig. 1, 4, 6 and 7. However, it is Fig. 2 that provides the most insight. It
turns out that the generalization error curves for various system sizes can be computed
by applying the correct scaling on the system sizeα. Suppose we have a curve forεfsgen
versusα for N0, then the curve for system sizeN can be obtained by scaling

α(N) = αfs
gen+

√

N0/N (α(N0) − αfs
gen) (3)



The result is shown in Fig. 8 for system sizesN = 100 andN = 160 with sparsity
κT = 0.03. The curve computed forN = 160 from that forN = 100 is in very good
agreement with the one observed for that system size.

4 Discussion and conclusions

It is quite remarkable that a simple model such as the one considered here exhibits
so many interesting features. With respect to the research questions addressed, we may
conclude that the algorithm identifies a network withN(N+1) interactions using a train-
ing set of considerably smaller size. This turns out to be a consequence of the teacher’s
sparsity. Moreover, a first order phase transition occurs during the learning process. The
system shows a sudden transition to perfect generalizationduring the learning process.
The latter can be explained by considering the geometric interpretation of linear pro-
gramming. Adding an additional constraint in the form of an input-output pair can lead
to abrupt changes of the minimal values that can be attained by the objective function
when its domain is further restricted. The relation betweenthe feature selection problem
and the network identification task is of note, especially since the generalization behav-
ior of the latter can be derived from the former’s. Moreover,the scaling properties of
feature selection have been demonstrated: given the generalization curve for a certain
size and a fixed sparsity, one can compute the generalizationcurve for a system of any
size with that sparsity. Unfortunately, the algorithm’s robustness to noise is fairly lim-
ited. This is to be expected given the nature of linear programming as mentioned above.
This is definitely an area for future research.
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