On Phase Transitions in Learning Sparse Networks
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Abstract. In this paper we study the identification of sparse intecactietworks
as a machine learning problem. Sparsity means that we avelpcowith a small
data set and a high number of unknown components of the systest of which
are zero. Under these circumstances, a model needs to Inedetirat fits the
underlying system, capable of generalization. This cpoeds to the student-
teacher setting in machine learning. In the first part of d@per we introduce
a learning algorithm, based dn-minimization, to identify interaction networks
from poor data and analyze its dynamics with respect to ptrassitions. The
efficiency of the algorithm is measured by the generalizatioorewhich repre-
sents the probability that the student is a good fit to thehteadn the second part
of this paper we show that from a system with a specific sysieenalue the
generalization error of other system sizes can be estimAtedmparison with a
set of simulation experiments show a very good fit.
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1 Introduction and motivation

In this paper we consider the problem of identifying intéi@cnetworks from a given
set of observations. An example of such a network is a spa&nise-grotein interaction
network, for more details see [1,5, 2,7, 10, 11].

In some engineering applications, the number of measurexiveavailable for sys-
tem identification and model validation is much smaller ttrensystem ordeX, which
represents the number of components. This substantialdadiata can give rise to
an identifiability problem, in which case a larger subsethef tnodel class is entirely
consistent with the observed data so that no unique moddle@noposed. Since con-
ventional techniques for system identification are not weiled to deal with such situ-
ations, it thus becomes important to work around this by@kph as much additional
information as possible about the underlying system. Itiqadar, we are interested in
the relation between the number of measurements and theemwwhbomponents, the
sparsity of the regulatory network and the influence of noise

In this setting, it is natural to link network identificatida feature selection. Only
very few components influence the expression level of argrggomponent, so one can



restate the problem as selecting exactly those few amonigitipe amount of compo-
nents under consideration. Hence the results presenteaiilenot only be applicable
to network identification, but more generally to featureesgbn as well.

In Section 2, we will introduce the definitions of several cepts we use. Section 3
summarizes five research questions we will answer on expeatahresults. A brief
discussion and our conclusions will be presented in Sedtion

2 Definitions and Algorithm

In the first paragraph we translate the problem of networktifleation formally into
machine learning terminology [6]. In the next paragraphmisoiduce and elucidate the
learning algorithm. Then we elaborate on the relation touieaselection. Finally, we
discuss the issue of noisy data.

Terminology: Data and Teacher In order to formalize the problem stated in the previ-
ous section we now introduce the model which we will considere rigorously below.
We assume that@aining setof M inputoutput pairsyy = {(Xm, Xm) | m: 1,..., M} is
given, wherexm, X € RN. The components of the input vectogs are independently
and identically distributed so that they are linearly inglegeent. Since the data is as-
sumed to be generated by some interaction network, thisaonktwill be denoted by

T = (AT, B") whereAT € RN andB'™ e RN. In this context, we refer t@ as the
unknownteacher For each %m, Xm) € xir, Xm = AT - Xy + BT, i.e., Xm is the output pro-
duced by the teachdron inputxy,. In general, the teacher’s outpubh some inpuk is
computed as followsx = T(x) = AT - x + BT. Moreover, we consider sparse networks,
for each row of the matriAT, only K+ components are non-zero. Since the latter mod-
els the interactions in the network, a non-zero valuégfindicates that component
of inputx influences componenof the outpuix. So the sparsity constraintimplies that
each component of the output is determined by exdactlgomponents of the input.

Learning Algorithm The learning algorithm should return a netw@k= (AS, BS),
referred to as thetudentwith AS € RNVN andBS € RN, that reproduces the training
Setyy: Xm = AS-xn+BSform: 1,..., M. More importantly however, the student should
also perform well on input that was not used by the algoritien,the algorithm should
be able to generalize beyond the training ggt To test the student’s generalization
ability, we use a validation sgt, = {(x, %) | V: 1,...,V} such thatx, = AT - x, + BT
foreachv: 1,...,V. Thegeneralization errokge,is defined as the ratio of the number
of tuples iny, that is not reproduced by the student to the total numbernési More
formally, it is the fraction of the patterns jn, for which %, — AS - x, — BS|/|X/| > e,
whereegg; is the maximum deviation from zero that is considered inficant. The
learning task can now be formulated as follote algorithm should produce a student
S givenyy such thategen is minimal.

The algorithm we use is a reformulation of the problem in ®oflinear program-
ming: the objective is to minimizgAS||; subject to theM constraintst, = AS - Xy, + BS.
In the target function|C||; denotes the 1-norm of the matii i.e.,[IClly = 3 ; ICi jl.
This choice is motivated by the sparsity constraint on thisvoeks to be identified.



If the studentS reproduces the teach@r it will be sparse, hence we prefer solutions
with as few non-zero components as possible. It is known tienliterature [3, 4] that
the 1-norm is an acceptable approximation for the 0-normcesthe latter can only
be computed by explicit enumeration, it is unsuitable incfice due to the ensuing
combinatorial explosion. For more details about this téphe, see [8] and [9].

The constraints can be written more explicitly as:

N
DA X+ B =i, JiL. N ML M. (1)
i=1

Hence each row oA andB is a solution to a set oM equations and can be deter-
mined independently, an observation to which we will retlater on. ForM < N,
infinitely many solutions can be found, from which linear gramming will select the
most sparse. Trivially, foM = N + 1 the set of equations will have a unique solution:
the teachel . This implies that one can expect a generalization egggr~ 1 for very
small training sets, i.eM < N, while ggen = 0 for M = N. We may conclude thafen
will be a function of the training set si2d. By convention, the number of patterns such
thategen = 1/2 is denoted bygen, thegeneralization threshold

Although the generalization error is a good measure to at@lhe student’s quality,
it will nevertheless be useful to consider a measure to coanbe student’s structure
to that of the teacher. Since our setting is that of idemniiyinteraction networks, the
presence or absence of such an interaction in the inferretbh%ois important. This
can be characterized by the following three quantities:ngl, the number ofalse
negativesi.e., interactions that are modeled By but not byS; (2) nipos, the number
of false positivesi.e., interaction modeled by, but not byT; and (3)n¢orr the number
of correlation errors i.e., those components 8fandT that are significantly non-zero,
but have opposite sign. These three quantities measureuttigycpf the identification
process. By definition, & nimeg < NKr, 0 < Nipos < N(N — Ky) and 0< neorr < NKs.
Note that these error measures can all be zero, even if tHergtdoes not generalize
well, i.e., ggen > 0. Also notice that 0< Nmeg + Nipos + Ncor < N2. Therefore, we
aggregate these three measures into the ope3@ar = (N? — Nineg — Nipos — Neorr)/N?
that measures the quality of the identification.

Relation to Feature Selection From Eq. (1), it is clear that the problem of identify-
ing the interactions within a network modeled by the matixcan be decomposed
into identifying theN rows of that matrix. Since, apart from the sparsity constrai
interactions in the teacher are completely random, thege can be determined inde-
pendently. Hence we can reformulate the original probleteiims ofN simpler ones:
given an input vectox € RN, which of theN components ok will effectively con-
tribute to the outpux € R? This can be viewed as a feature selection problem, since the
sparsity of the teacher implies that only very few composevitl contribute. As for
network identification, we can define the generalizationrefior feature selectioafgsen.

At this point, it is useful to note that the generalizatioroercan be interpreted as the
probability that the student will not compute the corredipati on a random input. The
probability thatN independent feature selection problems waillcompute the correct
answer is thus given by elsgser)'“, which allows us to compute the generalization error



for network identificatioregen from that for feature selectiof‘gen as follows:
ggen=1-(1-epe)" (2)

Noisy data Until now, we have considered an ideal situation in the séresteghe datg:,
used to identify the network was noise-free. Obviouslyghality of real world data is
typically far from ideal and an algorithm can only be usé@eively in practice if it is
robust to noise. To model this situation, we will considera@rting set with noiseyy =
{(Xm, ¥m +6m) | M: 1,..., M} wheres,, € RN. Thedy, are identically and independently
distributed and randomly drawn from a normal distributiativeero mean and standard
deviationonoise TO quantify the quality of a student derived from a noisyrirag set,
we introduce th@utput deviationdefined agx = 3., [T(X) = S(X)I/[T(X)I.

3 Experiments

In this section, we will consecutively address the follogviesearch questions:

1. Is it possible to identifyT with a training set that contains less thidn+ 1 input-
output pairs? If so, what is the value of the generalizativaresge, as a function
of the training set size?

Does the generalization errgje, depend on the teacher’s sparsity?

3. What is the evolution of the student when compared withteéheher as a function
of the training set size?

Is the algorithm robust against noise?

5. How does the generalization erege, scale with the system si2¢?

N

b

All experiments have been carried out using the algebraggelMaple 9.5 on a
Pentium-M class processor of 1.73 GHz and 1 GB of RAM. Thedsteshimplementa-
tion of linear programming in Maple is used, which is very wament since it allows
to specify the objective function and the constraints sylichby.

To facilitate the discussion, we first introduce some coifar@motation. The ratio
of the training set size to the system size is denotea byM/N. In particular,agen =
Mgen/N. The fraction of non-zero components per row of a system ol byx =
K/N. In particulargt = K7 /N. The amplitude of the noise should be considered relative
to the amplitude of the signal, i.e., we defime= ooise/ %, Whereo is the standard
deviation of the output vectors’ components;. The components of the teachat,
B and of the inpuk, are drawn from an uniform distribution ove]1, 1].

Generalization error To determine the generalization error, we randomly geeeaat
set ofM input vectors and a random teacher system so that we can tetiguwutput
to obtain a training segi. The algorithm produces a student, for which we calculate
the generalization error. Since its value depends on thepkar selection of input and
teacher, we independently repeat this procedure many timesmpute the average.
Fig. 1 shows the observed generalization error as a funofithe training set size.

This result is surprising in two respects: (1) the geneatilin error decreases to
zero for a training set size < 1 and (2) the transition towards generalization is quite
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Fig.1. The generalization errogge, as a Fig. 2. The generalization error for feature

function of the training set size for N = selectionafgsen as a function of the training
100 ), N = 160 @) andN = 300 ¢) for set sizex for N = 100 (), N = 160 @) and
kr ~ 0.03. N = 300 ¢) for xr ~ 0.03.
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Fig. 3. The observedd) versus the com- Fig. 4. The generalization thresholg, as
puted ¢) generalization erragge, as a func- a function of the sparsityr for N = 80
tion of @ for N = 80, «r =~ 0.03. The curve (o) and a few values foN = 160 ). The
representingfgsen (») is given as reference. generalization threshold for feature selec-

tion af,, (>) is given as reference.

abrupt. It is also clear from Fig. 1 that the transition isr@asingly abrupt for increas-
ing system sizeN. It is instructive to relate the generalization eregg, for network
identification to that for feature selecti@§en in Fig. 2. The latter figure illustrates that
afgsen, the training set sizer for Sgsen = 1/2, is independent of the system sileand
that theaf;en converges to a step-function fof — co. Hence we observe a first order
phase transition between a regimedot agsenwhere the student simply reproduces the
training set, and another regime for- cxgsen where he is able to reproduce the teacher’s

output perfectly.

The relation between the generalization error for the nekvwetentification problem
ggenand that for feature selectimgsen, given by Eq. (2), isillustrated in Fig. 3. Itis clear
thategen for the network identification problem can reliably be estied frornsfgsen for
the feature selection problem. Values beyangh, are less reliable since inaccuracies
for Sgsen are amplified considerably due to the mathematical form of(Eg



Sparsity The next question concerns the relation between the spafsihe teacher
and the generalization threshold. For a non-sparse teagherr ~ 1, one would need
a training set of sizer ~ 1 since each of th&l(N + 1) components has to be deter-
mined. However, as Fig. 1 illustrated, the fact that theheads sparse simplifies the
identification process considerably. Fig. 4 shows the geization thresholdyge,, for
network identification as a function @f. It is clear that training sets of increasing size
a are required to facilitate the transition to the generélireregime as increases,
i.e., as the sparsity decreases. As expectedktfor 1, agen ~ 1. It is clear that the
advantage sparsityfiers to the liciency of the learning algorithm virtually vanishes
for kr ~ 0.5. However, it is very pronounced fet < 0.2. As before, these results have
been obtained for many independent instances of the tgagdhand teacher.

Learning process To gain a better understanding of the learning processthe evo-
lution of the student with respect to the teacher as a funcaifdhe training set size we
first consider a fixed training set and teacher. Define a seguaftraining setgm, for

m: 1,..., M suchthajm C ymr1 andlym:1l = lyml+ 1. These sets are used to determine
a sequence of studertsg, form: 1,..., M. Fig. 5 showsS,y ©® T as a function of the
training set sizer. ForaN = 1, the number of false negativesNg« and the number
of false positives is 0. For increasing the number of false positives increases ap-
proximately linearly witha, while the number of false negatives decreases very slowly.
The plot illustrates clearly that the transition to genieedlon is very sudden: aigen,
SegeN @ T = 1. Fig. 6 and 7 confirm that the scenario sketched above isthtiee
typical behavior when it is averaged over many independaintihg sets and teachers.
The latter plot illustrates the explanation given abovelierbehavior o5,5 © T.

Fig.5. The learning process characterized Fig.6. The learning process characterized
by S, © T as a function of the size of the by S, © T as a function of the size of the
training setm/N for an individual run. training setm/N, system sizedl = 100 (o),

N =160 @) andN = 300 ¢) for «r ~ 0.03.

Noisy data Noise is ubiquitous in real world applications, hence it Brdatory to test
the algorithm’s robustness. Fig. 9 shows the relative dieviaf the respective output of
student and teachék as a function of the noise level As can be expected for a linear



Fig. 7. MeasureSineg (o, N = 100 dotted
line, N = 160 solid line),ngos (o, N = 100
dotted line,N = 160 solid line) and (>,
N = 100 dotted lineN = 160 solid line)
as a function of the training set sizefor
xt ~ 0.03.
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Fig. 9. Deviation of the student and teacher

outputsx as a function of the noise level
on the training set.

Fig. 8. Fig. 2 using Eq. (3) foN = 100 (),
N = 160 @) computedN = 160 observed
(), kr ~ 0.03.
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Fig. 10. Nineg (), Nipos (>) andneorr (o) @s a
function of the noise leved- for N = 100,
xt ~ 0.03.

system, the quality is acceptable for low noise levels dnlyparticular,c- < 0.01 still
yields a reasonably accurate output. The breakdown foiehigbise levels is explained
by Fig. 10 which shows a very large increase in the numbersé faositivegipos for an

increasing noise levet. Although these components are very small, they nevegbele

preclude perfect identification of the network.

Scaling with system size How the system scales with the system size has already been

illustrated in Fig. 1, 4, 6 and 7. However, it is Fig. 2 thatyides the most insight. It

turns out that the generalization error curves for varigigsesn sizes can be computed

by applying the correct scaling on the system siz&uppose we have a curve tszgen
versusa for No, then the curve for system sidécan be obtained by scaling

@(N) = %+ /No/N (a(No) — af, (3)



The result is shown in Fig. 8 for system sizds= 100 andN = 160 with sparsity
k1t = 0.03. The curve computed fod = 160 from that forN = 100 is in very good
agreement with the one observed for that system size.

4 Discussion and conclusions

It is quite remarkable that a simple model such as the oneidenesi here exhibits
so many interesting features. With respect to the researestipns addressed, we may
conclude that the algorithm identifies a network wit{N + 1) interactions using a train-
ing set of considerably smaller size. This turns out to beresequence of the teacher’s
sparsity. Moreover, a first order phase transition occursduhe learning process. The
system shows a sudden transition to perfect generalizdtidng the learning process.
The latter can be explained by considering the geometrézpnétation of linear pro-
gramming. Adding an additional constraint in the form of aput-output pair can lead
to abrupt changes of the minimal values that can be attaipdkebobjective function
when its domain is further restricted. The relation betwiberfeature selection problem
and the network identification task is of note, especialigsithe generalization behav-
ior of the latter can be derived from the former’'s. Moreovke scaling properties of
feature selection have been demonstrated: given the dizlagiom curve for a certain
size and a fixed sparsity, one can compute the generalizatioe for a system of any
size with that sparsity. Unfortunately, the algorithm’dustness to noise is fairly lim-
ited. This is to be expected given the nature of linear pnognang as mentioned above.
This is definitely an area for future research.
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