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Abstract

Modelling infectious diseases data is a relatively young research area in which

clustering and stratification are key features. It is not unlikely for these

data to have missing values. If values are missing completely at random as

defined by Little and Rubin (1987), the analysis on the complete cases is

valid. However, in practice this assumption is usually not fulfilled. We will

show the effect of ignoring missing data in modelling the force of infection of

the bovine herpesvirus-1 in Belgian cattle and propose the use of weighted

generalized estimating equations with constrained fractional polynomials as

a flexible modelling tool.

Keywords: Clustering; Force of Infection; Missing Data; Weighted Gener-

alized Estimating Equations.
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1 Introduction

Veterinary epidemiology is a research area that deals with the investigation

of diseases in animal populations. The seroprevalence survey of the Bovine

Herpesvirus-1 (BoHV-1) in Belgian cattle is a study of a transmissible disease

in cattle, which is of economic importance and significance to international

trade. To facilitate the free trade of cattle, several European countries imple-

mented eradication programs for BoHV-1. BoHV-1 causes infectious bovine

rhinotracheitis, an endemic disease. The BoHV-1 seroprevalence (apparent

prevalence) in the Belgian cattle population was determined by a large sero-

logical survey, conducted from December 1997 to March 1998 (Boelaert et al.,

2000; Speybroeck et al., 2003). The sample taken was stratified for province.

Within each province, 1% of the total number of herds was sampled. The

blood samples, which were taken from all animals in the selected herds, were

tested for antibodies against BoHV-1 by using an ELISA-test, specific for

the BoHV-1 glycoprotein B (gB). Additional characteristics as gender, type

of the herd (dairy, mixed or beef), purchased or homebred and size of the

herd were recorded. In total 11,284 cattle were investigated. In Table 1, a

complete overview of the variables is given.

[Table 1 about here.]

A central characteristic of infectious disease dynamics is the transmission

of the infection from infectious to susceptible animals. The force of infection

(FOI) is the rate of acquisition of the infection for a susceptible host and

can be interpreted as the instantaneous probability of getting infected, given

that the animal was not infected before. Under the assumptions of life long
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immunity and that the disease is in a steady state, the prevalence and FOI

can be estimated from such seroprevalence data (Grenfell and Anderson,

1985).

In Figure 1, the age-specific prevalence of gB-antibodies is displayed.

Since animals younger than 6 months typically have high seroprevalence of

gB-antibodies because of acquired maternal antibodies and not necessarily

due to an infection with BoHV-1, we restricted ourselves to the animals older

than 6 months.

[Figure 1 about here.]

Empirical data in general show that the FOI is age-dependent. Numer-

ous parametric (Grenfell and Anderson, 1985; McCullagh and Nelder, 1989;

Grummer-Strawn, 1993; Keiding et al., 1996) and semi-parametric models

(Becker, 1989; Jewell and Van Der Laan, 1995; Shkedy et al., 2003, 2006)

have been proposed.

The BoHV-1 data, like many other infectious diseases data, are compli-

cated and thus statistical modelling has to deal with these complexities. A

first important obstacle is the clustering. Indeed, once an infection is in-

troduced in a herd, animals within the same herd have a high chance to get

infected too. Thus, individual responses are more homogeneously distributed

within herds than in the whole population. In this paper, we utilize gener-

alized estimating equations (GEEs Liang and Zeger, 1986) to account for

clustering. GEEs focus on the population mean and recognize the existence

of clustering but consider it to be a nuisance characteristic.

A second obstacle, of main interest in this paper, is that not all variables

are fully observed. From the recorded characteristics, ‘age’, ‘sex’ and ‘gB’
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have a small amount of missing values (0.23%, 0.12%, 0.32%, respectively),

while the ‘purchase’ variable, indicating whether an animal was homebred or

purchased had 2091 missing values (19.00 %). The purchase-missing values

were caused by a technical problem while conducting the survey; for animal-

level identification, the animals’ working eartag numbers were noted, not

their official ones. The eartag numbers have a higher readability, but un-

fortunately, they were not indexed. Exploratory analyses show that the be-

haviour of the seroprevalence and FOI is substantially different for purchased

compared to homebred animals. Incorporating ‘purchase’ in the analysis is

therefore important but introduces difficulties due to missing values.

In epidemiological practice, there still is a tendency to analyse the so-

called “complete cases”, i.e., those cases which are fully observed, while ig-

noring the missingness mechanism. If data are missing completely at random

(MCAR) as defined by Little and Rubin (1987, Chapter 6), i.e., the miss-

ing data mechanism does not depend on either the observed or unobserved

data, these complete cases can indeed be analyzed as they are, but even then

complete case analysis is non-efficient since one throws away the information

still available from the partially observed cases. Moreover, if this MCAR-

assumption is not fulfilled, as is frequently the case in practice, bias can be

introduced when merely using the complete cases. Several methods to handle

missing data are known. None of them are without limitations. One of them

is multiple imputation (Rubin, 1978), where each of the gaps in the data are

imputed several times and the analyses of the augmented data sets are then

combined. However, in data with a mix of continuous and discrete variables

as for the BoHV-1 data, the choice of imputation model is non-trivial. An-
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other technique is to weight a subject by the inverse of the probability that

it is observed (Zhao and Lipsitz, 1992). In this way subjects unlikely to be

observed gain more weight. This can be seen as an implicit imputation of

missing values. Both techniques are valid under the MAR-assumption (miss-

ing at random), meaning that the missingness mechanism does not depend on

unobserved values but possibly on observed values (Little and Rubin, 1987).

In this paper, focus is on the effects of missingness when estimating the

age-specific FOI for these correlated seroprevalence data. In a first section,

we will show how the age-specific FOI is estimated using GEEs to account for

the clustering. In a second section, we show that merely using the complete

cases leads to inappropriate results and WGEEs can be used to correct for

missingness. We are then ready to estimate the FOI while including other

risk factors into our model. We end with a general discussion in Section 4.

2 Estimating the Age-specific FOI: Account-

ing for the Clustering Effect

Mathematical modelling of infectious diseases involves describing the flow of

individuals from different infection states within the population (Anderson

and May, 1991). Those mathematical models consist of a set of differential

equations which aim to describe the flow of individuals from one stage to

another. In this paper, we assume the disease is irreversible, meaning that

immunity is assumed to be lifelong. We further assume that the mortality

caused by the infection is negligible and can be ignored. Under these assump-

tions the partial differential equation describing the change in the susceptible
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fraction at age a and time t is given by:

∂

∂a
q(a, t) +

∂

∂t
q(a, t) = −λ(a, t)q(a, t), (1)

where q(a, t) is the fraction of susceptible individuals at age a and time t.

Here λ(a, t) is the rate at which susceptibles become infected and is called

the FOI, i.e., the rate at which the host moves from the susceptible to the

infected class. We refer to Anderson and May (1991) for more details. The

FOI typically is a function of age and time. Estimating the force of infection

as a function of age and time is hard since adequate data are mostly not

available. Under the assumption of endemic equilibrium also referred to as

the steady state assumption it is possible to derive the FOI from serological

data. The steady state assumption says that the infectious disease can be

sustained in a population without the need for external inputs, i.e. while

assuming birth and death rates to be equal, an infected animal infects exactly

one other animal. The validity of the steady state assumption can not be

verified for a single cross-sectional serological sample since age and time are

confounded but turns out to be a helpful starting point in studying the

dynamics of an infectious disease as BoHV-1. Let us first derive the FOI in

case of a generalized linear model assuming that the disease is in a steady

state, i.e., time independent.

Let π(a) be the probability to be infected before age a. In general, the

seroprevalence π(a) is modelled as

π(a) = g−1(η(a)) = δ(η(a)), (2)

where η(a) is the linear predictor and g is a link function. If it is assumed

that the disease is in a steady state, then the age-dependent FOI, λ(a), can

7



be modelled according to equation (Anderson and May, 1991):

d

da
q(a) = −λ(a)q(a), (3)

with q(a) = 1 − π(a) and so

λ(a) =
π′(a)

1 − π(a)
. (4)

When, e.g., a logit link is considered, the FOI can be expressed as:

λ(a) = η′(a)
eη(a)

1 + eη(a)
. (5)

A first step in determining the age-specific FOI for the BoHV-1 data is

to model the seroprevalence while dealing with the clustering. There exist

several ways to deal with clustering (Aerts et al., 2002). Ignoring the clus-

tering by modelling the seroprevalence using a logistic regression typically

leaves the consistency of point estimation intact, but the same is not true for

measures of precision. Note that this result is only true when clustersize is

uninformative, i.e. not related to the outcome of interest. The issue of deal-

ing with an informative clustersize is covered later in this paragraph and in

the discussion. In case of a ‘positive’ clustering effect (i.e., animals within a

herd are more alike than between herds), then ignoring this aspect of the data

will lead to overestimation of the precision and underestimation of standard

errors and lengths of confidence intervals. Both GEEs and random-effects

models can be used to deal with clustering.

In this paper, we will use the GEE approach and we refer to Faes et al.

(2006) for the random-effects approach. Denote Y i = (Yi1, . . . , Yini
)T , the

vector of measurements on the i-th cluster and µi = (µi1, . . . , µini
)T , the

corresponding vector of means. Let Vi denote the covariance matrix of Y i.
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Let the vector of explanatory variables for the j-th unit in the i-th cluster

be denoted by X ij = (xij1, . . . , xijp)
T and denote g(µij) = xT

ijβ, where g is

the link function.

The GEE approach of Liang and Zeger (1986) for estimating the p × 1

vector of regression parameters β is based on solving:

S(β, φ; R) =

K∑

i=1

∂µi

∂β
Vi

−1(Y i − µi(β)) = 0. (6)

Using GEEs, correlated binary data are modelled using the same link

function and linear predictor setup (systematic component) as in the inde-

pendence case (logistic regression). The random component is described by

the same variance functions as in the independence case, but the covariance

structure of the correlated measurements must also be modelled.

This is done by means of a working correlation matrix. The working cor-

relation matrix is usually unknown and must be estimated. It is estimated in

the iterative fitting process using the current value of the parameter vector β.

Several correlation structures can be specified (Liang and Zeger, 1986). An

attractive point of the GEE approach is that it yields a consistent estimator

of β even when the working correlation matrix is misspecified (Liang and

Zeger, 1986), again when clustersize is uninformative. It has been shown,

that in case of a working independence model, which is often convenient,

β̂ mostly is relatively efficient (Zeger et al., 1988; McDonald, 1993). But

even if it were not, a more honest estimate of the variability is obtained.

Throughout this paper, an independent working correlation will be used.

In some situations, like for the BoHV-1 data, the cluster size is related

with the outcome of interest. Indeed, animals from larger herds have a
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higher probability to get infected and thus a larger seroprevalence due to

a higher contact rate with other animals (Figure 1). When dealing with

an informative cluster size, interest can either go out to the probability of

infection of a randomly sampled unit from all units for which no additional

adjustment to the analysis has to be made, or, to the probability of infection

of a randomly sampled unit from a randomly selected cluster. For the latter

situation, Williamson et al. (2003) proposed to weight each animal in a cluster

with the inverse of its cluster size to obtain equal weight for all clusters. In

this paper, we focus on the first situation while considering the effect of

herdsize on the seroprevalence, since veterinarians and animal health policy

makers are more interested in inference on the probability to be infected

and related force of infection of an arbitrary animal from the full animal

population (because they are less interested in interpretations in terms of

herds as hierarchical units of the population). We will briefly come back to

the second situation in the discussion of this paper.

In a parametric model, the relationship between a response variable and

several explanatory variables can be expressed in different ways, subject to

different assumptions. Using fractional polynomials in the linear predictor

part of (2) provides flexibility while attaining the advantages of using a para-

metric model (Royston and Altman, 1994).

For a given degree m a fractional polynomial of age looks like

ηm(a; β,p) =

m∑

i=0

βiHi(a), (7)

where β = (β0, . . . , βm) is the vector of regression parameters, p =

(p1, . . . , pm) a vector of powers p1 ≤ . . . ≤ pm, which are positive or neg-
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ative integers or fractions and Hi(x) is a transformation given by

Hi(a) =






api if 0 6= pi 6= pi−1

log(a) ifpi = 0
Hi−1(a) × log a if pi = pi−1

(8)

with p0 ≡ 0 and H0 ≡ 1. Royston and Altman (1994) argue that polyno-

mials with degree higher than m = 2 are rarely required in practice. The

powers themselves are taken from {−2,−1,−0.5, 0, 0.5, 2, . . . , max(3, m)} as

proposed by Royston and Altman (1994).

The use of splines could offer a fully nonparametric alternative to the use

of fractional polynomials. However, the combination of GEEs and (mono-

tone) splines is computationally hard and deals with other issues like, e.g.,

knot and bandwidth selection. An appealing feature of fractional polynomi-

als is that they, as a parametric tool, offer a wide range of flexible functional

forms and that they include the conventional polynomials, often used in

practice (Shkedy et al., 2006; Faes et al., 2003).

The FOI as a function of age cannot be negative and thus the age-specific

prevalence has to be monotone increasing. Determining β̂ is therefore subject

to constraints which depend on the functional relationship with age. We used

the ‘Constrained Optimization’-module in Gauss 6.0. The procedure uses a

sequential quadratic programming method in combination with the New-

ton Raphson procedure. In an initial stage, the Broyden-Fletcher-Goldfarb-

Shanno procedure (Shanno, 1985) was used to obtain starting values for the

Newton Raphson procedure.

Let us now model the seroprevalence using a systematic component of

the form

g(π) = φ(a) + βherdsize, (9)
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where g is a link function, φ is a function of age and herdsize is added to

the model to deal with the informative cluster size. Using a logit link and a

fractional polynomial of degree 2, we can rewrite model (9) as

logit(P (gB = 1)) = β0 + β1agep1 + β2agep2 + β3herdsize. (10)

The appropriate powers of the fractional polynomial were determined by

minimizing Akaike’s Information Criterion. Since we only focus on degree 2

fractional polynomials this corresponds with the deviance criterion used by

Royston and Altman (1994).

[Table 2 about here.]

[Figure 2 about here.]

The upper part of Table 2 shows the selected powers, parameters and

standard errors. There is a positive effect of herdsize on the seroprevalence

and the components of the fractional polynomial counteract. Taking into

account the clustering effect has a substantial impact, as can be seen from the

differences between the empirical standard errors, i.e., clustering is taken into

account, and the model-based standard errors, i.e., ignoring the clustering.

The solid curves in Figure 2 show the age-specific seroprevalence (left panel)

and FOI (right panel) for herdsizes 15, 45, 80 and 120, representing small,

medium, large and very large herds, respectively. There is a clear increase in

seroprevalence with age and the FOI reaches a maximum at the ages 1.91,

1.86, 1.80 and 1.73, respectively. This decrease in the age of maximal FOI for

an increasing herdsize, shows that the disease spreads faster in larger herds.
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For all analyses, we omit those cases with missing ‘age’, ‘gb’ and ‘sex’,

since this corresponds to only 0.5% of all animals and ignoring them has

a negligible impact on the analysis. However, omitting those animals with

missing ‘purchase’ from the analyses not only leads to inefficiency but could,

depending on the nature of the missing data process, introduce consider-

able bias (Zhao et al., 1996). In the next section, and before incorporating

‘purchase’ and other variables in the model, we investigate the underlying

missingness process.

3 Handling Missingness when Modelling the

FOI for the BoHV-1 Study

3.1 Missing data in the BoHV-1 Data

From the 11, 284 records, 2148 records have at least one missing value in

response and covariates. For 26 cows (0.26%) age was missing, 14 records

(0.12%) did not have gender recorded and the antibody level was missing 36

times (0.32%). The only remaining variable was ‘purchase’ with a substantial

amount of missingness since it was not recorded 2091 times (19%). Therefore,

for the remainder of this paper observations with one or more missing values

for ‘age’, ‘sex’, and ‘gB’ are ignored.

Define Rij , an indicator variable which takes the value 1 if, for the j-th

animal of the i-th herd, ‘purchase’ is observed and 0 otherwise.

To asses the influence of the different variables on the missingness of

‘purchase’, we use a generalized additive model as proposed by Wood (2000);

Wood and Augustin (2002); Wood (2004). Starting from the generalized

additive model (11), we apply the 3-step method proposed by Wood and
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Augustin (2002) to drop terms:

logit(P (R = 1)) = β0 + fc1(herdtype) + fc2(gB) + fc3(sex) + fc4(province)

+ fs1
(age) + fs2

(herdsize) + fs3
(densanim) + fs4

(densherd).(11)

fci
(·) denotes a main effect of a categorical variable and fsi

(·) denotes a

smooth function. For this model no term could be dropped. Since the re-

sponse ‘gB’ has a significant effect on the missingness process, a complete

case analysis would indeed result in bias (Zhao et al., 1996).

Based on these results, we can show the effect of ignoring missing data

(animals for which purchase is missing) when modelling the FOI using model

(10). For that purpose, we again consider model (10). We compare the

analysis based on the complete cases, i.e., cases for which the ‘purchase’-

variable is observed with the analysis based on the available cases, i.e., cases

for which ‘purchase’ is allowed to be unobserved and show that a weighted

analysis on the complete cases can be used to correct for missing ‘purchase’-

values. The animal-specific weight is the inverse of the estimated probability

(see (11)).

3.2 The Effect Of Ignoring Missing Values

When using ‘weighted (generalized) estimating equations’ (Zhao and Lipsitz,

1992; Robins et al., 1994; Zhao et al., 1996), each contribution of a case is

weighted with the inverse of the probability that this case is observed. In

this way cases, with a low probability to be observed, gain more influence

in the analysis and thus represent the missing values resulting in an implicit

imputation of missing values.
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The weighted version of the GEE (6) is given by

Sw(β, φ,R) =

K∑

i=1

∂µi

∂β
Vi

−1Wi(Y i − µi(β)) = 0, (12)

where Wi is a ni × ni diagonal matrix with elements wij equal to the inverse

probability for the j-th observed unit in the i-th cluster to be observed,

i = 1, . . . , K; j = 1, . . . , ni. These probabilities are preferably estimated

semi-parametrically as in (11).

If one of these probabilities is estimated to be extremely low, the cor-

responding animal would receive an excessively large weight. Moreover the

size of the herd to which the animal belongs would correspondingly blow up

to an unacceptable size. Therefore, as recommended by Little (2004), the

estimated weights should, if necessary, be standardized to sum to the total

sample size. In our clustered data situation, it has to be checked whether

the sum of the estimated weights within a herd approaches the correspond-

ing total herdsize. This was checked in all analyses but no problems were

encountered.

When dealing with missing data, not only estimation but also the selec-

tion of an appropriate model among a set of candidate models based on the

complete cases leads to unreliable results. There exist several model selection

criteria for GEEs (e.g., AIC, BIC and QIC). Hens et al. (2006) proposed to

use weighted model selection criteria for incomplete data. Here, the weights

are the same inverse selection probabilities. This again in analogy with the

inverse probability weighting used by, e.g., Zhao and Lipsitz (1992); Robins

et al. (1994); Zhao et al. (1996). The weighted AIC-criterion was used to

select the appropriate powers of the fractional polynomial of age when per-
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forming the weighted analysis.

In Table 2, the selected powers, parameters and standard errors (columns

1 and 3) for three different methods can be found. The first method corre-

sponds to the GEE-model of Section 2 where all available cases (AC) were

used, the second method is based on the complete cases (CC) and the third

method uses a WGEE on the complete cases (WCC). The results in this

table are difficult to compare since the different methods selected different

fractional polynomials. But, in Figure 2, the long and short dashed lines

show the resulting seroprevalence and FOI curves corresponding to the use

of CC and WCC, respectively. The fits show, especially on the scale of the

FOI, that using WCC succeeds in restoring what is observed when using AC

and therefore provides correct inferences compared to using CC, especially

for larger herdsizes. All methods show a positive effect of herdsize on the

seroprevalence and FOI.

As pointed out before, there is often interest in the age at which the

maximal FOI is reached, agemax. In Table 3 âgemax is shown for four herdsizes

15, 45, 80 and 120, representing small, to large-sized farms. For all estimation

methods, âgemax decreases as herdsize increases. However, using CC, agemax

is severely overestimated with 10 to 17 months compared to âgemax based

on AC, while the use of WCC gives a slight underestimation of agemax with

about 2.5 months.

[Table 3 about here.]

These results again show that a beneficial effect of the WCC approach

and that using CC can lead to substantial bias.
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3.3 Including Other Covariates When Estimating The

FOI

Until now, we looked at a model of the form (9). Additionally, one can

account for heterogeneity related to other covariates by considering

g(π) = φ(a) + βherdsize + Xγ. (13)

Here X denotes the design matrix corresponding to those covariates.

Let us consider an additive model consisting of a fractional polynomial of

degree 2 for age, herdsize as before, but now including all other variables as

main effects. Selecting the appropriate submodel and powers of the degree 2

fractional polynomial of age was done by using the (weighted) AIC-criterion.

Deletion of variables stops when the (weighted) AIC-value reaches a min-

imum. The presented analyses are based on both CC and WCC to show

the impact of ignoring missing observations. For both models herdtype was

deleted and all other variables were retained.

The summary of the final models using (weighted) GEEs; i.e., powers,

estimates, empirical and model-based standard errors with corresponding

p-values, is given in Table 4.

[Table 4 about here.]

While there is a clear difference between the empirical and model-based

standard errors, reflecting the clustering in the data, this has little impact on

the significance (α-level 0.05) of the different covariates. From these analyses

one can conclude that purchased animals have a higher seroprevalence than

homebred animals. An increasing herdsize, increasing animal density and
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decreasing herd density give an increase in the seroprevalence. The apparent

contradictive effect of animal density and herd density on the seroprevalence

has been observed before (Boelaert et al., 2005) and a possible explanation

is that low herd density points at regions where family and amateur farms

are located, while a high density refers to regions of professional farms. The

latter farms are thought to be more aware of the potential danger of infectious

diseases.

The FOI λ(a) as given in (5) can be denoted as λ(a) = η′(a)π(a), i.e.

the product of the derivative of the linear predictor w.r.t. age and the sero-

prevalence. For a model of the form (13) with design matrix X, this turns

to φ′(a)π(a, X) and as a consequence the ratio of FOIs over covariate values

can be rewritten as a proportional odds, e.g., for gender:

λ(bulls)

λ(cows)
=

π(bulls)

π(cows)
. (14)

Bulls have a higher prevalence then cows and thus according to equation

(14), bulls have a higher FOI.

In veterinary epidemiology, it is known that transport of animals is an

important factor for the rate at which the disease spreads and that mostly

young animals are more likely to be transported. Therefore, we now look at

a model where for both purchased and homebred animals separate fractional

polynomials of age are used. Starting from the previous model and including

these fractional polynomials, first the animal and then the herd density did no

longer contribute significantly to the model. The selected powers, estimates,

empirical and model-based standard errors (with corresponding p-values), of

the resulting models are given in Table 5.
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[Table 5 about here.]

Whether the animals were purchased or homebred has a substantial in-

fluence on the powers chosen for both fractional polynomials. While there

is a rather small difference between the use of CC and WCC for homebred

animals, there is a considerable one between the two methods for purchased

animals. The contributions of the main effects are of the same order as for the

additive models except for the province of Brabant where there is a change

in sign, although non-significant.

From a veterinary point of view, purchased animals are expected to have a

higher seroprevalence compared to homebred animals (Boelaert et al., 2005).

The interaction model shows that young purchased animals have a higher

seroprevalence than young homebred animals, while the seroprevalence for

older purchased animals is smaller compared to older homebred animals.

Indeed, animals are purchased at a young age and are likely to either be

infected or to have recovered from an infection. After introduction into the

herd, they can spread the infection to the other animals in the herd, which

are mostly homebred. Purchased animals are thus more likely to be infected

at a young age in contrast to homebred animals. Secondly, animals in beef

herds are slaughtered at young age (18-20 months) and therefore a decline for

older ages is caused by the absence of these animals compared to homebred

animals.

4 Discussion

The force of infection is one of the primary epidemiological parameters of

infectious diseases. A variety of parametric and non-parametric models have
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been developed to estimate the force of infection from cross-sectional sero-

prevalence data.

It is not unlikely for survey data to have missing values. There is still a

great tendency to model incomplete data by simply deleting those subjects

with missing values, ignoring the missingness mechanism. This paper ad-

dresses the missing data issue in the field of veterinary epidemiology. The

analyses on the BoHV-1 data clearly show that inappropriate conclusions

can be drawn when the missing data mechanism is ignored. It is shown that

an inverse probability weighted analysis (see e.g. Zhao and Lipsitz, 1992)

can be used to correct for missing values. This inverse probability weighting

was applied to the GEE-approach in combination with a constrained frac-

tional polynomial of age to allow for sufficient flexibility in estimating an

age-specific FOI.

In this paper, we focussed on modelling the probability of infection for

a randomly selected animal from the population of animals while studying

the effect of herdsize. If interest would go out to a randomly selected animal

from a randomly selected herd, the presented analyses can easily be adapted

by assigning herd-specific weights to all animals, where the sum of weights

within a herd is standardized to be equal for all herds. Adding covariates like

herdsize to the model would then reflect how the seroprevalence of a typical

animal from a randomly selected herd would change with different values for

this covariate. Furthermore, the inclusion of the inverse probability weighting

is easily done by standardisation with respect to the original herdsize instead

of the observed herdsize.

Modelling the FOI helps understanding the dynamics of the BoHV-1 in-
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fection. The main epidemiological conclusion is that purchasing animals and

importing them into a herd, facilitates a rapid spread of the infection through-

out the herd, resulting in a different behaviour for homebred and purchased

animals. It was also observed that larger herds and especially bulls have a

higher prevalence and FOI. For a herd of average size, the maximal FOI is

observed at 22 months of age. For smaller herds, this increases, while for

larger herds it decreases.
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Figure 1: Seroprevalence plot as a function of age. Each dot represents the
age-specific fraction of seropositive animals stratified over small (◦), medium
(×) and large (•) herds.



Figure 2: Age-specific seroprevalence fits together with the age-specific FOI
for the available cases (full line), the complete cases (long dashed line) and
weighted complete cases (short dashed line) for herdsizes 15, 45, 80 and 120.
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Table 1: Overview of the different variables in the BoHV-1 dataset.
Variable Description
gB ELISA-test positive for glycoprotein B, or not
herd number of the herd
animal number of the animal
province province (nine, Brabant Walloon and Flemish Brabant together)
herdtype dairy, mixed or beef
herdsize size of the herd
densanim density of animals in the municipalities (number of cattle/km2)
densherd density of herds in the municipalities (number of herds/km2)
age age of the animal (in months)
sex gender of the animal
purchase purchased or homebred



Table 2: GEE parameter estimates, standard errors and corresponding p-
values for the three different methods (independent working correlation).

Parameter Estimate Emp.S.E.(P-value) Mod. S.E.(p-value)

Available Cases (-2,-1)
Intercept 0.410 0.304(0.177) 0.113(<0.001)
age−2 5.321 2.238(0.017) 1.039(<0.001)
age−1 -7.095 1.661(<0.001) 0.726(<0.001)
herdsize 0.007 0.003(0.020) 4.0e-4(<0.001)

Complete Cases (-1,-0.5)
Intercept 2.640 0.888(0.003) 0.410(<0.001)
age−1 6.638 2.935(0.024) 1.383(<0.001)
age−0.5 -10.969 3.312(0.001) 1.537(<0.001)
herdsize 0.008 0.004(0.046) 5.0e-4(<0.001)

Weighted Complete Cases (-2,-0.5)
Intercept 1.726 0.563(0.002) 0.205(<0.001)
age−2 1.813 1.967(0.357) 0.658(0.006)
age−0.5 -5.215 1.571(0.001) 0.506(<0.001)
herdsize 0.004 0.005(0.424) 5.1e-4(<0.001)



Table 3: Age (in years) where the maximal FOI is reached for herdsize 15,
45, 80 and 120 for the three different methods.

Herdsize CC AC WCC
15 3.32 1.91 1.72
45 3.09 1.86 1.67
80 2.85 1.80 1.62
120 2.60 1.73 1.56



Table 4: Final additive models for the BoHV-1 data: complete cases (upper
part) and weighted complete cases (lower part).

GEE (Independence)
Parameter Estimate Emp.S.E.(P-value) Mod.S.E.(p-value)
Complete Cases
Intercept 1.714 0.477(<0.001) 0.001(<0.001)
age−1 7.219 1.438(<0.001) 0.003(<0.001)
age−0.5 -12.405 1.593(<0.001) 0.003(<0.001)
herdsize 0.009 4.3e-6(<0.001) 6.7e-4(<0.001)
purchase 0.259 0.058(<0.001) 1.7e-4(<0.001)
sex 0.486 0.088(<0.001) 1.8e-4(<0.001)
densanim 0.001 3.5e-4(0.004) 2.0e-6(<0.001)
densherd -0.090 0.029(0.002) 1.5e-4(<0.001)
province (ref.cat. Namur)
- Antwerp 1.747 0.240(<0.001) 0.001(<0.001)
- Brabant 0.178 0.273(0.514) 0.001(<0.001)
- West Flanders 1.476 0.236(<0.001) 0.001(<0.001)
- East Flanders 1.745 0.238(<0.001) 0.001(<0.001)
- Hainaut 1.454 0.233(<0.001) 0.001(<0.001)
- Liège 0.818 0.234(<0.001) 0.001(<0.001)
- Limburg 1.983 0.244(<0.001) 0.001(<0.001)
- Luxembourg 0.370 0.255(0.1468) 0.001(<0.001)
Weighted Complete Cases
Intercept 0.881 0.270(0.001) 0.001(<0.001)
age−2 2.544 0.682(<0.001) 0.002(<0.001)
age−0.5 -6.571 0.527(<0.001) 0.001(<0.001)
herdsize 0.006 5.7e-4(<0.001) 4.2e-6(<0.001)
purchase 0.422 0.050(<0.001) 2.1e-4(<0.001)
sex 0.469 0.077(<0.001) 1.7e-4(<0.001)
densanim 0.002 3.2e-4(<0.001) 1.9e-6(<0.001)
densherd -0.107 0.026(<0.001) 1.4e-4(<0.001)
province (ref.cat. Namur)
- Antwerp 1.371 0.183(<0.001) 0.001(<0.001)
- Brabant 0.004 0.211(0.985) 0.001(<0.001)
- West Flanders 1.485 0.176(<0.001) 0.001(<0.001)
- East Flanders 1.515 0.181(<0.001) 0.001(<0.001)
- Hainaut 1.246 0.174(<0.001) 0.001(<0.001)
- Liège 0.635 0.176(<0.001) 0.001(<0.001)
- Limburg 1.710 0.187(<0.001) 0.001(<0.001)
- Luxembourg 0.110 0.194(0.571) 0.001(<0.001)



Table 5: BoHV-1 data: ‘Purchase (pu) - Homebred (hb)’ - specific fractional
polynomial model.

GEE (Independence)
Parameter Estimate Emp.S.E.(p-value) Mod.S.E.(p-value)
Complete Cases
Intercept 2.026 1.253(0.106) 0.545(<0.001)
age−1

hb 7.819 3.187(0.014) 1.691(<0.001)
age−0.5

hb -13.286 3.565(<0.001) 1.876(<0.001)
age0.5

pu 1.170 0.519(0.024) 0.217(<0.001)
age2

pu -0.004 0.007(0.555) 0.004(0.284)
herdsize 0.010 0.004(0.024) 0.001(<0.001)
purchase -6.707 1.337(<0.001) 0.618(<0.001)
sex 0.462 0.192(0.016) 0.087(<0.001)
province (ref.cat. Namur)
- Antwerp 1.715 0.936(0.067) 0.231(<0.001)
- Brabant 0.016 0.979(0.987) 0.269(0.953)
- West Flanders 1.315 0.885(0.137) 0.230(<0.001)
- East Flanders 1.540 0.876(0.079) 0.228(<0.001)
- Hainaut 1.388 0.992(0.162) 0.232(<0.001)
- Liège 0.705 0.948(0.457) 0.232(0.002)
- Limburg 1.862 0.890(0.036) 0.241(<0.001)
- Luxembourg 0.357 0.927(0.700) 0.253(0.159)
Weighted Complete Cases
Intercept 1.637 1.251(0.190) 0.427(<0.001)
age−1

hb 5.783 3.217(0.072) 1.35(<0.001)
age−0.5

hb -10.909 3.592(0.002) 1.488(<0.001)
log(agepu) 2.161 3.313(0.514) 1.237(0.0810)
age0.5

pu 0.012 1.305(0.993) 0.521(0.982)
herdsize 0.009 0.004(0.027) 0.001(<0.001)
purchase -5.077 1.369(<0.001) 0.532(<0.001)
sex 0.454 0.189(0.016) 0.071(<0.001)
province (ref.cat. Namur)
- Antwerp 1.656 0.932(0.076) 0.175(<0.001)
- Brabant -0.006 0.977(0.995) 0.203(0.977)
- West Flanders 1.265 0.883(0.152) 0.173(<0.001)
- East Flanders 1.498 0.873(0.086) 0.172(<0.001)
- Hainaut 1.36 0.986(0.168) 0.175(<0.001)
- Liège 0.669 0.941(0.477) 0.175(<0.001)
- Limburg 1.835 0.888(0.039) 0.183(<0.001)
- Luxembourg 0.310 0.924(0.737) 0.192(0.106)


