
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Extrinsic recalibration in camera networks

Peer-reviewed author version

HERMANS, Chris; DUMONT, Maarten & BEKAERT, Philippe (2007) Extrinsic

recalibration in camera networks. In: FOURTH CANADIAN CONFERENCE ON

COMPUTER AND ROBOT VISION, PROCEEDINGS. p. 3-10..

Handle: http://hdl.handle.net/1942/7807

Extrinsic Recalibration in Camera Networks

Chris Hermans1, Maarten Dumont1,2, Philippe Bekaert1

{chris.hermans, maarten.dumont, philippe.bekaert}@uhasselt.be
1Hasselt University - Expertise Centre for Digital Media 2Interdisciplinary institute for BroadBand Technology

transnationale Universiteit Limburg IBBT - Expertise Centre for Digital Media

Wetenschapspark 2, 3590 Diepenbeek, Belgium Diepenbeek, Belgium

Abstract

This work addresses the practical problem of keeping
a camera network calibrated during a recording session.
When dealing with real-time applications, a robust calibra-
tion of the camera network needs to be assured, without the
burden of a full system recalibration at every (un)intended
camera displacement. In this paper we present an efficient
algorithm to detect when the extrinsic parameters of a cam-
era are no longer valid, and reintegrate the displaced cam-
era into the previously calibrated camera network. When
the intrinsic parameters of the cameras are known, the al-
gorithm can also be used to build ad-hoc distributed camera
networks, starting from three calibrated cameras. Recali-
bration is done using pairs of essential matrices, based on
image point correspondences. Unlike other approaches, we
do not explicitly compute any 3D structure for our calibra-
tion purposes.

1 Introduction

When recording images for real-time applications, a ro-
bust camera calibration needs to be guaranteed during the
entire recording session. It is often not possible to inter-
rupt the capture at every occurrence of (un)intended camera
movement, in order to perform a full system recalibration.
Even when we can shut down the system and completely re-
calibrate the entire camera network, this proves to be a time
consuming operation. Moreover, in case of a single moving
camera, there is no immediate need to recalibrate the entire
camera network. Compared with the previous calibration
information, there is only a small subset of changed vari-
ables, namely the extrinsic parameters of the moved cam-
era.

Therefore, we have developed a simple and elegant al-
gorithm that detects camera movement, and consequently
computes a robust extrinsic recalibration of the moved cam-
era. During this computation, we use available information

of the remaining calibrated cameras and the known intrinsic
calibration of the moved camera, in order to reintegrate the
camera in the network coordinate frame.

2 Related Work

2.1 Calibration of Camera Networks

Calibration algorithms for multi-camera setups are gen-
erally divided in four steps [9]: (1) detect feature points in
each camera and calculate correspondences between the dif-
ferent views, (2) perform an initial reconstruction, (3) apply
bundle adjustment and (4) upgrade to a metric reconstruc-
tion.

For the purpose of initial calibration, the first step is usu-
ally facilitated by the use of a calibration object. This object
can come in many different flavors, usually either a planar
surface with an imprinted binary pattern (such as a checker-
board, parallel lines [2] or evenly spaced circles or boxes
[2, 20, 22]), or a single moving bright spot (such as a laser
pointer) [18, 19]. All these methods provide point-point
and/or line-line constraints, whose accuracy is critical to the
success of the rest of the algorithm.
In comparison to these methods, our algorithm is applied
during capturing time, and therefore does not have the lux-
ury of being able to use a specifically designed calibration
object. Even though in some controlled environments, the
calibration object can be an explicit part of the scene (e.g. a
checkerboard pattern on the floor, etc...), we make no such
assumptions.
As our technique is intended for a wide variety of appli-
cations, we make no assumptions about the nature of the
camera baselines. Therefore we employ SIFT [12], the cur-
rent state-of-the-art feature detector and descriptor. More
recently, an interesting alternative for real-time applications
has emerged in the form of SURF [3].

The second step (the initial reconstruction method) is
the key difference between most of the multi-camera algo-

rithms. These techniques can roughly be labeled as either
top-down or bottom-up methods.
Algorithms that employ a top-down approach are gener-
ally employed in controlled environments, such as a lab or
a recording studio, calibrating the cameras all at once. A
widely used approach of this category is the projective fac-
torization proposed by Martinec & Pajdla [14]. This method
requires the estimation of projective depths for proper ini-
tialization, which is achieved using epipolar geometry as
done by Sturm & Triggs [17]. Occlusion handling is solved
by an extension of the method by Jacobs [11] to fill in miss-
ing data. This extension can exploit the geometry of the
perspective camera so that both points with known and un-
known projective depths are used.
Algorithms of the second category are often more suitable
for less controlled environments, distributed applications
[13] and video sequences [5] (a dynamic scene viewed by
a single camera, as opposed to multiple viewpoints of the
same static scene). The general strategy here is to first per-
form a local calibration for one or more small clusters of
cameras, and then gradually converge to a solution using
the previously calculated building blocks.
The method used by Sinha et al. [16] shows some resem-
blance to our own. They first resolve for a set of three cam-
eras with non-collinear centers, for which the three funda-
mental matrices F12, F13, F23 have been computed. Given
these, they calculate a corresponding triplet of camera ma-
trices P1, P2, P3. This provides a general projective frame
for the rest of the reconstruction. To complete the N-view
camera network, they then inductively add each of the re-
maining cameras. The key observation in this method is
that, given camera matrices P1, P2 and fundamental ma-
trices F12, F13, the third camera matrix P3 spans a 4D
subspace of P

8. This can be solved linearly, calculating
a F 23 = [e32]xP3P

+
2 that most closely approximates the

given F23.
The similarity with our work is that we also use informa-
tion from neighboring camera matrices and fundamental
(essential) matrices to restore the missing camera param-
eters. However, the differences between this method and
ours are twofold. First and foremost, we assume the intrin-
sic parameters of our cameras to be known. Therefore, we
are dealing with essential matrices instead of fundamental
matrices. Secondly, unlike Sinha et al., our building block
does not need to be a camera triplet. We can use information
from two or more neighbors to find a solution.

The third step consists of applying bundle adjustment to
the previously calculated results, usually by minimizing the
error using the Levenberg-Marquardt algorithm. This pro-
cedure results in a projective reconstruction {P i,Xj} of the
detected feature points {xi

j}.

In case a metric calibration is needed (step four), a
rectifying homography H can be constructed from auto-

calibration constraints, to upgrade the reconstruction to a
metric one {P iH,H−1Xj}. To attain this homography, we
can choose between direct and stratified methods [9]. The
direct auto-calibration methods involve computing the ab-
solute conic or its image, whilst the stratified methods solve
the reconstruction in two steps: first solving for the plane at
infinity, then using this to solve for the absolute conic.

2.2 An Alternate Approach

Besides the works referenced above, one alternative
algorithm stems from the following theorem.

Theorem 1 [Hartley Zisserman [[9], p.385]] Given three
compatible fundamental matrices F21, F31 and F32 satisfy-
ing the non-collinearity condition, the three corresponding
camera matrices P , P ′ and P ′′ are unique up to the choice
of a 3D projective coordinate frame

The first two camera matrices P and P ′ may be deter-
mined from the fundamental matrix F21. The third camera
matrix P ′′ can then be determined in the same projective
frame as follows.

1. Select a set of matching points xi ↔ x′
i in the first two

images, satisfying x′T
i F21xi = 0, and use triangula-

tion to determine the corresponding 3D points Xi.

2. Use epipolar transfer to determine the corresponding
points x′′

i in the third image, using the fundamental
matrices F31 and F32.

3. Solve for the camera matrix P ′′ from the set of 3D-2D
correspondences Xi ↔ x′′

i .

This is essentially the approach of triangulation (de-
termining the 3D points Xi) and localization (determin-
ing camera pose from 2D-3D correspondences, more com-
monly known as camera resectioning) in the work of
Mantzel et al. [13]. It should be noted that they employ
the described algorithm on essential matrices, rather than
fundamental matrices. In order to ensure the validity of the
computed camera matrix in step three, they also have the
need to ensure the orthogonality of the rotation component.
This leads to an iterative algorithm that alternates between
optimization of the camera rotations and translations.

An essential issue of the described method consists of
the fact that it does not use all the constraints available. We
chose to apply a different approach, making direct use of
the available information in the form of the intrinsic camera
calibration, reducing the available degrees of freedom.

Another issue of this approach consists of the cumula-
tive error that is introduced at every stage of the algorithm.
Even though the approach can be extended to multiple cam-
eras, there is still the need at every stage to remove outliers

Algorithm 1 Overview of our Central Algorithm

CAMERA MOVEMENT DETECTION

Continuous loop:

1. Initialize new views since last iteration:

(a) Calculate the background image.

(b) Determine primary and secondary hotspots.

2. For each view that currently is not being recalibrated:

(a) Cross-correlate patches around primary hotspots.

(b) If number of good patches lies below threshold:

i. Cross-correlate patches around secondary
hotspots.

ii. If number of good patches lies below thresh-
old, recalibrate view.

CAMERA RECALIBRATION

1. Find N nearest neighbor cameras. Assign index 0 to
the moved camera.

2. For each neighboring camera i:

(a) Compute the essential matrix E0i.

(b) Compute the canonical camera pair
PLi

i = [I|0] and PLi
0 = [RLi

0 |tLi
0].

3. Compute the mean rotation matrix RW
0

4. Using the baseline estimates connecting tWi with tW0 ,
compute the translation vector tW0 .

in the feature point matches. The accuracy of the camera
resectioning in the third stage is also very dependent on the
success of the previous stages (3D reconstruction and point-
transfer), and has the risk of becoming inaccurate in case of
a low amount of point correspondences.
Our approach needs to only perform a single feature match-
ing step, and only in image space. This reduces the chance
of introducing unwanted errors to a minimum.

3 The Algorithm

We will now explain the basic building blocks of our
method, together with our assumptions about the host sys-
tem. Next we shall describe the two main algorithms
of our method: movement detection and recalibration.
An overview of our method can be found in algorithm list-
ing 1.

3.1 Notation

In this section the basic principles and notations used in
this paper are introduced. Unless noted otherwise, our nota-
tion is analogous to the one used in Hartley’s work [9]. Pro-
jective geometry and homogeneous coordinates are used.

3.1.1 Cameras

The following equation is used to describe the perspective
projection of the scene onto the images

m ∝ PM (1)

where P is a 3×4 projection matrix describing the perspec-
tive projection, and M = [X,Y,Z, 1]T and m = [x, y, 1]T

are vectors containing the homogeneous coordinates of the
world points respectively image points. The symbol ∝ in-
dicates equality up to a scale factor.

In the metric case, the matrix factorizes as

P = K[R|t] (2)

where the 3×3 matrix K encodes the intrinsic parameters of
the camera, and (R, t) denotes a rigid transformation which
indicate the position and orientation of the camera. If the
calibration matrix K is known, then we may apply its in-
verse to the point m to obtain m̂ = [u, v, 1]T = K−1m. We
shall refer to these coordinates as normalized coordinates.
The camera matrix K−1P = [R|t] is called a normalized
camera matrix. During the rest of this paper, when we refer
to camera matrices, we assume them all to be of this form.

3.1.2 Coordinate Frames

During the rest of the paper, we shall refer to the Euclidean
coordinate frame of the previous calibration as the world
coordinate frame W , e.g. the camera matrix of the first
camera in this coordinate frame shall be denoted by PW

1 .
The coordinate frames derived from essential matrices

are referred to as local. For example PL2
1 denotes the ma-

trix of the first camera in the local coordinate frame of the
second camera.

3.1.3 Cross Product

If a = (a1, a2, a3)T is a 3-vector, then one defines a corre-
sponding skew-symmetric matrix as follows:

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (3)

The cross product of two 3-vectors a × b is then related to
skew-symmetric matrices according to:

a × b = [a]×b =
(
aT [b]×

)T
(4)

Figure 1. We define our algorithm for a cen-
tralized network structure, in which its sys-
tem has access to all the nodes containing
cameras.

3.2 System Assumptions

We define our algorithm for a centralized network struc-
ture. More specifically, we make the following assump-
tions: (1) the network is synchronized and (2) the station on
which the algorithm is performed, has access to the neigh-
boring cameras of the moved camera and their synchronized
images. Thus we assume the algorithm to be running on a
system that has access to all the nodes containing cameras.

The algorithm can also be applied to a distributed camera
network, running an instance of the algorithm at each node,
assuming that the conditions mentioned above are met.

Network delays have little to no impact on the system:
as long as we have a means to ensure synchronous image
pairs between two cameras, all requirements for essential
matrix computation are met. The actual time between each
acquired image pair is irrelevant. We end acquisition when
we have enough point correspondences to commence com-
putation.

3.3 Movement Detection

The goal of our system is to ensure that all cameras in
the network remain calibrated. Therefore we need to detect
when a camera has ’moved’: when its known external cal-
ibration is no longer valid. This movement detection algo-
rithm loops continuously during the entire application, and
can be divided into two parts.

3.3.1 Preprocessing

The preprocessing step is called at each iteration in order to
initialize new views, corresponding to cameras previously
unknown to the network. When a new camera is introduced

to a running application, we need to prepare it for calibra-
tion and recalibration.

First, we estimate a background from a predefined
number of frames from the new view. There are several
approaches to this estimation, and some are better suited for
our purposes than others, e.g. we observed that applying
a median filter on the frameset results in unnecessary
sharp transitions in areas where the background is only
exposed during a very limited time. This has undesirable
consequences for the rest of our algorithm. Instead, we
employed an averaging filter. It is not unlikely that more
sophisticated approaches can be devised to improve the
initial conditioning of the detection phase.

Our next step is to detect two layers of hotspots (Figure
2). We define a hotspot as an interesting feature that remains
immobile during the entire recording process. This could be
in any form, varying from special-purpose markers in the
scene to distinctive features in the background. For the rest
of the paper, we have chosen the latter approach.

As we are not interested in advanced aspects of feature
detection (scale-space, affine invariance, etc...), but only in
their cornerness, we have chosen to apply feature detection
as done by Shi and Tomasi [15]. This cornerness allows
us to impose a rank-order on the feature set. From these
detected features, we sample two subsets which we will
label the primary and secondary hotspots. The primary
set will contain a small set of features, which lie at a large
distance from each other, whilst the secondary set will be
larger and denser. It is possible that a feature exists in
both the primary as the secondary hotspot set: they are
completely independent. We add a predefined number of
features to each set, starting with the best features (highest
minor eigenvalues, see Shi and Tomasi [15] for more
details) and iteratively adding new features to the respective
sets that are not too close to the features already added.

In case of a large change in the scene condition (e.g.
completely different lighting conditions), the background
needs to be refreshed, and the hotspots need to be recal-
culated. As this is a computationally expensive operation, it
should only occur when, for every camera in the network, a
large portion of the calculated background is different from
the current frame. As an alternative, we can simply let the
user trigger the background recomputation when the scene
contents are altered.

3.3.2 Detection

For each view that currently is not being recalibrated, we
perform a double checking procedure.

First, we verify that each of the primary hotspots is still

Figure 2. Given a set of detected features with
an established rank-order, we can extract two
subsets of with respectively high (red mark-
ers) and low (green markers) intra-element
distances, which we label the primary and
secondary hotspots.

in place. For a hotspot located at pixel (x, y), we perform
a normalized cross-correlation between the n × n windows
centered around (x, y) in both the current frame and the pre-
viously calculated background. If the computed value is be-
low a certain threshold, this indicates that either the camera
has moved, or the feature point has been occluded. When a
predefined number of primary hotspots has been validated,
we move on to the next view. If we reach the end of the list,
this means not enough ’good’ hotspots have been found,
and we move on to the secondary layer of hotspots.

The presence of a secondary layer of hotspots is nec-
essary to avoid unneeded recalibration attempts. We repeat
the algorithm mentioned above for this additional set of fea-
ture points. If it returns a number of validated hotspots be-
low a predefined threshold, we assume the camera needs to
be recalibrated.

While our primary check is a quick process, slightly
more time is needed for the secondary hotspots (≈ 10−4 to
10−3 sec.), but this amount is still significantly less than the
time-consuming feature detection and matching performed
in the recalibration phase (≈ a second per view). This ap-
proach reduces computation time to a level where the detec-
tion algorithm can work in parallel to other real-time algo-
rithms, where overtaxing the processor would be unaccept-
able.

3.4 Recalibration

When camera movement is detected, the moved camera
is flagged as inactive until the recalibration process is
completed. The first step in the recalibration algorithm
is to find the N nearest neighbors of the moved camera,
with respect to its previous location and orientation. If
the cameras are part of nodes equipped with radio sensors
and transmitters, the current nearest neighbors can be
determined from broadcast intervals instead.

Once we have determined these neighbors, we calculate
the essential matrices between the moved camera and each
of its neighbors. We employ a standard robust algorithm
(appendix A)[9], based on RANSAC [4] and the normal-
ized eight-point algorithm [8]. On these matrices, we apply
the following theorem:

Theorem 2 [Hartley Zisserman [[9], p.259]] For a given
essential matrix E = Udiag(1, 1, 0)V T , and first camera
matrix P = [I|0], there are four possible choices for the
second camera matrix P ′, namely

P ′ = [UWV T | + u3] or [UWV T | − u3] or
[UWT V T | + u3] or [UWT V T | − u3]

Testing with a single point to determine if it is in front
of both cameras is sufficient to decide between the four dif-
ferent solutions for the camera matrix P ′. Since this infor-
mation is already available from our initial essential matrix
estimation, we now have a metric local coordinate frame for
each essential matrix.

3.4.1 Comparing Coordinate Frames

We will now compare the projections of a scene point
M = [X Y Z 1]T onto a pair of cameras, both in world
and local frame coordinates. The normalized image coordi-
nates are identical in both (metric) coordinate frames, thus
they are used for comparison.

The world coordinates are our reference frame, hence we
dub them to be exact. This gives us the following equations:

[u0 v0 1]T = [RW
0 |tW0]

[
XW Y W ZW 1

]T
[u1 v1 1]T = [RW

1 |tW1]
[
XW Y W ZW 1

]T (5)

Alternatively, the local coordinate frame is known only
up to scale. As we know it to be metric as well, the camera
matrices are of the following form:

[u0 v0 1]T = [±RL
0 |λtL0]

[
XL Y L ZL 1

]T
[u1 v1 1]T = [I|0]

[
XL Y L ZL 1

]T (6)

Putting these equations together gives us:

ML =
[

I 0
0 1

]−1 [
RW

1 tW1
0 1

]
MW

ML =
[±RL

0 λtL0
0 1

]−1 [
RW

0 tW0
0 1

]
MW

(7)

This provides us with two equations which define the
rigid transformation (R, t):

RW
0 = RL

0 RW
1 (8)

tW0 = RL
0 tW1 + λtL0 (9)

3.4.2 Computing the Rotation Matrix

Equation (8) provides us with N estimates of the moved
cameras orientation. Using these approximate solutions,
we then compute an average rotation.

There are several approaches to this computation. Very
often the barycenter of quaternions or matrices that repre-
sent the rotations are used as an estimate of the mean. One
could point out that these methods neglect that rotations
belong to a non-linear manifold, and that in order to obtain
proper rotations, renormalization or orthogonalization must
be applied. However, Gramkow [7] showed that using the
simpler linear methods gives us a very good approximation
of the non-linear average. Therefore, we employed the
barycenter of rotation matrices as our method of choice.

The eigenvalues of an orthogonal matrix Rort are of the
form (1, eiθ, e−iθ), where the eigenvector corresponding to
the unit eigenvalue represents the rotation axis [6]. Based
on this, the mean rotation is defined by:

R = arg min
Rort

∑
i

θ2(R−1Ri) (10)

≈ arg max
Rort

tr

(
R−1

∑
i

Ri

)
(11)

The solution to the latter optimization problem is actu-
ally the core of the 3D-3D pose problem, which has been
solved by Horn [10], Arun et al. [1] and Umeyama [21].
It is most easily obtained by Singular Value Decomposi-
tion (SVD),

∑
i Ri = UWV T , where the singular values

are ordered in descending order. Introducing the matrix
S = diag(1, 1, det(U)det(V T)), the mean rotation in the
above problem is simply given by

R = USV T (12)

One preprocessing step has been omitted in the previ-
ous computation. As we have two valid possibilities for
each RWi

0 (each rotation matrix and their inverse), we have

Figure 3. The local coordinate frames, ob-
tained from essential matrices between the
moved camera and its previously neighbor-
ing cameras, provide us with a baseline es-
timate (fig: dotted lines) for each camera
pair. These estimates should have a com-
mon intersection point, reducing the problem
to finding a point X with a minimized distance
to each baseline. This will be the location of
the new camera center.

to designate one orientation as the dominant orientation.
To achieve this, we first compute RW1

0 . Next, we apply
the following transformation for all remaining RWi

0 , in or-
der to make sure all orientations are located within the same
hemisphere:

∀i ∈ [2, N] : RWi
0 = arg min

R∈{±R
Wi
0 }

‖RW1
0 − R‖2 (13)

3.4.3 Computing the Translation

Each local coordinate frame defines the new position of the
moved camera up to scale (as depicted in Figure 3). This
translates into equation (9), which defines the baseline con-
necting the camera centers of the camera pair in the world
coordinate frame. Theoretically, the moved camera should
be located at the intersection of all these lines. In practice,
this boils down to a least-squares minimization problem,
in which we minimize the 3D Euclidean point-line distance.

The distance between the line parameterized by eq.9 and
a point X is defined as:

d =
‖tL0 × (RL

0 tW1 − X)‖
‖tL0 ‖

(14)

=
∥∥∥∥(−[tL0]×

‖tL0 ‖
)

X −
(
− [tL0]×RL

0 tW1
‖tL0 ‖

)∥∥∥∥ (15)

Although this definition provides us with three linear equa-
tions per neighboring camera, only two of them are linearly

independent. The reason for this is that [tL0]× is a rank two
matrix.

Combining the rows of m lines gives us a minimization
problem of the form ‖Ax − b‖, where A is a 2m × 3 ma-
trix and b is a 2m vector. We solve this problem using the
normal equations AT Ax = AT b. If AT A is invertible, then
the solution is x = (AT A)−1AT b.

4 Results

We implemented our system on a clustered network
of workstations (2.8GHz Xeons, 2Gb RAM), connected
by firewire to four Point Grey Flea cameras at each node,
counting 20 cameras in total. The recalibration algorithm
was running on one of the nodes, acquiring images trough
network connections when needed. Camera calibration
information was stored on the respective workstations.

Uniformly colored backgrounds contain little to no use-
ful intensity information. This is a common problem for
feature matching algorithms, and our movement detection
is no exception to this rule. When we employ feature point
detection as the basis for our hotspots, movement detection
is dependent on a sufficient amount of background texture.

A possible work-around to this problem is to provide the
scene with markers, which will serve as traceable hotspots.
In a dense camera networks, these markers could be
assigned to the cameras themselves, allowing the cameras
to track each other.

In practice, we have observed the algorithm to give
accurate results, comparable to those of state-of-the-art
(de)centralized full-network recalibration algorithms.
Using the newly computed camera matrix, the essential
matrices associated with its neighbors resulted in a repro-
jection error of less than a pixel.

Computation times for the detection phase of our method
were in the order of 10−4 to 10−3 seconds per iteration,
making it attractive for real-time applications.

Recalibration times were also severely reduced when
compared to full system recalibrations, even though there
is still the matter of the time consuming SIFT detector.
The time needed to detect and describe SIFT features in
each camera frame proves to be the main bottleneck of
our system (≈ a second per view). In comparison, we
also implemented the algorithm for small-baseline setups,
using a normalized cross-correlation of RGB intensities
as our matching criterium. This resulted in a significant
reduction in computation time, often to less than a second.
For unknown scene configurations however a wide-baseline
setup must be assumed, and SIFT is currently still the
state-of-the-art detector/descriptor available. Because we

are aiming for real-time applications, we are currently in-
vestigating the use of SURF. We believe this should provide
us with speed improvements comparable to small-baseline
implementation we mentioned above.

A final note should be made for practical purposes. If
the cameras are very close to the recorded scene, it is not un-
common for an actor to completely occlude the background.
In order to avoid unnecessary recalibration attempts, it is
recommended to let the camera perform an additional de-
tection phase, a predefined amount of time after the first
’movement’ was detected. This way, a passing actor will
not trigger the recalibration algorithm.

5 Conclusions

We have demonstrated a working algorithm which
successfully assures the robust calibration of a camera
network, without the need for a full system recalibration
after the event of (un)intended camera displacement. The
algorithm detects when the extrinsic parameters of a camera
are no longer valid, and reintegrates the displaced camera
into the previously calibrated camera network.

This detection is done by the use of hotspots, traceable
features in the background image. A sparse and a dense
layer of such features are matched with the current frame,
in order to establish if they are still present and located at the
same pixel coordinates. If a large enough quantity of these
hotspots remain in place, the camera is stable. Otherwise
we commence recalibration of the displaced camera.

Recalibration is achieved only using image point corre-
spondences, without the need to compute the underlying
3D structure. We compute essential matrices from the dis-
placed camera to its neighboring cameras, which provide us
with local coordinate estimates for each camera pair. These
canonical pairs are related to the real world coordinates, up
to a similarity transformation. From these estimates, a mean
rotation and translation is deduced in the coordinate frame-
work of the previous full system calibration.

It is important to note that our calibration algorithm is
based on fitting camera pair estimates, rather than fitting
2D-3D correspondences. This means our computations
have a lower dimensionality (two rotations and trans-
lations instead of a large set of point correspondences),
and avoid the unneeded step of computing the 3D estimates.

The results of our algorithm are comparable to those
of state-of-the-art (de)centralized full-network recalibration
algorithms.

6 Acknowledgments

The authors acknowledge financial support on a struc-
tural basis from the European Regional Development Fund
(ERDF) and the Flemish Government. Part of this research
was funded by the BOF-projectfund of Hasselt University.
Furthermore we would like to thank our colleagues for their
help and inspiration.

Appendix A:
Robust Essential Matrix Computation

1. Feature point detection: Compute feature points in
M views for N frames.

2. Putative correspondences: Compute a set of feature
points matches based on the SIFT detector/descriptor.

3. RANSAC robust estimation: Until a certain thresh-
old has been reached, use random samples of feature
point matches to find an essential matrix with E a large
support of inliers.

4. Non-linear estimation: Re-estimate E from all corre-
spondences classified as inliers by minimizing a cost
function using the Levenberg-Marquardt algorithm.

5. Guided matching: Further interest point correspon-
dences are now determined using the estimated E.

The last two steps are iterated until the number of corre-
spondences is stable.

References

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares
fitting of 2 3-D point sets. IEEE Transactions On Pattern
Analysis And Machine Intelligence, 9(5):698–700, 1987.

[2] P. T. Baker and Y. Aloimonos. Calibration of a multicam-
era network. Conference on Computer Vision and Pattern
Recognition Workshop, 07:72, 2003.

[3] H. Bay, T. Tuytelaars, and L. J. V. Gool. SURF: Speeded up
robust features. In Proceedings of the 9th European Confer-
ence on Computer Vision. Springer-Verlag, may 2006.

[4] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM archive, 24:381 – 395, 1981.

[5] A. W. Fitzgibbon and A. Zisserman. Automatic camera re-
covery for closed or open image sequences. In Proceedings
of the 5th European Conference on Computer Vision-Volume
I (ECCV ’98), pages 311–326, London, UK, 1998. Springer-
Verlag.

[6] G. H. Golub and C. F. V. Loan. Matrix computations (3rd
ed.). Johns Hopkins University Press, Baltimore, MD, USA,
1996.

[7] C. Gramkow. On averaging rotations. Journal of Mathemat-
ical Imaging and Vision, 15(1-2):7–16, 2001.

[8] R. I. Hartley. In defense of the eight-point algorithm. IEEE
Transactions On Pattern Analysis And Machine Intelligence,
19(6):580–593, 1997.

[9] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004.

[10] B. Horn. Closed-form solution of absolute orientation using
unit quaternions. Journal of the Optical Society A, 4(4):629–
642, April 1987.

[11] D. Jacobs. Linear fitting with missing data: Applications
to structure-from-motion and to characterizing intensity im-
ages. In Proceedings of the 1997 Conference on Com-
puter Vision and Pattern Recognition (CVPR ’97), page 206,
Washington, DC, USA, 1997. IEEE Computer Society.

[12] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.

[13] W. Mantzel, H. Choi, and R. Baraniuk. Distributed Cam-
era Network Localization. In Asilomar Conference on Sig-
nals, Systems, and Computers, volume 2, Pacific Grove, CA,
November 2004.

[14] D. Martinec and T. Pajdla. Structure from many perspective
images with occlusions. In Proceedings of the 7th European
Conference on Computer Vision-Part II (ECCV ’02), pages
355–369, London, UK, 2002. Springer-Verlag.

[15] J. Shi and C. Tomasi. Good features to track. In Proceedings
of the Conference on Computer Vision and Pattern Recogni-
tion (CVPR’94), pages 593 – 600, 1994.

[16] S. N. Sinha, M. Pollefeys, and L. McMillan. Camera net-
work calibration from dynamic silhouettes. Proceedings
of the 2004 Conference on Computer Vision and Pattern
Recognition (CVPR’04), 01:195–202, 2004.

[17] P. F. Sturm and B. Triggs. A factorization based algorithm
for multi-image projective structure and motion. In Proceed-
ings of the 4th European Conference on Computer Vision-
Volume II (ECCV ’96), pages 709–720, London, UK, 1996.
Springer-Verlag.

[18] T. Svoboda, H. Hug, and L. J. V. Gool. Viroom - low cost
synchronized multicamera system and its self-calibration.
In Proceedings of the 24th DAGM Symposium on Pattern
Recognition, pages 515–522, London, UK, 2002. Springer-
Verlag.

[19] T. Svoboda, D. Martinec, and T. Pajdla. A convenient multi-
camera self-calibration for virtual environments. PRES-
ENCE: Teleoperators and Virtual Environments, 14(4):407–
422, August 2005.

[20] R. Y. Tsai. A versatile camera calibration technique for high-
accuracy 3d machine vision metrology using off-the-shelf tv
cameras and lenses. IEEE Journal of Robotics and Automa-
tion, 3(4):323–344, 1987.

[21] S. Umeyama. Least-squares estimation of transformation
parameters between two point patterns. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(4):376–
380, 1991.

[22] Z. Zhang. A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(11):1330–1334, 2000.

