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A MEASURE FOR THE RELIABILITY OF A RATING SCALE BASED ON

LONGITUDINAL CLINICAL TRIAL DATA.

Abstract

A new measure for reliability of a rating scale is introduced, based on the classical
definition of reliability, as the ratio of the true score variance and the total variance.
Clinical trial data can be employed to estimate the reliability of the scale in use, when-
ever repeated measurements are taken. The reliability is estimated from the covariance
parameters obtained from a linear mixed model. The method provides a single number
to express the reliability of the scale, but allows for the study of the reliability’s time

evolution. The method is illustrated using a case study in schizophrenia.
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1. Introduction

Many measurements in medical practice and research are based on observations made by
clinicians using rating scales. The subjective nature of these scales inquires investigation
of their psychometric qualities, such as the validity and the reliability.

Classically, test-retest reliability is estimated as the correlation between two consecutive
measures assuming a steady state condition in the subjects. However, rating scales are often
used longitudinally in clinical practice, where this assumption is unlikely. Vangeneugden
et al. (2004) have shown that linear mixed models allow to model the change in the
subjects’ condition within the fixed effects structure, estimating it simultaneously with
the covariance parameters needed for the calculation of the intraclass correlation (ICC).
The ICC is the ratio of the between-subject variability and the total variability, and is
easy to obtain from a linear mixed model with only a random intercept. Vangeneugden
et al. (2004) extended the calculation of the ICC to more complicated models where a
random slope for time and a component of serial correlation are allowed. Depending on the
complexity of the model the reliability is then estimated as a single number, a correlation
depending on the time lag between two measurements, or a correlation matrix for any
pair of measurements. Even though this approach allows us to investigate reliability in
a general setting, using a correlation matrix to quantify it can lead to interpretational

difficulties. The problem is further aggravated when we want to compare two or more
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scales based on their reliabilities. It is not straightforward how the corresponding matrices
should be compared in order to determine which is the most reliable instrument.

In this paper, the basic definition of reliability as “the ratio between the true score variance
to the observed score variance” is the starting point for a new definition of reliability,
delivering a single yet meaningful measure, independently of the model used to fit the
data, facilitating its interpretation and applicability. Section 2 presents the underlying
model, and Section 3 introduces this new measure. In Section 4 we apply the methodology

to clinical trial data on schizophrenia.

2. The Linear Mixed Model

Linear mixed models allow repeated measurements to be described entirely in terms of
means, variances, and covariances (Laird and Ware, 1982; Verbeke and Molenberghs, 2000).
One can distinguish between three components of variability. Part of the covariance struc-
ture arises from subject-specific random effects explaining the heterogeneity between in-
dividuals. Another component of variability is the serial correlation, accounting for the
fact that measurements taken closer in time tend to be stronger correlated. The third

component is the measurement error. The model can be written as

Y; = XiB + Zibi + £1); + €2, W

b; ~N(0,D), eqy; ~N(0,Zg), €@~ N(0,7°H,),

i
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where Y'; is the p; dimensional vector of responses for subject ¢, with N subjects and p;
observations per subject. X; and Z; are fixed (p; x ¢) and (p; x r) dimensional matrices
of known covariates, 3 is the ¢g-dimensional vector of fixed effects, b; is the r-dimensional
vector containing the random effects, €(y), is a p;-dimensional vector of components of
serial correlation, and g(y), is a p;-dimensional vector of residual errors. Additionally, D

2 {3 a variance

is a general (r X r) covariance matrix, H; is a (p; X p;) correlation matrix, 7
parameter, and Xg; is an (p; X p;) covariance matrix. Furthermore, H; and Y g; depend
on ¢ only through their dimension p;, i.e., the parameters will not depend upon 1.

Model (1) implies the marginal model Y; ~ N(X;3,V;) where V; = Xp; + %; with Xp; =
Z;DZ! and ¥; = 72H; + Y R;. The total variability is decomposed into two parts: the first

one (Xp;) accounts for the variability of the subject-specific parameters or true scores,

whereas the second one (%;) includes all the remaining sources of variability.

3. Generalizing Reliability

Extending the concept of reliability we want to find a balance between a general and flexible
definition and, at the same time, keeping the intuition and appealing interpretation behind
the concept used in the classical test theory (CTT) (Lord and Novick, 1968). Therefore,

based on the different formulations of reliability within the CTT we propose the following



Psychometrika Submission February 13, 2007 PMO06-1446 Page 6

set of defining properties that any measure of reliability R should satisfy: (i) 0 < R < 1,
(ii) R = 0 if and only if there is only measurement error: V; = %;, (iii) R = 1 if and only
if there is no measurement error: ¥; = 0, and (iv) in a cross-sectional setting R equals the

true score variance to observed variance ratio.

3.1. Rp: A Measure for Reliability

We now summarize the variability of the repeated measurements on the scale by the trace
of its variance-covariance matrix. Similarly, we summarize the error variability by the trace
of the variance-covariance matrix associated with the error vectors €(y), and £(5),. We then

propose to quantify the reliability by the measure Ry:

1 Xt (Vi) — tr(%)
Ry = N ; W (2)

Note the connection of (2) to the equation D[D+(Z!%;'Z;)~~!, proposed by Bock (1966,
1983) as the “multivariate analogue of reliability”. In (2), tr(V;) accounts for the total

variability in the observations for subject i, whereas tr(X;) accounts for the measurement

tr(V;) — tr(%)

error variability in this subjects’ observations. Therefore, (V)
r(Vi

is the proportion
of all the variability in the observations of subject ¢ that is not due to measurement error.

R can then be interpreted as the average of all subjects’ contributions. It is easy to show

that R satisfies properties (i) — (iv). Also, when model (1) reduces to a random intercept
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model, R reduces to the classical case, i.e. the true score variance to observed variance

ratio. Additionally, in the balanced setting, and assuming that ¥; = ¥ and Xp; = ¥p, R

takes the simpler form:

3.2. Estimating R

A maximum likelihood estimate Rz can be obtained by replacing V; (or V) and ¥; (or

%) in (2) (or (3)) by the matrices’ maximum likelihood estimates, V; (or V) and %;
(or %), respectively. A confidence interval for Ry can then be obtained by applying the

delta method. According to this method we have: Ry ~ N (Rp, AXpA'), where Ip is

. . . . . . 12
the variance-covariance matrix of the variance-covariance parameter estimates and A" =

(aRT ORr OR7

3D 52 823) . A detailed derivation of the different elements of A can be obtained

from the authors’ website (www.censtat.uhasselt.be/staff). To avoid confidence limits that

R
exceed the [0, 1] range, a logit transformation is applied to Ry so that | = log ( r )

1— Ry
li
A (1 — a)% confidence interval for Rr takes the form [Lj, Lo] with L; = %, and
e 7z

o i Al1-a/2 ; L
Li =1+ 1)7RT(1_RT)\/AEPA, 1=1,2.
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4. A Case Study

The case study is a clinical trial with 453 patients, comparing risperidone to conventional
antipsychotics for the treatment of chronic schizophrenia. Patients were evaluated at base-
line and after 1, 2, 4, 6, and 8 weeks, by means of three rating scales. The Positive and
Negative Syndrome Scale (PANSS) is a 30-item scale, of which the Brief Psychiatric Rat-
ing Scale (BPRS) is essentially a shorter version, with 18 items, and the Clinical Global
Impression (CGI) is a 7-grade scale to indicate the patients’ change compared to baseline.
Reliability estimates were derived for the three scales.

Since interest primarily lies in the covariance structure, a complex fixed effects structure
was adopted (Diggle, Liang & Zeger, 1994), containing time (categorically), treatment,
and treatment by time interaction. For the random-effects structure, we considered (a)
a random intercept, (b) a random intercept and time, and (c) a random intercept, time,
and time squared. Even though model (1) is fully general, and allows to decompose the
error variability into a serial correlation and a residual variance component, in many prac-
tical applications this will lead to identifiability issues. For the case study, the variance-
covariance matrix (here: ¥; = ¥ = 72H + X i) was modeled by (a) only a serial correlation
component 72H (spatial gaussian, exponential, and power), (b) only a residual component
Y r (diagonal with either homogeneous variances or heterogeneous variances depending on

the time point), or (c) both (with ¥ constrained to be equal to ¢2I). The model with the
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TABLE 1.
Reliability estimates for three scales.

95 % confidence interval

Parameter Rr lower limit  upper limit

PANSS 0.846 0.825 0.865
BPRS 0.821 0.797 0.842
CGI 0.737 0.700 0.771

lowest AIC was selected. Restricted maximum likelihood was used for parameter estima-
tion (Verbeke and Molenberghs 2000). For all three scales, the final model has the general

form:

Yij = pij + bio + bitime; + ;5

where Y;; denotes the outcome for subject 7 at time point j, p;; summarizes the fixed
effects, b; ~ N(0,D) with D a 2 x 2 unstructured variance-covariance matrix, and
g; ~ N(0,%). For PANSS and BPRS, the best fitting covariance structure for the er-
rors corresponds to X = diag(ajz.). However, for CGI, ¥ = 72H, with H corresponding to a
spatial power serial correlation structure. Table 1 presents the reliability estimates for the
three scales and a 95% confidence interval. A SAS macro for these calculations is available
on the authors’ website (www.censtat.uhasselt.be/staff).

PANSS, the most extended scale, has the highest reliability. Remarkably, BPRS, which

is 12 items shorter, has a reliability of a similar magnitude. Historically, PANSS was
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conceived as a completion of BPRS, but these results illustrate that this additional com-
plexity does not bring much gain in reliability. Analogous results were found by Alonso
et al. (2002) when studying criterion validity. Similar values were obtained for trial-level
validity and individual validity for PANSS and BPRS. Rr for the one-item CGI is, not
surprisingly, somewhat below the former results.

Note that we can also estimate the reliability at each time point as:

. !
z]Dzj
o 2 2
z]Dzj—i—T —i—aj

Ryj =

with z; the jth row of Z, j = 1, ..., p. Figure 1 shows the estimated time point reliabilities
for the schizophrenia data. The CGI measures change relative to baseline and therefore
does not yield a score at baseline. The graph shows an increasing tendency for the re-
liability over time for all scales. Note that similar results were obtained for PANSS by
Vangeneugden et al. (2004). We speculate that this could be the result of a learning effect

of the raters.

5. Discussion

A scale, to be useful in practice, should exhibit small measurement error. Therefore, in the
evaluation of the scale, reliability is a concept of the utmost importance. A test-retest reli-

ability study essentially consists of repeating the same measurement. Like Vangeneugden
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FIGURE 1.
Schizophrenia Study. Reliability per time point for three scales
et al. (2004) we use linear mixed models to account for the different sources of variabil-
ity but our definition and quantification of reliability differ from their proposal. In the
present paper, the approach to reliability starts from the ratio of the true score variance
to the total variance. The trace is used to summarize the variability in variance-covariance
matrices. Both approaches differ in two main aspects. First, in the methodology proposed
by Vangeneugden et al. (2004) the serial correlation is combined with between-subject
variation calculating the ICC. In the present approach, only between-subject variability is
considered as true-score variability, implying that serial correlation is treated as measure-
ment error or residual variability. Intuitively, reliability can be described as the capacity
of a scale to discriminate between subjects. Following this idea we want to quantify how

much of the total variability can be explained by differences between the subjects to which
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the scale was applied. Since the variability between subjects is fully captured by the ran-
dom effects, we divide the total variation in: variability coming from the random effects
and residual variability. If the former explains a large percentage of the total variability,
then the differences observed when using the scale are mainly due to the differences be-
tween the subjects evaluated with the instrument. Arguably, such a scale will have a high
discriminating capacity and could be considered reliable. A second difference concerns the
outcome measure. In Vangeneugden et al. (2004) reliability is expressed as a decreasing
function of the time lag between two measurements, or a full correlation matrix when mod-
els with complex covariance structures are considered. In our approach, a single measure
of reliability is given. Seemingly such a measure can offer interpretational and practical
advantages, especially when more than one scale must be compared.

Finally, we would like to underscore the importance of the model building step. In
principle, different models could lead to a similar fit, similar AIC values, for the data
at hand and, at the same time, to different conclusions regarding reliability. However,
our experience with the present method illustrates that such cases are rare. As a general
strategy, we recommend that, if different models fit the data equally well, then the Rp
should be calculated for all of them as a way of sensitivity analysis. In case discrepant
results are observed, other types of considerations, apart from AIC values, could be taken

into account to select the most plausible and sensible model. The opinion of the experts in
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the field could be of great value in this case. Nevertheless, in such a situation, conclusions

should always be taken with care.
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