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Abstract

Microarrays are a tool for measuring the expression levels of a large number of genes simul-
taneously. In the microarray experiment, however, many undesirable systematic variations are
observed. Correct identification and removal of these variations is essential to allow the compar-
ison of expression levels across experiments. We describe the use of linear mixed models for the
normalization of two-color spotted microarrays for various sources of variation including printtip
variation. Normalization with linear mixed models provides a parametric model of which results
compare favorably to intensity dependent normalization LOWESS methods. We illustrate the use
of this technique on two datasets. The first dataset contains 24 arrays, each with approximately
600 genes, replicated 3 times per array. A second dataset, coming from the apo AI experiment, was
used to further illustrate the methods. Finally, a simulation study was done to compare between
methods.
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1 Introduction

During the last years a big expansion in the research on functional genomics
has been observed. Miniaturization and automatization made it possible to
determine, with the use of microarrays, which genes are differentially ex-
pressed and under which circumstances. We usually make a distinction be-
tween two types of microarrays: oligonucleotide and spotted c-DNA arrays.
In this article we will focus on the second type.

In a standard cDNA microarray experiment two mRNA samples are com-
pared by reverse transcribing them to cDNA, labeling them with green (Cy3)
and red (Cy5) fluorescent dyes, and allowing them to hybridize with the DNA
on the microarrays. The gene expression level of the two samples are measured
to determine the ratio of the two signals. This forms a good approximation
of the mRNA concentrations in the two samples.

The ratios are however subject to systematic errors, which can cause con-
siderable biases. In order to carry out a meaningful analysis, we first have to
normalize the data to remove these errors.

In order to detect systematic (non-linear) effects, Dudoit et al. (2002)
proposed to use MA plots. These plots present the difference between the
log intensity readings of the two channels (M = log2 R/G) versus their mean

log-value (A = log2

√

(RG)). If only a small number of genes is differentially
expressed, it is expected to see a horizontal curve around zero. This is how-
ever often not the case. Moreover, we sometimes find that the variability
of the values in the MA-plot changes according to the mean intensity level.
Therefore, normalization is needed to restore the original horizontal curvature
around zero.

In recent years, several methods have been proposed for normalization.
Park et al. (2003) discussed a number of methods and suggested choosing
the appropriate method according to the nature of the data. They arrange
the methods in a flowchart going from a simple global normalization method
to more complex models. The global normalization method assumes that
the red and the green intensities are related by a constant factor (Yang et

al., 2002) and the normalization model can be expressed as M = β0 + ε.
Here, ε is a random error vector. Hence, in the MA plot M is independent
of intensity. The linear normalization model, M = β0 + β1A + ε, allows for
linear dependence on intensity. Nonlinear intensity dependent normalization
models are expressed as M = f(A) + ε. Here f(A) is assumed to be a
nonlinear function of A. Lowess smoothers (Cleveland, 1974)) are commonly
used in order to estimate f(A), (Park et al., 2003, Yang et al., 2002, Dudoit
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et al., 2002 and Fan et al., 2003). Other nonlinear normalization methods
such as B-splines, wavelets, kernel smoothers and support vector regression
are discussed by Fujita et al. (2006) . Wolfinger et al. (2001) and Kerr et al.

(2000) discussed the use of an ANOVA model for normalization. In the first
step, data are normalized using a two-way ANOVA model (with treatment,
array and treatment × array as fixed effects in the model). In the second
step, the residuals obtained from the “normalization” model are used as the
response variable in the “gene” model. This type of model makes it possible
to account for experiment-wide systematic effects in a formal statistical way.

Dudoit et al. (2002) present a print-tip dependent normalization method,
where they use a lowess fit for each print-tip. They show that there might
be a strong print-tip or spatial effect and that it seems preferable in certain
cases to normalize per print-tip and not for the whole array at once.

The focus of this paper lies on normalization using linear mixed models
(LMM) as scatterplot smoothers of the MA plot. We use the methodology
discussed in Ruppert et al. (2003) and take different systematic error pos-
sibilities into account. The presence of several replicates of one gene is also
taken into consideration. The use of LMM allow us to incorporate the moral-
ization models proposed by Dudoit et al. (2002) and Park et al. (2003) into
one general framework in which all normalization models can be expressed as
LMM. The normalization model which was used to normalize the data is the
model with the best goodness-to-fit in the MA plot.

For illustration purposes cDNA microarray data is used from two veg-
etable studies designed to investigate the effect of certain vegetable diets on
the gene expression in colon and lung tissue of mice (van Breda et al., 2005).
In both the lung and colon study, three samples of material pooled from two
or three mice were available for the control group and four treatment groups.
Using each of the three sets of pooled samples, the four treatment groups were
compared to a control group by applying a reference design with dye-swap.
Thus, in both studies 24 arrays were used in total, each containing about 600
genes that were spotted three times on every slide. The signal intensity of a
spot was determined by taking the mean of the intensities of all pixels that
fell within the area declared to be the spot by the scanner software.

Furthermore, we use the dataset from Yang et al. (2002) and Dudoit
et al. (2002), referred to as the apo AI experiment, as a second example
to illustrate the framework. In this experiment, target cDNA was obtained
from eight mice for the control and treatment group respectively. These 16
microarrays consisted of 6384 cDNA probes, spotted onto the glass slides with
16 print heads. For further details about the apo AI experiment we refer to
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Yang et al. (2002) .
The paper is organized as follows. In Section 2 we discuss the main

ideas of several normalization methods and in particular, in Section 2.2 we
review the linear mixed models and their application to cDNA microarray
normalization. In Section 3 we illustrate the use of the proposed framework
on two datasets mentioned above, while Section 4 is devoted to a simulation
study in which the performance of normalization models is evaluated. All
SAS and R code needed to fit the models discussed in this paper can be
found in the supplemental materials for the paper and can be downloaded
from the website http://www.censtat.uhasselt.be/software/.

2 Normalization of Microarray Data Using

Linear Mixed Models

2.1 Smoothing with linear mixed models

Linear mixed models (Laird and Ware, 1982 and Verbeke and Molenberghs,
2000) are commonly used to describe the relationship between a response
variable and a predictor(s) when the observations in the datasets are clus-
tered according to a known grouping factor(s). Linear mixed models can be
formulated as follows:

Y = Xβ + Zb + ε, (1)

where Y is a vector of n observed random variables, X and Z are known
design matrices of dimension n× p and n× q respectively, β is a p× 1 vector
of unknown parameters representing the fixed effects, b ∼ N(0,σ2

b ) is a q × 1
vector of random effects and ε ∼ N(0,σ2) is a n × 1 vector of unobserved
measurement errors.

In recent years there is an increasing interest in the statistical literature
with respect to the connection between LMM and smoothing splines (Ruppert
et al., 2003 and Verbyla et al., 1999) . The latter are used to estimate non-
parametrically an unknown smooth function f when the data are assumed to
follow a regression model of the form Y = f + ε. In particular, Ruppert et

al. (2003) considered the model

f(xi) = β0 + β1xi +
K

∑

k=1

bkφk(xi − tk)+, i = 1, . . . , n, k = 1, . . . , K (2)

3

Haldermans et al.: Normalization with Linear Mixed Models

Published by The Berkeley Electronic Press, 2007



where xi are the design points, t1, ..., tK are knots chosen in advance and the
basis function φk(x) is constructed in the following manner

φk(x − tk)+ =

{

0 x ≤ tk,
x − tk x > tk.

(3)

For a microarray with m genes, let Ai, i = 1, . . . , m, be the mean in-

tensity in the MA-plot, with Ai = log2

√
RiGi and Mi = log2

√

Ri/Gi.
We define two design matrices, an m × 2 design matrix for which the ith
row is X i = [1, Ai] and an m × K matrix for which the ith row is Zi =
[(Ai − t1)+, . . . , (Ai − tK)+]

1≤k≤K . Hence, the model in (2) can be rewritten
as M = f(A) + ε, with f(A) = Xβ + Zb, β = (β0, β1) and b = (b1, . . . , bK).
Thus, the model has the same form as the linear mixed model defined in
(1). For the analysis presented in this paper we choose equally spaced knots.
Following Ruppert et al. (2003) the kth knot is located at the (k+1)/(K+2)
quantile. For the total number of knots, K, Ruppert et al. (2003) suggested
K = (n/4, 35). In this paper the analysis were done using K=20, 30 and 40.

2.2 Normalization Models

Park et al. (2003) distinguished three normalization approaches: (1) global
normalization, (2) intensity dependent linear normalization and (3) intensity
dependent nonlinear normalization. Furthermore, Park et al. (2003) showed
that all normalization methods can be expressed as regression models. As
we argued above, the linear mixed model for normalization can be expressed
as M = f(A) + ε. In this section we show that the three approaches can
be expressed as a series of nested linear mixed models. A flowchart of the
normalization procedures and their corresponding linear mixed models are
shown in Figure 1.
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Normalization

Global normalization
Y = β + ε

Log-ratio (M) depends on intensity (A)

No

Intensity dependent
normalization

Yes

Linear
normalization
Y = Xβ + ε

M and A : linear dependency?

Yes

Non-linear
normalization

Y = Xβ + Z1b + ε

No

Print-tip
normalization

Y = Xβ + Z2b + ε

The dependencies of M and A
among print-tips are different

Normalization
with random intercept
Y = Xβ + Zb + ui + ε

Genes are replicated
within an array

Figure 1: Normalization models and their linear (mixed) model
formulation.
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2.2.1 Global and linear normalization

For global and linear normalization, formulation of the normalization model
as a linear model is straightforward (Park et al., 2003) and the design matrices
are given by

global normalization: X1 =





















1
1
.
.
1
1





















, linear normalization: X2 =





















1 A1

1 A2

. .

. .
1 Am−1

1 Am





















.

As mentioned above, f(A) = β0 and f(A) = β0+β1A for global and linear
normalization models, respectively. Note that the covariance matrix for ε is,
for both cases, equal to σ2I. These two models can be found in the upper
part of the flowchart shown in Figure 1.

2.2.2 Nonlinear normalization

The third normalization model, the nonlinear normalization model, can be
formulated using design matrix X2 for the fixed effects. The design matrix
for the random effects Z is given by

Z =

















A1 − t1 A1 − t2 ... A1 − tK
A2 − t1 A2 − t2 ... A2 − tK
. . . .
. . . .
Am − t1 Am − t2 ... Am − tK

















, (4)

with Ai − tk as defined in the previous section. It follows that the three
normalization models discussed above can be expressed as M = f(A) + ε,
where

f(A) =











X1β0 global normalization,
X2β linear normalization,
X2β + Zb nonlinear normalization.

(5)

Alternatively, the normalization models can be expressed as Y = X2β +
Zb + ε. Within this model different parameterizations of the mean and the
covariance structures lead to different normalization models:

β1 = 0, σ2
b = 0 global normalization,

β1 6= 0, σ2
b = 0 linear normalization,

σ2
b 6= 0 nonlinear normalization,

(6)
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with β1 the slope and σ2
b the variance of the random effects in (2). The fact

that different parameterizations of the mean and covariance leads to different
normalization models allows us to use likelihood ratio tests or model selection
criteria, such as the Akaike Information Criterion (AIC) to select the most
appropriate normalization model, i.e. the model with the best goodness-of-fit
for a specific array (Wager et al., 2007) . Note that the normalization models
in (5) are nested as one can test the null hypothesis H0 : β1 = 0, σ2

b = 0 against
two sided alternatives in order to choose the most appropriate normalization
model.

2.2.3 Print-tip Normalization

Thus far, we considered the whole array as one unit. However, sometimes it
can be necessary to perform normalization on each grid separately, since each
grid is printed by a different print-tip, as discussed by Dudoit et al. (2002)
and by Park et al. (2003). In particular, Dudoit et al. (2002) use lowess
normalization for each print-tip and state that it can solve spatial effects
caused by the difference in print-tips.

Baird et al. (2004) proposed a normalization model in which the print-tip
effect is included in the model as a constant (print-tip specific) fixed effect.
For an array with L print-tips such a model can be implemented using a fixed
term given by [X2|X3][β|γ], where X3 is an m × L matrix with the entry

[X3]ij =

{

1 gene i belongs to print-tip j,
0 else,

(7)

and γ = (γ1, γ2, . . . , γL) is the vector of print-tip specific parameters. Note
that such a normalization model results in nonlinear normalization with paral-
lel smoothers for the print-tips. As mentioned in Baird et al. (2004) print-tip
effects can be included in the model as random effects,

M = X2β + Zb + aℓ + ε, (8)

where aℓ, ℓ = 1, . . . , L is a print-tip specific random intercept, aℓ ∼ N(0, σ2
a).

L represents the number of print-tips on the array. Note that including the
print-tip effects as either fixed or random lead to a normalization model in
which the smoother for the print-tips is parallel lines.

Alternatively, print-tip specific nonlinear normalization models can be
formulated as Y = X2β + Zℓbℓ + ε, with design matrix for the random
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effects given by

Zℓ =












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



Z1 0 0 ... 0
0 Z2 0 ... 0
. . . ... .
. . . ... .
. . . ... .
0 0 0 ... ZL





















. (9)

where Zi = Z (i = 1, . . . , L). Note that we assume that bℓ = (b1, b2, . . . , bL)
is normally distributed with mean zero and covariance matrix D, where

D = σ2

b











I 0 ... 0
0 I ... 0
. . ... .
0 0 ... I











.

The fact that all random effects have the same variance σ2
b implies that

the smoothing parameter (the ratio of the variance components σ2
b/σ

2
ε ) is the

same for all print-tips.

2.2.4 Normalization with replicated genes

We can incorporate the fact that genes are replicated on an array by intro-
ducing a random intercept to the model. This results in the following model:

M = X2β + Zℓbℓ + ui + ε. (10)

Here, ui is a random intercept for the ith gene with ui ∼ N(0, σ2
u) . The Zℓ

matrix can take one of the two forms discussed in the two previous sections,
depending on whether we choose to normalize by print-tip or not. This model
is nested in the nonlinear model framework as can be seen in Figure 1. The
covariance matrix for the random effects is adjusted in the following way:

D1 =

[

σ2IK×K

σuIJ×J

]

and D2 =

[

D
σuI

]

,

where D1 and D2 are the covariance matrices for nonlinear normalization and
nonlinear pin by pin normalization, respectively. Note that it is assumed that
the random intercept is uncorrelated with b. It is important to mention that
the predicted values for M are obtained using the empirical Bayes estimate
for β̂, M̂ = Xβ̂ + Zb̂. In that way we do not remove gene specific effect with
the normalization model.
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(a) Before normalization
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(b) After normalization
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(c) Before normalization

-2
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(d) After normalization

Figure 2: Boxplots before and after normalization. Panel a and b show the
colon data, panel c and d the lung data.

3 Results

First, we applied the different normalization models discussed in the previous
section to the datasets from the vegetable study mentioned in Section 1. The
results are shown in Figure 2. Both boxplots represent the data separately
for each array, before and after normalization. The figures reveal that the
normalization centers the boxplots around zero, indicating that systematic
errors were identified and minimized (Yang et al., 2002). Since we applied
several normalization models for each array, Akaike’s Information Criterion
(AIC) (Akaike, 1974) was used in order to select the best normalization model.
An interesting observation is that there is not one model that is chosen all
the time, indicating that there are indeed differences between arrays and
that it is necessary to consider several possibilities. An objective measure for
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comparison as AIC makes it possible to automate the framework to select the
best normalization model for each array separately.

Table 1 presents the results for the normalization model discussed above.
Model formulation for global, linear and nonlinear normalization models is
given in (5). The random intercept model is a nonlinear normalization model
which includes a random effect for the replicated genes, i.e. f(A) = X2β +
Zb + ui with ui ∼ N(0, δ2

u). The fixed pin model is a print-tip specific model
including print-tip as a fixed effect, i.e. f(A) = X2β + Zb + γj, with γj

the fixed print-tip effect. Pin-by-pin refers to a print-tip specific model with
a different smoother for each print-tip (see (9) for more details about the
design matrix). The last model, pin-by-pin with random intercept, is a print-
tip specific model with a random effect for the replicated genes as described
in (10).

Table 1 presents the results for three arrays. The complete table is given
in the supplemental material for the paper and shows that for none of the
arrays the global, linear or the simple nonlinear model is preferable as the
model to use for the normalization.

Table 1: AIC’s of the different normalization models for the lung data
array global linear non-linear

random fixed
pin by pin

pin by pin with

intercept pins random intercept

5 5018.940 3566.565 3039.857 3041.860 3016.017 3095.093 3097.095

15 4865.071 3429.412 2736.558 2737.403 2656.092 2684.612 2686.613

19 3962.601 2748.273 2344.326 2245.656 2179.008 2209.678 2169.037

In total, 11 out of 24 arrays have the non-linear model with random inter-
cept coming out as best model, indicating that gene replication on an array
often leads to a better model. For 9 of the 24 arrays non-linear normalization
with fixed print-tip effects was considered to be the best model. In one of
the cases, non-linear print-tip specific normalization is indicated as the pre-
ferred model. Finally, we find 3 arrays for which a combination of nonlinear
normalization pin by pin with random intercepts is the best normalization
model. Overall, we see that there does not exist a model which is the best for
all arrays. Therefore we have to consider the choice of model for each array
individually.

We turn now to discuss the results presented in Table 1 in more detail.
Figure 3 (panel a) displays a MA plot for array 5 with the LMM smoother
along with the lowess-smoother as a reference. The two smoothers reveal the
same patterns, which confirms our expectations. Using the LMM smoother
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Figure 3: Panel a: MA plot of array 5 of the lung data with LMM and
lowess-smoother. Panel b: normalization model with fixed print-tip effects.
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4

Figure 4: MA plot of array 19 of the lung data, for which the three replicates
of a gene are connected by a line. A pin by pin normalization model with
random effects is used to normalized the array.
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allows us to choose the normalization model with the AIC as an objective
model selector. For array 5, the model with the smallest AIC value is the
one which includes fixed print-tip effects. This indicates that the print tip
specific normalization model are non linear and parallel as shown in panel
b. Note that since all normalization models are nested, a formal inference,
using the likelihood ratio test, can be applied as well in order to select most
appropriate normalization model. A more elaborate discussion on inference
for LMM can be found in Verbeke and Molenberghs (2000).

The use of a model with random intercepts is motivated by Figure 4,
which shows the plot for array 19. Due to the fact that every gene has three
replicates, there is a connection between the three spots.

Finally, two print-tip normalization models for microarray 15 are shown
in Figure 5. Panel (a) presents a model uses the design matrix (9) for the
random effect and implies nonlinear print-tip specific smoothers with the
same smoothing parameter. The AIC for this normalization model is equal
to 2684.612 (see Table 1). Panel (b) presents a second model which includes
print-tip as fixed effects and implies that the smoothers for the print-tips are
parallel lines. The AIC for this model is equal to 2656.002, indicates that
second normalization model is to be preferred.

The framework was applied to the dataset from the apo AI experiment
reported by Yang et al. (2002). The results are shown in Figure 6. Clearly,
the normalization centers the boxplots around zero. This coincides with the
results from Yang et al. (2002), although the variability in their study is
bigger than in this study. Interestingly, the smallest AIC values for all arrays
were obtained using nonlinear normalization with a different smoother for
each print tip. This implies that there is a spatial effect in all of the arrays.
This idea is confirmed by Dudoit et al. (2002), who state that within print-
tip group dependent normalization is preferable here (AIC values are given
in Table 2 in the supplemental material for the paper). Dudoit et al. (2002)
refer to knock-out mouse number 8 to illustrate the need for print-tip specific
normalization. They show that there is a difference between the print-tip
groups. Specifically, they state that four groups clearly stand out from the
others. From Figure 7, which shows the same array with the print-tip specific
LMM smoothers, it can be seen that the same four groups have smoothers
that differ significantly from the others.
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(b) Normalization with fixed printtip effect

Figure 5: Panel a: MA plot of array 15 of the lung data, with print-tip specific
nonlinear normalization. Panel b: MA plot of array 15 of the lung data, with
print-tip as fixed effects which implies a nonlinear print-tip specific parallel
normalization models.
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Figure 6: Boxplots before and after LMM normalization for the apo AI ex-
periment presented in Yang et al. (2002).
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Figure 7: LMM normalization with different smoother for each printtip ap-
plied to array 8 of the apo AI experiment.
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4 Simulation studies

4.1 Data generation

A simulation study was conducted in order to make an objective comparison
between global, linear and non linear normalization (by lowess and linear
mixed model normalization). Data were generated according to the setting
discussed by Balagurunathan et al. (2002) and Fujita et al. (2006). The
performance of the different normalization models were compared, similar
to Fujita et al. (2006), by calculating the mean squared error between the
estimated normalization model and the actual function from which the data
were generated. In each simulation, we generate microarrays ranging from
600 to 10000 genes, 500 dataset were generated for each simulation setting.
The generation of the data consists of the following steps:

1. Generate for each gene the true expression signal from an exponential
distribution with λ = 1

3000
.

2. Simulate the red and green channel intensities for each gene from a
normal distribution with mean the true expression signal from (1) and
a standard deviation of 15% of the mean.

3. Include differentially expressed genes. We selected 5% of the genes to
be either under- or overexpressed. The selected genes have a targeted
expression ratio that is generated by t = 10±b, where b follows a beta
distribution, b ∼ B(1.7, 4.8). The expression intensity of this gene then
is given by, R′ = R ∗

√
t and G′ = G√

t
for the red and green channel

respectively.

4. In order to transform these intensities to the often exhibited (non)linear
patterns, we use the function family as given in Balagurunathan et al.

(2002) by:
f(x) = a3[a0 + x(1 − e−x/a1)a2 ] (11)

5. Finally, the noise is added to the signal intensity of each channel.

The three types of patterns as suggested by Balagurunathan et al. (2002)
were considered. In the first setting, a pattern without alterations was consid-
ered (see Figure 8 panel a and b). Data for this pattern were generated with
the parameters in (11) given by (0, 1, -1, 1) for the transformation of both red
and green channel intensities . Secondly we applied a “banana shape” pattern
(see Figure 8 panel c and d), where we use (0, 500, -1, 1) as parameters for
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Figure 8: Three possible patterns for the simulation study. Left panels: green
versus red intensities. Right panels: the MA plots corresponding to each one
of the patterns. Panel a and b: no trend, panel c and d: banana shape, panel
e and f: sinusoid shape.
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the transformation of the red channel intensities, and (0, 10, -1, 1) for the
green channel intensities. The third pattern is a sinusoid shape (see Figure
8 panel e and f) with parameters for the red channel response function (0,
1001/0.7, -0.7, 1) and ((0, 1001/0.9, -0.9, 1) for the green channel. Each simu-
lation setting was repeated three times,without printtip effects, with parallel
printtips and with non parallel printtips.

4.2 Results

Results for the performance of the LMM normalization for the first scenario
(i.e., microarray without print tip effects) are reported in Table 2. The re-
sults for the lowess method are presented for bandwidth equal to 0.4 and
0.75, corresponding respectively to the value suggested by Yang et al. (2002)
and the default value in R. When data are generated without any trend, all
normalization methods perform similarly. This confirms the results reported
by Park et al. (2003). However, for the banana shape and sinusoid patterns
the lowess and the LMM performed better than the global and linear nor-
malization. This is in contrast with the finding reported in Park et al. (2003)
that the linear and nonlinear normalization reveal only small difference. This
can be explained by the choice of the systematic patterns in our simulation
setting. When a clear systematic pattern is observed (such as in the banana
shape and the sinusoid shape) the nonlinear normalization models performed
better than the global and linear normalization model which are not able to
capture these type of patterns in the data. Interestingly, the lowess and the
LMM performed equally good, although the MSEs obtained for the lowess
are slightly smaller than the MSEs obtained for the LMM for the second and
the third patterns.

Table 3 reports the results for the second scenario (i.e., nonlinear, but
parallel print tip effects). For this scenario the global, linear and lowess were
applied for each print tip. The LMM was fitted in the usual way. Once again,
for the nonlinear patterns the lowess and LMM performed much better than
the global and linear normalization. Only small differences were observed
between the lowess and the LMM. Although, the MSE values obtained for
LMM are slightly smaller than the MSE values obtain for the lowess. Finally,
similar results (presented in Table 4) were obtained for the third scenario in
which data were generated with non parallel print-tip effect. We note that
model selection based on the AIC criterion leads to a selection of the right
model in more than 95% of the simulations (see Table 6-8 in the supplemen-
tary material).
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Table 2: Simulation results without print-tip effect. All MSE values are
multiplied by 104.

Trend # genes
Method

Global Linear
lowess lowess

LMM
(0.4) (0.75)

No trend

600 22.5 25.1 40.2 31.9 22.6
2500 21.0 21.7 25.5 23.5 21.0
5000 21.9 22.3 24.4 23.3 22.0
7500 20.2 20.5 21.9 21.3 20.2
10000 21.2 21.5 22.7 22.2 21.3

Banana

600 6030.0 8872.2 32.5 29.8 31.3
2500 5867.2 9351.2 20.4 22.6 20.4
5000 6454.6 10415.3 19.8 22.9 20.0
7500 5703.0 9144.7 18.0 21.3 18.3
10000 5963.3 9388.6 19.2 22.9 19.2

Sinusoid

600 954.7 1576.9 30.8 42.7 34.5
2500 1056.4 1850.8 20.6 36.0 21.9
5000 1016.7 1792.1 19.8 36.4 20.8
7500 1002.4 1776.6 18.3 32.8 18.7
10000 975.6 1678.6 18.5 35.5 18.8

In the simulation study discussed above, data were generated assuming
5% differentially expressed genes (DEG), from which half were assumed to be
up regulated. A second simulation study was conducted in order to investi-
gate the robustness of the normalization model for this particular assumption.
Data were generated according to first scenario (with a banana shaped pat-
tern) with 5%, 10%, 20% and 40% differentially expressed genes from which
30%, 40%, 50%, 60% or 70% were assumed to be up regulated. Only nonlin-
ear normalization models were considered. Figure 9 presents the MSE for
the lowess and the LMM (MSE values are given in Table 5 in the supple-
mental materials for the paper). When the proportion of DEG is relatively
small (5% and 10%, respectively) the minimum MSE is obtained for the case
that 50% of the genes are up regulated.

The MSEs increase slightly as the proportion of up regulated genes de-
crease or increase. The MSEs increase substantially, for both the lowess and
the LMM, when the proportion of DEG is increase to 20% and 40%. How-
ever, it should be mentioned that it is assumed that the proportion of DEG

18

Statistical Applications in Genetics and Molecular Biology, Vol. 6 [2007], Iss. 1, Art. 19

http://www.bepress.com/sagmb/vol6/iss1/art19



Table 3: Simulation results with parallel print-tips. All MSE values are
multiplied by 104.

Trend # genes
Method

Global Linear
lowess lowess

LMM
(0.4) (0.75)

No trend

600 58.1 93.5 358.3 205.4 61.3
2500 28.9 37.9 99.9 66.1 29.8
5000 24.1 28.7 59.6 43.1 24.7
7500 23.7 26.7 47.4 36.3 24.2
10000 22.9 25.3 40.8 32.6 23.3

Banana

600 7177.4 12830.9 244.3 136.7 53.2
2500 5927.3 9715.8 70.9 49.8 26.9
5000 5989.6 9673.5 46.0 37.1 23.8
7500 5796.8 9239.9 36.4 31.4 21.7
10000 6220.4 10003.4 30.7 28.4 19.7

Sinusoid

600 1179.1 2263.3 243.5 141.3 53.7
2500 1019.0 1788.2 70.4 58.6 27.5
5000 986.7 1702.9 46.1 47.2 24.0
7500 987.3 1716.9 35.9 41.0 21.9
10000 1012.7 1762.5 30.7 40.2 20.1

is relatively small and we do not expect that any normalization method will
perform well in case that the DEG is relatively high.

5 Conclusions

The MA-plots from the lung and colon studies clearly illustrate the need for
normalization in microarray data. The plots show serious deviations from a
straight line, which can cause problems in the analysis of the microarrays. In
this paper we have used LMM as a smoother for the MA plot.

We have shown that different normalization models, global, linear and
nonlinear, can be formulated as a LMM. The AIC criterion can be used to
select the most appropriate normalization model. After the use of the LMM
normalization, the curvature in the MA plots has disappeared.
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Table 4: Simulation results with non-parallel print-tips. All MSE values are
multiplied by 104.

Trend # genes
Method

Global Linear
lowess lowess

LMM
(0.4) (0.75)

Banana

600 6847.0 11128.4 263.0 143.7 55.5
2500 5806.1 9223.3 76.0 53.7 30.4
5000 6000.0 9551.3 45.7 37.1 23.5
7500 5861.2 9194.0 37.9 33.4 22.7
10000 6038.2 9707.7 32.0 29.7 20.9

Sinusoid

600 1022.9 1718.1 269.5 152.0 62.6
2500 947.7 1616.1 75.2 64.3 30.2
5000 974.9 1712.2 44.5 44.8 23.2
7500 956.5 1632.4 34.7 41.8 20.5
10000 973.7 1709.6 30.8 40.1 20.0
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Figure 9: MSE of normalization with LMM and lowess for different percent-
ages of upregulated genes. Panel a: 5% and 10% of the genes are differentially
expressed. Panel b: 20% of genes are differentially expressed.

We have shown that for the lung data and for the apo AI experiment,
several forms of the model were needed, depending on the nature of the
systematic errors. The LMM-smoother allows us to consider multiple types of
normalization models within one framework, including more complex forms
like the normalization per print-tip group. Different normalization models
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can be defined by formulating an appropriate design matrix for the random
effects in the model.

The results obtained from the simulation study have shown that when a
clear pattern exists in the data nonlinear normalization models (both lowess
and LMM) perform equally better than global and linear normalization mod-
els. For relative low levels of DEG the best performance of the model was
achieved when half of the DEG are up regulated. The MSE increases slightly
when 30% or 40% of the genes are up regulated.

For the analysis presented in this paper we follow Yang et al. (2002)
and performed a within-slide normalization. In order to compare between
slides, Yang et al. (2002) suggest the use of scale normalization. This might
be useful in certain circumstances where changes in the settings cause scale
differences between the arrays (which was not the case in our examples).
The use of the LMM framework for normalization of cDNA microarrays may
result in different normalization models for different arrays in the experiment.
However, we have shown for both examples presented in the paper that the
normalized data in the MA-plot are centered around zero. This implies that
the systematic error was removed (or at least minimized), so the normalized
data are comparable and the investigator can proceed to the inference step in
order to detect differentially expressed genes. Note that the same approach
was taken by Dudoit et al. (2002) who used the lowess model to perform a
pin by pin nonlinear normalization. The lowess normalization presented in
Dudoit et al. (2002) results in a different nonlinear normalization model for
different print-tips (see for example Figure 3 in Dudoit et al. (2002)), and
we obtain similar results (Figure 7). In both cases the systematic error was
removed and therefore the normalized data are comparable.

Multiple array normalization can be formulated as a LMM as well by
including the array as fixed or nonlinear effect. This issue is currently under
investigation. The normalization models discussed in this paper assume a
constant variance in the MA plot which, in some applications, might not be
the case. The LMM can be reformulated in such a way that an intensity
dependent variance can be incorporated in the model. This issue is a subject
for future research.
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