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Abstract—The general relation between the first-citation distribution and the general citation-
age-distribution 1s shown It 1s shown that, if Lotka'’s exponent o = 2, both distributions are the same
In light of the above results, and as a simple case, the exponential distribution and the lognormal
distribution have been tested and accepted Also the n'® (n € N) citation distribution is studied
and shown to be the same as the first-citation distribution, for every n € N © 2001 Elsevier Science
Ltd All nights reserved
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1. INTRODUCTION

The time at which an article receives its first citation 1s a very important moment It changes
the status of this article from unused to used It 1s clear that the time ¢; of this event 1s a very
important parameter 1f ¢, 1s small, then the article 1s at the front of research and/or belongs to a
subject where communication between scientists 1s heavy (e g , through the invisible colleges—a
growing phenomenon especially since the availability of the Internet)

In our feeling, ¢; 1s a valuable alternative for both the classical impact factor (IF) and the
immediacy index (II) as produced by the Institute for Scientific Information the time of the first
citation measures visibility as well as the time to become visible It 1s an important research tool
1n science policy studies, yet 1t must be admitted that first-citation data are not readily at hand,
for the time bemng Of course, they could be produced from the citation indexes, if only one
could convince people of 1ts importance For the time being, we will reuse the few first-citation
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data that are available data of Gupta and Rousseau [1] in theoretical population genetics, the
Motylev data appearing in [2] on Russian language library science papers, and the JACS (Journal
of the American Chemacal Society) data of Rousseau [3] To this set, we will add a new data set
on first-citation data in JASIS articles of 1980, followed in JASIS until now (end 1999)

The first section presents a general theory on first-citation distributions In this theory, the
general citation-age distribution 1s considered i connection with Lotka’s law on the number of
papers with a certain number (say A) of citations Here, A means the total number of citations
a paper receives, (1 e, a diachronous study) Let us denote Lotka’s law by

o(4) = 4. (1)

where C' 1s a constant, making sure ¢ 1s a distribution Here, @ > 1 and the most classical
value of o 1s a = 2, being the onginal law of Lotka (see [4,5]) for more information on this Let
c(t) denote the general citation-age distribution, being the fraction of citations at time ¢ (after
publication of a paper) Let C(¢) denote the cumulative distribution derived from ¢ Hence,

t
Ct) =) cls), )
=0
for discrete distributions and ,
C(t) = / c(s) ds, (3)
0

for continuous ones Classical examples are the exponential distribution
c(t) = ca', (4)

where 0 < a < 1 and c 1s a constant making sure that ¢ 1s a distribution (¢ can be discrete, mn
which case, ¢ = 1 — a, or continuous, 1n which case ¢ = —Ina), or

1 2
o(t) = e*(l/Z)((lnf—u)/U) , 5
® = )

the lognormal distribution (¢ continuous)

The exponential distribution 1s the most appealing and 1s basic to all citation studies (see,
eg, [5]) The parameter a denotes the aging rate, 1 e, the decline in use when time goes further
on, expressed by

. c(t+1)

c(t)

The lognormal distribution 1s, however, the more realistic one, taking into account the imtial
increase (for t small) of the number of citations due to the fact that a paper has an “introductory”
period in which 1t becomes gradually more and more visible After reaching 1ts maximum, the
decline starts, just as in the case of the exponential distribution The values ¢ and ¢ now
replace a m (4) and are the mean, respectively, the standard deviation of logarithmic time, Int
The lognormal distribution has been generally accepted and explaned, see e g, [6,7]

In our first section, however, 1t does not matter what the exact form of c 1s, our results are
true for general citation-age distributions, hence, solving completely the relation between the
first-citation distribution and the distribution ¢ Our main result 1s that, denoting by ®(t;) the
first-citation cumulative distribution (¢; = the time of the first citation), that

(6)

B(t1) = C(t)*" (7
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Hence, as an important general corollary we obtain that, if @ = 2 (the most classical value of
Lotka’s exponent), then
®(t1) = C(ty), (8)

1 e, the first-citation distribution 1s the same as the general citation-age distribution As far as
we are aware, this remarkably simple fact has never been noted before (and the same goes, of
course, for formula (7))

In the light of (7) and (8), the second section 1s devoted to the fitting of the exponential
distribution and the lognormal one to first-citation data From the obtained results, it 1s clear
that, already 1n the simple case (o = 2), the fits are good, and hence, can be accepted in the
sense that concave data are fitted well by the exponential distribution and the S-shaped ones
are fitted well by the lognormal distribution In this way, the Gupta and Rousseau data [1], the
Motylev data [2], the Rousseau data [3], and our JASIS data are fitted very well

Of course, as noted 1n [8], by taking a # 2 (in fact, a > 2), 1t 1s possible to obtain very good
fits for S-shaped data by using the exponential distribution This case, as a special case of (7),
was used mn (8] to fit Rousseau’s JACS data as well as the Gupta and Rousseau data (although
the S-shape 1s not very apparent 1n this case) In all these cases, (8) 1s an alternative, when using
the cumulative lognormal for C

The ultimate generahty would be to use (7) with general o and using the lognormal distribution
In view of the above good results, we doubt if this generality 1s necessary It 1s certainly more
complicated, now nvolving three parameters (u, 0, &) and fitting powers of cumulative lognormal
distributions are not part of standard statistical packages All our fittings mnvolve only two
parameters

2. GENERAL RELATION BETWEEN FIRST-CITATION
DISTRIBUTION AND THE GENERAL CITATION
AGE DISTRIBUTION

Let us fix a bibliography, being a general set of documents Each of these documents eventually
recewve citations Let c(t) denote the distribution of the citations that are given to documents
of this bibliography, ¢ time umts (e g, years or months) after they are published Let C(t)
denote the cumulative distribution of ¢(t), e g, (2) or (3)—we do not specify here whether £ 15 a
discrete or continuous variable We assume C (hence, ¢) to be the same for all documents in the
bibhiography

Let ®(¢;) denote the cumulative distribution of the documents that recerve their first citation
This distribution 1s assumed to be conditional with respect to the ever cited documents The
fraction 7 of the noncited ones will be dealt with at the end of the paper Hence, here we have
that

lm8(t) =1 ©)
As was said 1n the previous section, we will assume Lotka’s law for the distribution of the total

number of citations per document,
C
ol(4) = 2, (10)

where a > 1 and where ¢(A) 1s the fraction of documents with A citations Here, C = oo — 1
mn order to make ¢ a distribution (1in the continuous setting for the variable A, which we will
adopt)

We have the following general result

THEOREM 1 The following relation between the first-citation distribution and the general cita-
tion age distribution 1s valid
@(tl) = C(tl)a—l (11)
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ProoF For each document in the bibliography that has A citations in total, we have that ¢;,
the time of the first citation 1s given by

AC(t) =1,
hence,

A=C(t;)™? (12)
For all values A’ > A, we evidently have

A'C(t) > 1,

hence, these documents belong to the ones that received their first citation before ¢; Their
cumulative fraction 1s

loa] xR o — 1
/ p(AydA = [ Z_Zda’ = Al-e, (13)
A 4 A°

since a > 1 Hence, this also equals ®(t;) with A replaced by (12) Consequently,
B(t1) = C(t1)*! ]
Note, that 1t follows from (12) that A 1s large 1ff ¢; 1s small Hence, the smaller ¢;, the more

visible the publication 1s, since A measures total visibility

COROLLARY 2 Ifa =2, the most “classical” Lotka exponent, then
®(t1) = C(ta),

1 other words, the first-citation distribution equals the general citation age distribution

To the best of our knowledge, this remarkably simple result has never been noted before We
can already say that—roughly speaking—f o =~ 2 (which 18 so 1n most cases) that & ~ C

The above result can be extended to the (less important) case of the n*t citation distribution,
1 e, the time distribution that the documents 1n the bibliography receive their n*® citation (n € N
fixed) Of course, as was the case for n = 1, not all documents will be cited n times We therefore
denote by ®, the conditional cumulative nt? citation distribution, 1€, wrt the collection of
documents that receive at least n citations We have the following result

PRropPOSITION 3 For all n € N, the nt® citation distribution equals the first-citation distribution
o,=9 (14)
Hence,

O, (t) = C(8)*7, (15)
for alln € N The fraction (among all documents that are ever cited) of documents with at least
n citations at tume t 1s given by

C(t) a—1
— 16
(<) .

PrROOF As n the proof of Theorem 1, we now have
AC(t) = n, (17)

for the time ¢ that a document, with A citations in total, receives n citations Following the rest
of the proof of Theorem 1 exactly gives that the fraction (among all documents that are ever
cited) of documents with at least n citations at time ¢ 1s given by A%, with A as 1n (17), hence,

(5"

n
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Since

lim <£(t—))a_l - (19)

t—oo \ 1 T opo-l?

we hence have that the conditional cumulative distribution 1s given by
o(t) = C(t)*~' = 3(t) N

So again, if a = 2, we see that &, =C foralln e N

We return now to the case of first-citation distributions Two important cases are the ones i
which the general citation age distribution 1s exponential (see (4)) or lognormal (see (5))

Let us first consider the case of the exponential distribution (4)

c(t) = ca’, (20)
for continuous t (we leave the discrete case to the reader) Hence, here c = —Ilna The cumulative
distribution then takes the form

C(t) = /0 t —(lna)a® dt’, C(t)=1-al (21)
In this case, Theorem 1 says that
d(ty) = (1-a)* ", (22)

hence, we again find the result i [8] Note, that in [8] one has multiphied by the fraction v of
uncited papers As remarked before, we only look at cumulative distributions, 1 e, conditionally
wrt to the collection of ever cited papers

In (8], distribution (22) has proved to fit very well first-citation data such as the ones of [1-3]
Distribution (22) 1s capable of fitting concave as well as S-shaped data Indeed, as proved n [§],
(22) 1s concave 1ff 1 < a < 2 and 1s S-shaped 1ff & > 2

In case of the lognormal distribution, however, we have S-shapes, even for & = 2 Indeed, the
cumulative lognormal distribution itself 1s S-shaped Let us go in this 1n more detail If

1 2
oft) = e~ (1/2)((Int~p)/a) , 23
0= —7— (23)
1ts cumulative distribution 1s
t 1 2 (Int—p)/o 1 2
) = / _ 1 -/2Ont-m)/e)? gy / L e-ame gy
®) o V2rot —00 V2 (24)

Clt)=F (lnta— u) ,

where F denotes the cumulative normal distribution In this case, Theorem 1 says that

o(t;) = Fo-! (ln—tl—_—“> (25)

g

Now, even for a = 2, there 1s an S-shape since @ equals the cumulative lognormal distribution
In the next section, we will investigate 1f these simple functions (for @ = 2) are capable of
fitting practical first-citation data in the following sense

B(ty) =1 - ab, (26)
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for concave data and

Int; —
B(t,) =F(——“ - “), 27)
for S-shaped data.

We close this section with a general theorem on the shapes of the first-citation distributions
(1) = C(t,)*7 1,

as proved generally in Theorem 1 In view of our result in Proposition 3, the same theorem
applies to all the nth citation distributions as well

THEOREM 4 ®(t;) = C(t1)*~?! satisfies the following properties
{(a) If C 1s S-shaped, then
(al) if @ > 2, ® 1s S-shaped and the abscissa of the osculation pomnt of ® 1s larger than
the one of C,
(a2) if 1 < o < 2 and if ® has an osculation point, then its abscissa 1s smaller than the
one of C
(b) If C 1s concave, then
(bl) 1f 1 < & < 2, then ® is concave,
(b2) if o > 2, ® can be concave or S-shaped

Of course, when a =2, ¢ =C
PROOF From ®(t;) = C(¢1)~ 1, 1t follows that
"(t1) = (= ){a = 2)C(t)*>C'(t) + (@ — C(t)*"2C" (t) (28)
(al) If C 1s S-shaped and « > 2, then
"(t1) > (a = 1)C(1)*~2C" (1),
(since C' > 0) Hence, ®"(t;) > 0, for all ¢; < the osculation poimnt of C (since C” > 0
there because of the S-shape) But, there exists always an osculation point of ® since
@ strictly increases, ®” > 0, and since limy, 4, ®(t;) = 1 Hence, 1ts abscissa 1s larger

than the one of C
(a2) If C 1s S-shaped and 1 < a < 2, then

®"(t1) < (@ — 1)C(t)*"2C"(t)

Hence, ®”(t1) < 0 for all £; > the osculation point of C Because of this and since we
assumed the existence of the osculation pomnt of ®, 1ts abscissa must be smaller than the
one of C

(bl) If C 1s concave and 1 < o < 2, then 1t follows from (28) that ®”(t;) < 0 always Hence,
® 15 concave

(b2) If C 1s concave and a > 2, then ® can be convex or S-shaped (in fact, the S-shape was
noted already 1 [8] for the concave exponential function C of (21)) |

NOTE The general philosophy behind the formula
O(ty) = C(t;)* !

1s as follows The coefficient o 1s well known to be an indicator for concentration the higher o,
the fewer documents one has (1n a relative sense) with a high number of citations (or quick first
citations) and the more there are with just a few citations High as are considered from o > 2
on In this case, the curve of C(t) 1s flattened for low ¢ by applying the power oo — 1 In this
sense, the increase of ® 1s slow 1n the beginning Of course, in the end, ® goes to 1, and hence,
an osculation pomnt often happens In the opposite way, for small a, say 1 < a < 2, the opposite
happens and we have faster increases in the beginning part of the graph of ® Here, there are
fewer cases where an osculation point occurs and more cases of concave increase Of course, the
shape of ¢ also depends on the one of C In this note, we only discussed the mmfluence of o on
the shape of ®
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3. FITTING FIRST-CITATION DATA

In this section, we will try to fit four first citation data sets, using the cumulative distribu-
tions (26) and (27),

®(t)) =1 —a", (29)
for concave data and Int
o(t) = F (———n — “) , (30)

for S-shaped data

Three of the four data sets can be found 1n [8] They are the Gupta and Rousseau data [1], the
Motylev data (2] and the Rousseau data [3] The fourth data set 1s produced by ourselves and
deals with first-citation data of JASIS papers of 1980, that appear in JASIS 1itself in the period
1980-now (end 1999) The latter one 1s simular with the Rousseau data there one examines
first-citations of JACS papers by JACS papers (JACS = Journal of the American Chemaical
Socuety)

3.1. Gupta and Rousseau Data [1]

Since the cloud of points apparently is concave, we have fitted (29) We found the distribution
®(t;) =1~ (0 772)", (31)

hence, the aging rate 1s a = 0 772 The fit 1s very good (Kolmogorov-Smirnov test—see e g , [9]—
gwves a critical value at the 5% level of Dy 5 = 0 338 while the masximum difference was 0 0946)
We also fitted the lognormal distribution Although 1t 1s also acceptable, the fit was not as good
as the one of (31) Indeed, here we found Dyax = 0 1457 (agamn Dgs = 0 338) The mean of
log = 15 0 4582 and 1ts standard deviation 1s 0 6769 Of course, (31) fits less than the graph of

®(t;) = (1 - (0 672)1)" %,

(32)
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Figure 1 Fitting the Gupta and Rousseau data
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Figure 2 Fitting the Motylev data

obtaned 1n [8] for o = 2 536, but here an extra parameter () 1s mvolved Equation (31) 1s
the simplest model that fits See Figure 1 for this fit, as well as for the fit of the lognormal
distribution

3.2. Motylev Data [2]

These data are a bit more irregular but the concave shape prevails The exponential model (29)
fits best as 1s also clear from visual mspection (see Figure 2 with exponential and lognormal fit)
For (29), we now have

®(t;) =1 — (0 863)" (33)
and Dp 5 = 0 328 while Dy = 00939 For the lognormal fit, we obtained Dpax = 0 1262 (again
Dy 5 =0 328), hence a good fit The mean of logx 1s 1 612 and 1ts standard deviation 1s 0 6722
In [8], a sumilar fit was obtained for

®(t1) = (1— (0 956))° ™, (34)

for @ = 1 746, involving Lotka's o, hence using a 2-parameter model

3.3. Rousseau Data [3]

The S-shape 1s clear and 1t 1s hence also clear that here the lognormal distribution (30) fits
best In fact, (29) does not fit at all For (30) we now find Dy = 0 1347 while Dy, = 0 0453,
a very good fit, which can also be seen by visual mspection (see Figure 3) The found lognormal
distribution has parameters mean of log z 1s 3 3951 with standard deviation 0 7250

In [8], we found the distribution

®(ty) = (1 — (0955)11)2 % (35)

for « = 3 641 This fit 1s better and, since both models use two parameters, the latter 1s to be
preferred
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3.4. New JASIS Data

We examined the 1980 volume of JASIS and checked the times of first-citation in JASIS 1itself
n the period 1980-now (end 1999) The first-citation data (cumulative fractions) are given mn
Table 1

Table 1 JASIS to JASIS data

Cumulative Fraction

Year
of First-Citation

00714
0 3929
05714
06429
07143
07143
0 7500
0 7500
08214
08571
0 8929
0 9643
1 0000

W 00~ O G AW N -

- e
N O

-
w

It 1s clear from the graph that the exponential model fits best and this 1s also confirmed
by applying Kolmogorov-Smirnov’s test The exponential model gives Dpax = 0115, while
Do 5 = 0375 See Figure 4 for the exponential as well as the (not as good) lognormal fit Hence,
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Figure 4 Fitting the JASIS to JASIS data

we have here that the simplest one-parameter model (29) works best, giving the distribution
o(t)) =1 — (0 814)1, (36)

hence, the aging rate 1s a = 0 814
An attempt was made to fit a lognormal distribution We found D, = 0 1823, while again
Dy 5 =0 375, hence a good fit The mean of log z 15 1 2964 and 1ts standard deviation 1s 0 7500

GENERAL NOTE In this paper, we have emphasized on finding the cumulative first-citation
distribution Hence, for t; — 400, we have that ®(t;) — 1 Of course, here we only consider
papers that eventually will be cited at least once If we want to include the fraction v of uncited
papers, 1f suffices to consider y® instead of ®, as was also done 1 [1,3,8]
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