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Abstract. We introduce a new abstract model of database query pro-
cessing, finite cursor machines, that incorporates certain data streaming
aspects. The model describes quite faithfully what happens in so-called
“one-pass” and “two-pass query processing”. Technically, the model is
described in the framework of abstract state machines. Our main results
are upper and lower bounds for processing relational algebra queries in
this model, specifically, queries of the semijoin fragment of the relational
algebra.

1 Introduction

We introduce and analyze finite cursor machines, an abstract model of database
query processing. Data elements are viewed as “indivisible” abstract objects with
a vocabulary of arbitrary, but fixed, functions. Relational databases consist of
finitely many finite relations over the data elements. Relations are considered
as tables whose rows are the tuples in the relation. Finite cursor machines can
operate in a finite number of modes using an internal memory in which they can
store bit strings. They access each relation through finitely many cursors, each
of which can read one row of a table at any time. The answer to a query, which
is also a relation, can be given through a suitable output mechanism. The model
incorporates certain “streaming” or “sequential processing” aspects by imposing
two restrictions: First, the cursors can only move on the tables sequentially in
one direction. Thus once the last cursor has left a row of a table, this row can
never be accessed again during the computation. Second, the internal memory is
limited. For our lower bounds, it will be sufficient to put an o(n) restriction on
the internal memory size, where n is the size (that is, the number of entries) of the
input database. For the upper bounds, no internal memory will be needed. The
model is clearly inspired by the abstract state machine (ASM) methodology [16],
and indeed we will formally define our model using this methodology. The model
was first presented in a talk at the ASM 2004 workshop [29].

Algorithms and lower bounds in various data stream models have received con-
siderable attention in recent years both in the theory community (e.g., [1,2,5,6,
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13,14, 18, 25]) and the database systems community (e.g., [3, 4, 7, 12, 15, 20, 26]).
Note that our model is fairly powerful; for example, the multiple cursors can
easily be used to perform multiple sequential scans of the input data. But more
than that; by moving several cursors asynchronously over the same table, entries
in different, possibly far apart, regions of the table can be read and processed
simultaneously. This way, different regions of the same or of different tables can
“communicate” with each other without requiring any internal memory, which
makes it difficult to use communication complexity to establish lower bounds.
The model is also powerful in that it allows arbitrary functions to access and
process data elements. This feature is very convenient to model “built in” stan-
dard operations on data types like integers, floating point numbers, or strings,
which may all be part of the universe of data elements.

Despite these powerful features, the model is weak in many respects. We
show that a finite cursor machine with internal memory size o(n) cannot even
test whether two sets A and B, given as lists, are disjoint, even if besides the
lists A and B, also their reversals are given as input. However, if two sets A
and B are given as sorted lists, a machine can easily compute the intersection.
Aggarwal et al. [1] have already made a convincing case for combining streaming
computations with sorting, and we will consider an extension of the model with
a sorting primitive.

Our main results are concerned with evaluating relational algebra queries in
the finite cursor machine model. Relational algebra forms the core of the stan-
dard query language SQL and is thus of fundamental importance for databases.
We prove that, when all sorted versions of the database relations are provided
as input, every operator of the relational algebra can be computed, except for
the join. The latter exception, however, is only because the output size of a
join can be quadratic, while finite cursor machines by their very definition can
output only a linear number of different tuples. A semijoin is a projection of
a join between two relations to the columns of one of the two relations (note
that the projection prevents the result of a semijoin from getting larger than
the relations to which the semijoin operation is applied). The semijoin algebra is
then a natural fragment of the relational algebra that may be viewed as a gener-
alization of acyclic conjunctive queries [9,22,21,30]. When sorted versions of the
database relations are provided as input, semijoins can be computed by finite
cursor machines. Consequently, every query in the semijoin fragment of the rela-
tional algebra can be computed by a composition of finite cursor machines and
sorting operations. This is interesting because it models quite faithfully what is
called “one-pass” and “two-pass processing” in database systems [11]. The ques-
tion then arises: are intermediate sorting operations really needed? Equivalently,
can every semijoin-algebra query already be computed by a single machine on
sorted inputs? We answer this question negatively in a very strong way, and this
is our main technical result: Just a composition of two semijoins R � (S � T )
with R and T unary relations and S a binary relation is not computable by a
finite cursor machine with internal memory size o(n) working on sorted inputs.
This result is quite sharp, as we will indicate.
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The paper is structured as follows: After fixing some notation in Section 2, the
notion of finite cursor machines is introduced in Section 3. The power of O(1)-
FCMs and of o(n)-FCMs is investigated in Sections 4 and 5. Some concluding
remarks and open questions can be found in Section 6.

Due to space limitations, some technical details of our proofs had to be de-
ferred to the full version of this paper, available on the authors’ websites.

2 Preliminaries

Throughout the paper we fix an arbitrary, typically infinite, universe E of “data
elements”, and we fix a database schema S. I.e., S is a finite set of relation names,
where each relation name has an associated arity, which is a natural number. A
database D with schema S assigns to each R ∈ S a finite, nonempty set D(R)
of k-tuples of data elements, where k is the arity of R. In database terminology
the tuples are often called rows. The size of database D is defined as the total
number of rows in D.

A query is a mapping Q from databases to relations, such that the relation
Q(D) is the answer of the query Q to database D. The relational algebra is a
basic language used in database theory to express exactly those queries that can
be composed from the actual database relations by applying a sequence of the
following operations: union, intersection, difference, projection, selection, and
joins. The meaning of the first three operations should be clear, the projection
operator πi1,...,ik

(R) returns the projection of a relation R to its components
i1, . . . , ik, the selection operator σp(i1,...,ik)(R) returns those tuples from R whose
i1th, . . . , ikth components satisfy the predicate p, and the join operator R ��θ S
(where θ is a conjunction of equalities of the form

∧k
s=1 xis = yjs) is defined

as {(a, b) : a ∈ R, b ∈ S, ais = bjs for all s ∈ {1, . . . , k}}. A natural sub-
language of the relational algebra is the so-called semijoin algebra where, instead
of ordinary joins, only semijoin operations of the form R�θS are allowed, defined
as {a ∈ R : ∃b ∈ S : ais = bjs for all s ∈ {1, . . . , k}}.

To formally introduce our computation model, we need some basic notions
from mathematical logic such as (many-sorted) vocabularies, structures, terms,
and atomic formulas.

3 Finite Cursor Machines

In this section we formally define finite cursor machines using the methodology
of Abstract State Machines (ASMs). Intuitively, an ASM can be thought of
as a transition system whose states are described by many-sorted first-order
structures (or algebras)1. Transitions change the interpretation of some of the
symbols—those in the dynamic part of the vocabulary—and leave the remaining

1 Beware that “state” refers here to what for Turing machines is typically called “con-
figuration”; the term “mode” is used for what for Turing machines is typically called
“state”.
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symbols—those in the static part of the vocabulary—unchanged. Transitions
are described by a finite collection of simple update rules, which are “fired”
simultaneously (if they are inconsistent, no update is carried out). A crucial
property of the sequential ASM model, which we consider here, is that in each
transition only a limited part of the state is changed. The detailed definition of
sequential ASMs is given in the Lipari guide [16], but our presentation will be
largely self-contained.

We now describe the formal model of finite cursor machines.
The Vocabulary: The static vocabulary of a finite cursor machine (FCM)

consists of two parts, Υ0 (providing the background structure) and ΥS (providing
the particular input).

Υ0 consists of three sorts: Element, Bitstring, and Mode. Furthermore, Υ0 may
contain an arbitrary number of functions and predicates, as long as the output
sort of each function is Bitstring. Finally, Υ0 contains an arbitrary but finite
number of constant symbols of sort Mode, called modes. The modes init , accept ,
and reject are always in Υ0.

ΥS provides the input. For each relation name R ∈ S, there is a sort RowR in
ΥS . Moreover, if the arity of R is k, we have function symbols attributei

R : RowR →
Element for i = 1, . . . , k. Furthermore, we have a constant symbol ⊥R of sort
RowR. Finally, we have a function symbol nextR : RowR → RowR in ΥS .

The dynamic vocabulary ΥM of an FCM M contains only constant symbols.
This vocabulary always contains the symbol mode of sort Mode. Furthermore,
there can be a finite number of symbols of sort Bitstring, called registers. More-
over, for each relation name R in the database schema, there are a finite number
of symbols of sort RowR, called cursors on R.

The Initial State: Our intention is that FCMs will work on databases.
Database relations, however, are sets, while FCMs expect lists of tuples as inputs.
Therefore, formally, the input to a machine is an enumeration of a database,
which consists of enumerations of the database relations, where an enumeration
of a relation is simply a listing of all tuples in some order. An FCM M that is set
to run on an enumeration of a database D then starts with the following structure
M over the vocabulary Υ0 ∪ ΥS ∪ ΥM : The interpretation of Element is E; the
interpretation of Bitstring is the set of all finite bitstrings; and the interpretation
of Mode is simply given by the set of modes themselves. For technical reasons,
we must assume that E contains an element ⊥. For each R ∈ S, the sort RowR

is interpreted by the set D(R) ∪ {⊥R}; the function attributei
R is defined by

(x1, . . . , xk) �→ xi, and ⊥R �→ ⊥; finally, the function nextR maps each row to its
successor in the list, and maps the last row to ⊥R. The dynamic symbol mode
initially is interpreted by the constant init ; every register contains the empty
bitstring; and every cursor on a relation R contains the first row of R.

The Program of an FCM: A program for the machine M is now a program
as defined as a basic sequential program in the sense of ASM theory, with the
important restriction that all basic updates concerning a cursor c on R must be
of the form c := nextR(c).
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Thus, basic update rules of the following three forms are rules: mode := t,
r := t, and c := nextR(c), where t is a term over Υ0 ∪ ΥS ∪ ΥM , and r is a
register and c is a cursor on R. The semantics of these rules is the obvious one:
Update the dynamic constant by the value of the term. Update rules r1, . . . , rm

can be combined to a new rule par r1 . . . rm endpar, the semantics of which is:
Fire rules r1, . . . , rm in parallel; if they are inconsistent do nothing. Furthermore,
if r1 and r2 are rules and ϕ is an atomic formula over Υ0 ∪ ΥS ∪ ΥM , then also
if ϕ then r1 else r2 endif is a rule. The semantics is obvious.

Now, an FCM program is just a single rule. (Since finitely many rules can be
combined to one using the par. . . end construction, one rule is enough.)

The Computation of an FCM: Starting with the initial state, successively
apply the (single rule of the FCM’s) program until mode is equal to accept or to
reject . Accordingly, we say that M terminates and accepts, respectively, rejects
its input.

Given that inputs are enumerations of databases, we must be careful to define
the result of a computation on a database. We agree that an FCM accepts a
database D if it accepts every enumeration of D. This already allows us to use
FCMs to compute decision queries. In the next paragraph we will see how FCMs
can output lists of tuples. We then say that an FCM M computes a query Q if on
each database D, the output of M on any enumeration of D is an enumeration
of the relation Q(D). Note that later we will also consider FCMs working only
on sorted versions of database relations: in that case there is no ambiguity.

Producing Output: We can extend the basic model so that the machine
can output a list of tuples. To this end, we expand the dynamic vocabulary ΥM

with a finite number of constant symbols of sort Element, called output registers,
and with a constant of sort Mode, called the output mode. The output registers
can be updated following the normal rules of ASMs. In each state of the finite
cursor machine, when the output mode is equal to the special value out , the
tuple consisting of the values in the output registers (in some predefined order)
is output; when the output mode is different from out , no tuple is output. The
initial settings of the output registers and the output mode are as follows: each
output register contains the value ⊥; the output mode is equal to init . We denote
the output of a machine M working on a database D by M(D).

Space Restrictions: For considering FCMs whose bitstring registers are
restricted in size, we use the following notation: Let M be a finite cursor machine
and F a class of functions from N to N. Then we say that M is an F-machine (or,
an F-FCM ) if there is a function f ∈ F such that, on each database enumeration
D of size n, the machine only stores bitstrings of length f(n) in its registers. We
are mostly interested in O(1)-FCMs and o(n)-FCMs. Note that the latter are
quite powerful. For example, such machines can easily store the positions of the
cursors. On the other hand, O(1)-machines are equivalent to FCMs that do not
use registers at all (because bitstrings of constant length could also be simulated
by finitely many modes).

Example 1. The following FCM program works on a ternary relation R(A, B, C)
and produces the sum of attributes A and B for each row with C at least 100.
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if outputmode = out then
par outputmode := init , c := nextR(c) endpar
else if outputmode <> out and attribute3

R(c) > 100 then
par outputmode := out , out1 := attribute1

R(c) + attribute2
R(c) endpar

else c := nextR(c) endif endif

3.1 Discussion of the Model

Storing Bitstrings instead of Data Elements: An important question
about our model is the strict separation between data elements and bitstrings.
Indeed, data elements are abstract entities, and our background structure may
contain arbitrary functions and predicates, mixing data elements and bitstrings,
with the important restriction that the output of a function is always a bitstring.
At first sight, a simpler way to arrive at our model would be without bitstrings,
simply considering an arbitrary structure on the universe of data elements. Let
us call this variation of our model the “universal model”.

Note that the universal model can easily become computationally complete.
It suffices that finite strings of data elements can somehow be represented by
other data elements, and that the background structure supplies the necessary
manipulation functions for that purpose. Simple examples are the natural num-
bers with standard arithmetic, or the strings over some finite alphabet with
concatenation. Thus, if we would want to prove complexity lower bounds in the
universal model, while retaining the abstract nature of data elements and oper-
ations on them, it would be necessary to formulate certain logical restrictions on
the available functions and predicates on the data elements. Finding interesting
such restrictions is not clear to us. In the model with bitstrings, however, one can
simply impose restrictions on the length of the bitstrings stored in registers, and
that is precisely what we will do. Of course, the unlimited model with bitstrings
can also be computationally complete. It suffices that the background structure
provides a coding of data elements by bitstrings.

Element Registers: The above discussion notwithstanding, it might still
be interesting to allow for registers that can remember certain data elements
that have been seen by the cursors, but without arbitrary operations on them.
Formally, we would expand the dynamic vocabulary ΥM with a finite number
of constant symbols of sort Element, called element registers. It is easy to see,
however, that such element registers can already be simulated by using additional
cursors, and thus do not add anything to the basic model.

Running Time and Output Size: A crucial property of FCMs is that all
cursors are one-way. In particular, an FCM can perform only a linear number
of steps where a cursor is advanced. As a consequence, an FCM with output
can output only a linear number of different tuples. On the other hand, if the
background structure is not restricted in any way, arbitrary computations on
the register contents can occur in between cursor advancements. As a matter
of fact, in this paper we will present a number of positive results and a num-
ber of negative results. For the positive results, registers will never be needed,
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and in particular, FCMs run in linear time. For the negative results, arbitrary
computations on the registers will be allowed.

Look-ahead: Note that the terms in the program of an FCM can contain
nested applications of the function nextR, such as nextR(nextR(c)). In some
sense, such nestings of depth up to d correspond to a look-ahead where the
machine can access the current cursor position as well as the next d positions. It
is, however, straightforward to see that every k-cursor FCM with look-ahead ≤ d
can be simulated by a (k × d)-cursor FCM with look-ahead 0. Thus, throughout
the remainder of this paper we will w.l.o.g. restrict attention to FCMs that have
look-ahead 0, i.e., to FCMs where the function nextR never occurs in if-conditions
or in update rules of the form mode := t or r := t.

The Number of Cursors: In principle we could allow more than constantly
many cursors, which would enable us to store that many data elements. We stick
with the constant version for the sake of technical simplicity, and also because
our upper bounds only need a constant number of cursors. Note, however, that
our main lower bound result can be extended to a fairly big number of cursors
(cf. Remark 11).

4 The Power of O(1)-Machines

We start with a few simple observations on the database query processing capa-
bilities of FCMs, with or without sorting, and show that sorting is really needed.

Let us first consider compositions of FCMs in the sense that one machine
works on the outputs of several machines working on a common database.

Proposition 2. Let M1, . . . , Mr be FCMs working on a schema S, let S′ be
the output schema consisting of the names and arities of the output lists of
M1, . . . , Mr, and let M0 be an FCM working on schema S′. Then there ex-
ists an FCM M working on schema S, such that M(D) = M0(D′), for each
database D with schema S and the database D′ that consists of the output rela-
tions M1(D), . . . , Mr(D).

The proof is obvious: Each row in a relation Ri of database D′ is an output row
of a machine Mi working on D. Therefore, each time M0 moves a cursor on Ri,
the desired finite cursor machine M will simulate that part of the computation
of Mi on D until Mi outputs a next row.

Let us now consider the operators from relational algebra: Clearly, selection
can be implemented by an O(1)-FCM. Also, projection and union can easily be
accomplished if either duplicate elimination is abandoned or the input is given
in a suitable order. Joins, however, are not computable by an FCM, simply
because the output size of a join can be quadratic, while finite cursor machines
can output only a linear number of different tuples.

In stream data management research [4], one often restricts attention to sliding
window joins for a fixed window size w. This means that the join operator is
successively applied to portions of the data, each portion consisting of a number
w of consecutive rows of the input relations. It is then straightforward to obtain
the following:
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Proposition 3. For every fixed window size w ∈ N there is an O(1)-FCM that
implements the sliding window join operator of width w. However, no FCM (with
registers of arbitrary size) can compute the full join of two relations of arity ≥ 2.

Using more elaborate methods, we can moreover show that even checking
whether the join is nonempty (so that output size is not an issue) is hard for
FCMs. Specifically, we will consider the problem whether two sets intersect,
which is the simplest kind of join. We will give two proofs: an elegant one for
O(1)-machines, using a proof technique that is simple to apply, and an intricate
one for more general o(n)-machines (Theorem 12). Note that the following result
is valid for arbitrary (but fixed) background structures.

Theorem 4. There is no O(1)-FCM that checks for two sets R and S whether
R ∩ S �= ∅. (This holds even if also the reversals of R and S are supplied as
input.)

Proof. We give here the proof without the reversals; the proof with reversals can
be obtained using the proof technique of our main result (Theorem 10). Let M
be an O(1)-FCM that is supposed to check whether R ∩ S �= ∅. Without loss
of generality, we assume that E is totally ordered by a predicate < in Υ0. Using
Ramsey’s theorem, we can find an infinite set V ⊆ E over which the truth of
the atomic formulas in M ’s program on tuples of data elements only depends
on the way these data elements compare w.r.t. < (details on this can be found,
e.g., in Libkin’s textbook [24, Section 13.3]). Now choose 2n elements in V , for
n large enough, satisfying a1 < a′

1 < · · · < an < a′
n, and consider the run of M

on R = {a1, . . . , an} (listed in that order) and S = {a′
n, . . . , a′

1}. We say that a
pair of cursors “checks” i if in some state during the run, one of the cursors is
on ai and the other one is on a′

i. By the way the lists are ordered, every pair
of cursors can check only one i. Hence, some j is not checked. Now replace a′

j

in S by aj . The machine will not notice this, because aj and a′
j have the same

relative order with respect to the other elements in the lists. The intersection of
R and S, however, is now nonempty, so M is wrong. ��

Of course, when the sets R and S are given as sorted lists, an FCM can easily
compute R∩S by performing one simultaneous scan over the two lists. Moreover,
while the full join is still not computable simply because its output is too large,
the semijoin R�S is also easily computed by an FCM on sorted inputs. Further-
more, the same holds for the difference R−S. These easy observations motivate
us to extend FCMs with sorting, in the spirit of “two-pass query processing”
based on sorting [11].

Formally, assume that E is totally ordered by a predicate < in Υ0. Then a
relation of arity p can be sorted “lexicographically” in p! different ways: for
any permutation ρ of {1, . . . , p}, let sortρ denote the operation that sorts a p-ary
relation ρ(1)-th column first, ρ(2)-th column second, and ρ(p)-th column last. By
an FCM working on sorted inputs of a database D, we mean an FCM that gets
all possible sorted orders of all relations of D as input lists. We then summarize
the above discussion as follows:
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Proposition 5. Each operator of the semijoin algebra (i.e, union, intersection,
difference, projection, selection, and semijoin) can be computed by an O(1)-FCM
on sorted inputs.

Corollary 6. Every semijoin algebra query can be computed by a composition
of O(1)-FCMs and sorting operations.

Proof. Starting from the given semijoin algebra expression we replace each op-
erator by a composition of one FCM with the required sorting operations. ��

The simple proof of the above corollary introduces a lot of intermediate sorting
operations. In some cases, intermediate sorting can be avoided by choosing in the
beginning a particularly suitable ordering that can be used by all the operations
in the expression [28].

Example 7. Consider the query (R − S) �x2=y2 T , where R, S and T are binary
relations. Since the semijoin compares the second columns, it needs its inputs
sorted on second columns first. Hence, if R − S is computed on sort(2,1)(R) and
sort(2,1)(S) by some machine M , then the output of M can be piped directly to
a machine M ′ that computes the semijoin on that output and on sort(2,1)(T ).
By compositionality (Proposition 2), we can then even compose M and M ′ into
a single FCM. A stupid way to compute the same query would be to compute
R − S on sort(1,2)(R) and sort(1,2)(S), thus requiring a re-sorting of the output.

The question then arises: can intermediate sorting operations always be avoided?
Equivalently, can every semijoin algebra query already be computed by a single
machine on sorted inputs? We can answer this negatively. Our proof applies a
known result from the classical topic of multihead automata, which is indeed to
be expected given the similarity between multihead automata and FCMs.

Specifically, the monochromatic 2-cycle query about a binary relation E and
a unary relation C asks whether the directed graph formed by the edges in
E consists of a disjoint union of 2-cycles where the two nodes on each cycle
either both belong to C or both do not belong to C. Note that this query is
indeed expressible in the semijoin algebra as “Is e1 ∪ e2 ∪ e3 empty?”, where
e1 := E − (E �

x2=y1
x1=y2

E), where e2 := E �
x2=y1
x1 �=y2

E, and where e3 := (E �

x1=y1

C) �

x2=y1

((π1(E) ∪ π2(E)) − C)
(We use a nonequality in the semijoin condition, but that is easily incorporated

in our formalism as well as computed by an FCM on sorted inputs.)

Theorem 8. The monochromatic 2-cycle query is not computable by an O(1)-
FCM on sorted inputs.

Proof sketch. The proof is via a reduction from the Palindrome problem. As was
proved by Hromkovič [19], the set of Palindromes cannot be decided by a one-way
multi-head deterministic sensing finite state automaton (1DSeFA(k)). It can be
shown that Hromkovič’s proof can be generalized to the presence of an arbitrary
but finite number of oblivious right-to-left heads that can only move from right
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to left on the input tape sensing other heads, but not read the symbols on the
tape. Now let M be an O(1)-FCM that is supposed to solve the monochromatic
2-cycle query. Again using Ramsey’s theorem, we can find an infinite set V ⊆ E

over which the truth of the atomic formulas in M ’s program on tuples of data
elements only depends on the way these data elements compare w.r.t. <. Hence,
there is an O(1)-FCM M ′ with only < in its rules, and equivalent to M over V .
We now come to the reduction. For a1 < · · · < an ∈ V , with n large enough, fix
relation E as {(ai, an−i+1) | 1 ≤ i ≤ n}. Given a string w = w1 · · · wn over {0, 1},
we define relation C = {ai | wi = 1}. It is then clear that w is a palindrome
if and only if E and C form a positive instance to the monochromatic 2-cycle
query. From FCM M ′ we can then construct a 1DSeFA(k) that would decide
Palindrome, and thus arrive at a contradiction. ��

An important remark is that the above proof only works if the set C is only
given in ascending order. In practice, however, one might as well consider sorting
operations in descending order, or, for relations of higher arity, arbitrary mixes
of ascending and descending orders on different columns. Indeed, that is the
general format of sorting operations in the database language SQL. We thus
extend our scope to sorting in descending order, and to much more powerful
o(n)-machines, in the next section.

5 Descending Orders and the Power of o(n)-Machines

We already know that the computation of semijoin algebra queries by FCMs
and sortings in ascending order only requires intermediate sortings. So, the next
question is whether the use of descending orders can avoid intermediate sorting.
We will answer this question negatively, and will do this even for o(n)-machines
(whereas Theorem 8 is proven only for O(1)-machines).

Formally, on a p-ary relation, we now have sorting operations sortρ,f , where
ρ is as before, and f : {1, . . . , p} → {�, �} indicates ascending or descending. To
distinguish from the terminology of the previous section, we talk about an FCM
working on AD-sorted inputs to make clear that both ascending and descending
orders are available.

Before we show our main technical result, we remark that the availability
of sorted inputs using descending order allows O(1)-machines to compute more
relational algebra queries. Indeed, we can extract such a query from the proof of
Theorem 8. Specifically, the “Palindrome” query about a binary relation R and
a unary relation C asks whether R is of the form {(ai, an−i+1) | i = 1, . . . , n}
with a1 < · · · < an, and C ⊆ {a1, . . . , an} such that ai ∈ C ⇔ an−i+1 ∈ C.
We can express this query in the relational algebra (using the order predicate in
selections). In the following proposition, the lower bound was already shown in
Theorem 8, and the upper bound is easy.

Proposition 9. The “Palindrome” query cannot be solved by an O(1)-FCM on
sorted inputs, but can be solved by an O(1)-FCM on AD-sorted inputs.
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We now establish:

Theorem 10. The query RST := “Is R�x1=y1 (S�x2=y1 T ) nonempty?”, where
R and T are unary and S is binary, is not computable by any o(n)-FCM working
on AD-sorted inputs.

Proof. For the sake of contradiction, suppose M is a o(n)-FCM computing RST
on sorted inputs. Without loss of generality, we can assume that M accepts or
rejects the input only when all cursors are positioned at the end of their lists.

Let k be the total number of cursors of M , let r be the number of registers
and let m be the number of modes occurring in M ’s program. Let v :=

(
k
2

)
+ 1.

Choose n to be a multiple of v2, and choose 4n values in E satisfying a1 <
a′
1 < a2 < a′

2 < · · · < an < a′
n < b1 < b′1 < · · · < bn < b′n.

Divide the ordered set {1, . . . , n} evenly in v consecutive blocks, denoted by
B1, . . . , Bv. So, Bi equals the set {(i − 1)n

v + 1, . . . , in
v }. Consider the following

permutation of {1, . . . , n}:

π : (i − 1)·n
v + s �→ (v − i)·n

v + s

for 1 ≤ i ≤ v and 1 ≤ s ≤ n
v . So, π maps subset Bi to subset Bv−i+1, and vice

versa.
We fix the binary relation S of size 2n for the rest of this proof as follows:

S :=
{
(a�, bπ�) : 
 ∈ {1, . . , n}

}
∪

{
(a′

�, b
′
π�) : 
 ∈ {1, . . , n}

}
.

Furthermore, for all sets I, J ⊆ {1, . . . , n}, we define unary relations R(I) and
T (J) of size n as follows:

R(I) := {a� : 
 ∈ I} ∪ {a′
� : 
 ∈ Ic}

T (J) := {b� : 
 ∈ J} ∪ {b′� : 
 ∈ Jc},

where Ic denotes {1, . . . , n} − I. By D(I, J), we denote the database consisting
of the lists sort�

(
R(I)

)
, sort�

(
R(I)

)
, sort�

(
T (J)

)
, sort�

(
T (J)

)
, and all sorted

versions of S. It is easy to see that the nested semijoin of R(I), S, and T (J) is
empty if, and only if, (π(I) ∩ J) ∪ (π(I)c ∩ Jc) = ∅. Therefore, for each I, the
query RST returns false on instance D(I, π(I)c), which we will denote by D(I)
for short. Furthermore, we observe for later use:

the query RST on D(I, π(J)c) returns true if, and only if, I �= J . (∗)

To simplify notation a bit, we will in the following use R� and T� to denote
lists sort�

(
R(I)

)
and sort�

(
T (I)

)
sorted in ascending order, and we use R� and

T� to denote the lists sort�

(
R(I)

)
and sort�

(
T (I)

)
sorted in descending order.

Consider a cursor c on list R� of the machine M . In a certain state (i.e.,
configuration), we say that c is on position 
 on R� if M has executed 
−1
update rules c := nextR�

(c). I.e., if cursor c is on position 
 on R�, then c sees
value a� or a′

�. We use analogous notation for the sorted lists R�, T�, and T�.
I.e., if a cursor c is on position 
 on R� (resp. T�, resp. T�), then c sees value
an−�+1 or a′

n−�+1 (resp. b� or b′�, resp. bn−�+1 or b′n−�+1).
Consider the run of M on D(I). We say that a pair of cursors of M checks

block Bi if at some state during the run
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– one cursor in the pair is on a position in Bi on R� (i.e., the cursor reads an
element a� or a′

�, for some 
 ∈ Bi) and the other cursor in the pair is on a
position in Bv−i+1 on T� (i.e., the cursor reads an element bπ� or b′π�, for
some 
 ∈ Bi), or

– one cursor in the pair is on a position in Bv−i+1 on R� (i.e., the cursor reads
an element a� or a′

�, for some 
 ∈ Bi) and the other cursor in the pair is on
a position in Bi on T� (i.e., the cursor reads an element bπ� or b′π�, for some

 ∈ Bi).

Note that each pair of cursors working on the ascendingly sorted lists R� and
T� or on the descendingly sorted lists R� and T�, can check at most one block.
There are v blocks and at most

(
k
2

)
< v cursor pairs. Hence, there is one block

Bi0 that is not checked by any pair of cursors working on R� and T� or on R�

and T�. In order to also deal with pairs of cursors on R� and T� or on R� and T�,
we further divide each block Bi evenly into v consecutive subblocks, denoted by
B1

i , . . . , Bv
i . So, Bj

i equals the set {(i − 1)n
v + (j − 1) n

v2 + 1, . . . , (i − 1)n
v + j n

v2 }.
We say that a pair of cursors of M checks subblock Bj

i if at some state during
the run

– one cursor in the pair is on a position in Bj
i on R� (thus reading an element

a� or a′
�, for some 
 ∈ Bj

i ) and the other cursor in the pair is on a position
in Bv−j+1

i on T� (thus reading an element bπ� or b′π�, for some 
 ∈ Bj
i ), or

– one cursor in the pair is on a position in Bv−j+1
v−i+1 on R� (thus reading an

element a� or a′
�, for some 
 ∈ Bj

i ) and the other cursor in the pair is on
a position in Bj

v−i+1 on T� (thus reading an element bπ� or b′π�, for some

 ∈ Bj

i ).

Note that each pair of cursors working either on R� and T� or on R� and T�, can
check at most one subblock in Bi0 . There are v subblocks in Bi0 and at most(
k
2

)
< v cursor pairs. Hence, there is at least one subblock Bj0

i0
that is not checked

by any pair of cursors working either on R� and T� or on R� and T�. Note that,
since the entire block Bi0 is not checked by any pair or cursors working either
on R� and T� or on R� and T�, the subblock Bj0

i0
is thus not checked by any

pair of cursors (on R�, R�, T�, T�).
We say that M checks subblock Bj

i if at least one pair of cursors of M checks
subblock Bj

i .
At this point it is useful to introduce the following terminology. By “block

Bj0
i0

on R”, we refer to the positions in Bj0
i0

of list R� and to the positions in
Bv−j0+1

v−i0+1 of list R�, i.e., “block Bj0
i0

on R” contains values a� or a′
� where 
 ∈ Bj0

i0
.

By “block Bj0
i0

on T ”, however, we refer to the positions in Bj0
v−i0+1 of list T� and

to the positions in Bv−j0+1
i0

of list T�, i.e., “block Bj0
i0

on T ” contains values bπ�

where 
 ∈ Bj0
i0

. Note that this terminology is consistent with the way we have
defined the notion of “checking a block”.

It can be shown that there exist at least two different instances D(I) and
D(J) with the following crucial properties:
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1. The query RST returns false on D(I) and on D(J) (cf. (∗));
2. M does not check block Bj0

i0
on D(I), nor on D(J);

3. D(I) and D(J) differ on R and T only in block Bj0
i0

; and

4. For each cursor c, when c has just left block Bj0
i0

(on R or T ) in the run on
D(I), the machine M is in the same state as when c has just left block Bj0

i0
in the run on D(J).

Let V0, V1, . . . be the sequence of states in the run of M on D(I) and let
W0, W1, . . . be the sequence of states in the run of M on D(J). Let tIc and tJc be
the points in time when the cursor c of M has just left block Bj0

i0
in the run on

D(I) and D(J), respectively. Because of Property 4 above, VtI
c

equals WtJ
c

for
each cursor c. Note that the start states V0 and W0 are equal.

Now consider instance Derr := D(I, π(J)c). So, Derr has the same lists R�, R�

as D(I) and the same lists T�, T� as D(J). It can now be shown that the (re-
jecting) runs of M on D(I) and D(J) can be combined to obtain a run of M on
Derr which rejects Derr. This is wrong, however, because due to (∗) the query
RST returns true on Derr. Finally, this completes the proof of Theorem 10. ��

Remark 11. (a) An analysis of the proof of Theorem 10 shows that we can make
the following, more precise statement: Let k, m, r, s : N → N such that

k(n)6 · (log m(n)) · r(n) · max(s(n), log n) = o(n).

Then for sufficiently large n, there is no FCM with at most k(n) cursors, m(n)
modes, and r(n) registers each holding bitstrings of length at most s(n) that, for
all unary relations R, T and binary relations S of size n decides if R �x1=y1

(S �x2=y1 T ) is nonempty. (In the statement of Theorem 10, k, m, r are con-
stant.) This is interesting in particular because we can use a substantial number
of cursors, polynomially related to the input size, to store data elements and still
obtain the lower bound result.
(b) Note that Theorem 10 is sharp in terms of arity: if S would have been unary
(and R and T of arbitrary arities), then the according RST query would have
been computable on sorted inputs.
(c) Furthermore, Theorem 10 is also sharp in terms of register bitlength: Assume
data elements are natural numbers, and focus on databases with elements from
1 to O(n). If the background provides functions for setting and checking the i-th
bit of a bitstring, the query RST is easily computed by an O(n)-FCM.

By a variation of the proof of Theorem 10 we can also show the following
strengthening of Theorem 4:

Theorem 12. There is no o(n)-FCM working on enumerations of unary rela-
tions R and S and their reversals, that checks whether R ∩ S �= ∅.

Note that Theorems 10 and 12 are valid for arbitrary background structures.
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6 Concluding Remarks

A natural question arising from Corollary 6 is whether finite cursor machines
with sorting are capable of computing relational algebra queries beyond the
semijoin algebra. The answer is affirmative:

Proposition 13. The boolean query over a binary relation R that asks if R =
π1(R) × π2(R) can be computed by an O(1)-FCM working on sort(1,2),(�,�)(R)
and sort(2,1),(�,�)(R).

The proof is straightforward. Note that, using an Ehrenfeucht-game argument,
one can indeed prove that the query from Proposition 13 is not expressible in
the semijoin algebra [23].

We have not been able to solve the following:

Problem 14. Is there a boolean relational algebra query that cannot be computed
by any composition of O(1)-FCMs (or even o(n)-FCMs) and sorting operations?

Under a plausible assumption from parameterized complexity theory [10, 8] we
can answer the O(1)-version of this problem affirmatively for FCMs with a de-
cidable background structure.

There are, however, many queries that are not definable in relational algebra,
but computable by FCMs with sorting. By their sequential nature, FCMs can
easily compare cardinalities of relations, check whether a directed graph is reg-
ular, or do modular counting—and all these tasks are not definable in relational
algebra. One might be tempted to conjecture, however, that FCMs with sorting
cannot go beyond relational algebra with counting and aggregation, but this is
false:

Proposition 15. On a ternary relation G and two unary relations S and T ,
the boolean query “Check that G = π1,2(G) × (π1(G) ∪ π2(G)), that π1,2(G)
is deterministic, and that T is reachable from S by a path in π1,2(G) viewed
as a directed graph” is not expressible in relational algebra with counting and
aggregation, but computable by an O(1)-FCM working on sorted inputs.
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