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Abstract 

The notions aging, obsolescence, impact, growth, utilization and their relations are 

studied. It is shown how to correct an observed citation distribution for growth, 

once the growth distribution is known. The relation of this correction procedure with 

the calculation of impact measures is explained. More interestingly, we have shown 

how the influence of growth on aging can be studied over a complete period as a 

whole. Here the difference between the so-called average and global aging 

distributions is the main factor. Our main result is that growth can influence aging 

but that it does not cause aging. A short overview of some classical articles on this 

topic is given. Results of these earlier works are placed in the framework set up in 

this article. 

Keywords and phrases: age, average and global aging distributions, growth, reversed 

growth, utilization, obsolescence, impact, growth rates, temporal selectivity 



1. Introduction 

The terms 'growth' and 'to grow' 

Aging and growth are two important topics in information science. Knowledge of 

these concepts leads to the study of the evolution of scientific fields and allows 

comparisons between fields. Yet it is sometimes not clear what is meant by the terms 

used in such studies. A point in case is the meaning of the notions 'growth' and 'to 

grow'. 

Sometimes the terms 'growth' and 'to grow' are meant in the sense of the number of 

entities that come into existence, e.g. articles published, during a fixed period (say 

one year). Thus 'yearly growth' means the same as 'yearly production' of entities. We 

will use these terms mainly in this sense. On other occasions the terms 'growth' and 

'to grow' refer to the total (cumulative) production over many years, as in the phrase 

'this year the database has grown to a total of 1 million items'. Finally, the term 

'growth' is sometimes used in the sense of an expanded activity, i.e. the (positive) 

difference of the production between consecutive moments in time, as in the phrase, 

'the growth of the GNP' (gross national product). We have the impression that when 

information scientists studied the 'influence of growth on obsolescence' (to be 

defined shortly) they used the term 'growth' mostly in the latter sense. 



Conglomerates, sources and items 

As in many earlier publications (Egghe & Rousseau, 1990) we use the general terms 

sources and items. Sources are themselves units in a larger set and come into 

existence through an information production process. This larger set may be a 

bibliography on a subject or a publication list of a scientist of group of scientists. As a 

generic name for this larger set we used the term 'generalized bibliography' in earlier 

publications. Perhaps a new, and more neutral term, such as 'conglomerate' would 

be appropriate. 

We stress the fact that in studying aging effects time is clearly an important and 

complicating factor. I n  general we consider a conglomerate as a dynamic entity (but 

static ones are not excluded). As always sources (can) produce items. To clarify what 

we mean by these concepts we first present three examples. 

lo) Compiling a bibliography is one way to represent a scientific discipline. Such a 

bibliography comes only gradually into existence (it grows). It is an example of a 

conglomerate. Each source of the conglomerate is a published article and each time 

one of these articles is cited, it is said that this article has produced an item. So, in 

this example articles in the bibliography are sources. The total of all articles, i.e. the 

conglomerate, grows and a citation to one of these articles is an item. Instead of a 

discipline, we may, similarly, study the lifetime scientific achievements of a scientist 

or a group of scientists. 



2O) A totally different situation occurs in the study of Internet pages with, e.g., .be 

in its URL (Belgian web pages). Again this conglomerate changes in the course of 

time, but it does not necessarily increase (in principle it may even decrease). Each 

such page is a source, and each time another web page makes a link to such a .be 

page an item is created (Rousseau, 1997). Note that the link is the item, not the 

other web page. The disappearance of a web page makes all produced items without 

'content'. They are considered to disappear together with the source. 

3O) It is also possible to study a fixed set of articles, e.g. one issue of a journal. 

There is no growth in time, but all other aspects stay the same. The collection of 

articles published in that issue forms the (static) conglomerate, the articles 

themselves are sources and each time one of these articles is cited, an item is 

created (6. example lo). 

Aging - obsolescence 

Although the term 'obsolescence' has negative connotations, it is a commonly used 

notion. We would describe it as the (possible) decline of usefulness over time. In  this 

article we tend to avoid this negative term and use 'aging' instead. I n  the case of 

published articles aging is often measured by counting citations. Obsolescence can 

also be described as temporal selectivity in the use of articles. For us the notions 

'aging curve and aging distribution' are synonymous with the notions 'citation curve 

and citation distribution'. I n  the first months aRer publication aging of an article 

really means an increase in citations. I n  that period we have a 'burgundy effect' 

(becoming better with age) (Degroote et al., 1991). I n  relation with the second 



example we remark that removal of a page is the ultimate form of obsolescence! For 

a review on concrete aging distributions of citations we refer the reader to (Egghe & 

Rao, 1992a; Matricciani, 1991; Egghe & Rousseau, 1990). Use can also be 

considered in a relative way, namely use with respect to supply. A typical example is 

the number of citations with respect to the number of publications, a notion that is 

usually referred to as 'impact'. Thus impact can be considered as a form of relative 

aging. Moreover, we will show that 'correcting aging for growth' is closely related to 

studying impact. 

Time as a discrete variable 

The term 'aging' leads us again to the notion of time. Time is a continuous variable. 

Yet one is often interested in variations between numbers measured on a fixed time 

scale, usually one year. Moreover, data is often collected in a discrete way. Hence, 

time will be treated as a discrete variable. We would like to point out though that 

most of our results are equally valid when considering time as a continuous variable. 

Diachronous and synchronous studies 

Aging can be studied in a synchronous and in a diachronous way (Nakamoto, 1988). 

Diachronous studies of aging consider a source (or a set of sources) and examine the 

number of items produced by this source later on. One studies e.g. a publication and 

the number of citations it receives over the years. I f  the original source (publication) 

comes into existence at this moment, one has to wait a long time before a 

diachronous study becomes meaningful. I n  principle a diachronous study never ends. 

On the other hand, synchronous studies look at the past. One examines e.g. the 



reference list of a recently published article (or group of articles) and determines the 

ages of the references in that (or these) article(s). Diachronous studies (of articles) 

require citation indices, while synchronous studies do not. Hence synchronous 

studies are usually cheaper and easier to perform. According to Stinson (1981), see 

also (Stinson & Lancaster, 1987), synchronous and diachronous studies of the aging 

of scientific articles lead to the same conclusions, hence implying a preference for 

synchronous ones. 

The three groups of examples of conglomerates, sources and items mentioned above 

are all described in a diachronous way. They may also be studied in a synchronous 

way (see Table 1). We further note that synchronous as well as diachronous studies 

may be done 'in retrospect', by which we mean that such a study is being done 

(now) with a moment in the past as starting or reference date. I n  such a way one 

may perform in the year 2001 a diachronous as well a synchronous study of articles 

published, e.g, in the year 1990. The main difference between the diachronous and 

the synchronous approach is that in the synchronous approach sources 'produce' 

items that existed already, i.e. the sources are active in establishing the source-item 

relation. A typical example is the case of an article (the source) citing another 

(necessarily older) one (the item). In  the diachronous approach the items establish 

the source-item relation. A typical example here is that of an article (the source) 

being cited by another (necessarily younger) one (the item). 

Although in practical cases diachronous and synchronous studies may need different 

techniques, this distinction plays no role on the (theoretical) level we adopt in the 



present study. Our notation is so general as to incorporate both the diachronous and 

the synchronous case. 

More examples 

Table 1 gives a number of practical examples of conglomerates, sources and items. 

[ insert Table 1 about here] 

Growth functions and rates of growth 

As stated above, the time evolution of the conglomerate (set of sources) under 

consideration will be described through a growth function, denoted as g(t). Here the 

variable t denotes time and is considered as increasing from the past to the present. 

I n  most cases this growth function itself is increasing, but we do not exclude a 

constant or decreasing growth function. We will, however, also have to 'go back in 

time'. I n  that case we will use the term 'reversed growth distribution', denoted as 

j(t). The variable t increases from the present to the past. For a review of concrete 

growth functions such as the exponential function or S-shaped ones, we refer the 

reader to (Tague et al., 1981; Egghe & Rao, 1992b). 
'. 

Rates of growth or aging will be determined by the value at time t+ l  divided by the 

value at time t. Hence the (discrete) growth rate will be given by g(t+l)/g(t) and the 

(discrete) aging rate by c(t+l)/c(t) (Egghe & Rao, 1992a,b). The main purpose of 

this article is to study the disturbing role of growth on aging and utilization (see 

further for a description of this term). Note that sometimes the term 'growth rate' 

refers to the logarithm of what we have described as the 'growth rate' (Pierou et al. 

1999), or to the expression (g(t+l)-g(t))/g(t) (see e.g. (Narayana, 1998)). 



Table 1 

dynamic (or static) 
conglomerate 

sources items 

Synchronous examples 

scientific discipline, 
represented by a bibliography 
(dynamic case) 

one issue of a journal 
(static case) 

fiction literature 

published documents references in these 
documents 

articles in this issue references in these 
articles 

books words used in these 
books 

Internet presence of a country, pages with this country's links in these pages 
as represented by URLs code in the URL (to other pages) 

scientific output of a 
research group 

Diachronous examples 

scientific discipline, 
represented by a bibliography 

scientific output of a 
research group 

one issue of a journal 

public or scientific library 

published documents 

documents published 
from now on 

published documents 

articles in this issue 

acquired books 
(from now on) 

references in these 
documents 

citations of these 
documents 

citations of these 
documents 

citations of these 
articles 

loans of these new books 

Internet presence of a country, pages with this country's links to these pages 
as represented by URLs code in the URL 

database records searches that retrieve 
these records 



Applications 

Obsolescence and aging have often been studied as an aspect of a particular 

literature or journal (Clark, 1976; Diodato & Smith, 1993; Rowlands, 1999). They 

have also been studied in the framework of finding the best possible policy for 

relegating rarely used library items to secondary storage (Brookes, 1970). Scales' 

(1976) and Tsay's (1998) articles are among the few ones trying to link library use 

with global use as measured through citations. Griffith et al. (1979) have shown that 

scientific journals used as archives age slowly, while journals supporting the research 

front age quickly. Our article concentrates on the methodological issues and the 

relations between the different notions involved in this kind of study. 

Outline of the article 

The next section presents the influence of growth on aging, how aging rates can be 

corrected for growth and the relation with impact measures. Here our attention goes 

essentially to a single one-year period. I n  the third and fourth sections we give our 

attention to the case that a whole period of length T is studied at once. A number of 

general (mathematical) results will be proven in section 5. The sixth section provides 

practical calculations and examples of the concepts studied in the previous sections. 

Section 7 gives a short overview of older articles on this topic. Results are placed in 

the framework set up in this article. Finally, we come to the conclusions. 



2. The reversed growth distribution and its influence on aging 

2.1 The basic distributions 

To fix the ideas our descriptions will be cast in a synchronous framework of a 

scientific discipline, studied through a bibliography of publications and references 

made in these publications. Note though that our results apply equally well to other 

source-item relations, as well as to the diachronous case. 

For every t E N we denote by ct the observed discrete distribution function (in the 

statistical sense) of the publication data of the references in the documents in the 

bibliography that were published t years ago. The function ct(n) is called the 

observed instantaneous aging distribution. Note that we use a symbol such as n to 

denote the variable of the function ct, with n E W. Hence, n increases in the direction 

of the past, starting at t (where n = 0). See Fig.1. 

past now 

Fig. 1 Observed instantaneous aging distribution on time axis 



As distribution functions the cts satisfy the relation: V t E N 

We further introduce a distribution function that describes how the bibliography 

grows. For technical reasons it is at this moment more convenient to describe such a 

function with time t increasing from now (point 0) in the direction of the past. This 

function is denoted as j(t) and is referred to as the reversed growth distribution 

function. Note that the (usual) growth function, g(t) is essentially the same function 

as the reversed growth function but now time is moving in the natural direction, i.e. 

from the past to the future (see further Section 3 for a more precise definition of a 

growth function). Of course, we also have: 

The reversed growth rate function ~ ( t )  is defined as: 

The change in production between moments that are separated by more than one 

year is denoted and defined as follows, fort= 0 ,... and n= 1, 2 ,... : 

Note that 

x( t ,n)  = ~ ( t ) .  ~ ( t  + l ) . . . ~ ( t  + n  - I )  and that ~ ( t , l )  = ~ ( t ) .  (5) 

We put x(t,O) = 1. If the growth is constant then ~(t,n) = 1 for every t and n. I f  the 

reversed growth function declines exponentially (corresponding with an exponential 



growth): j(t) = e'*, then ~ ( t )  is constant (= e-a). Note that a = 0 yields the case of 

constant growth. 

Citation distributions and (reversed) growth curves may be determined for real 

bibliographies. An obvious question: what is the simplest way to take the growth of 

the literature into account when studying citations? To answer this question in a 

specific year (say now, i.e. the year 0) one must replace 

where k(n) denotes the corrected instantaneous citation distribution, and Ko is a 

normalization factor introduced to make ko into a distribution function. Assume, e.g., 

that the literature has increased by 10% over the past 5 years. Then ~(0,5) = 

100/110 (4 0.91) and the observed citations are multiplied by 110/100 = 1.10. It is 

clear that if growth is constant, the corrected citation curve becomes equal to the 

observed one: no correction is necessary. I n  general, we define 

with Kt as a normalization factor. 

For every t E W, t fixed, the instantaneous observed aging rate function is defined 
as: 

with n E N. Similarly, the instantaneous corrected aging rate is: 



Note that: 

The meaning of the reversed growth rate function is clear: one considers, for every t 

in the period under study, the number of publications that originated t+l time units 

(years) ago, divided by the number of publications that originated t years ago. The 

instantaneous aging rate functions pt(n) and pt(n) can be interpreted as follows. At  

each time t we consider all puMications in the bibliography that were published at 

that moment (or that year). The age distribution of the references of these 

publications (corrected for growth or not) is given by the functions kt and ct. We take 

the ratio of the number of references that had been published n+ l  year earlier 

(hence t + n +1 year from now) and the number of references that had been 

published n years earlier (hence t + n year from now). If the growth rate is constant 

(exponential growth) the corrected and non-corrected aging rates differ by this fixed 

constant. If, however, the growth function is a constant function then x = 1 and 

hence p = p. 

Based on Equation (10) we can make the following comments. If the reversed 

growth rate is always smaller than one: ~ ( t )  < 1, then Pt(n) < pt(n), for every t and 

n. I n  particular, if the corrected aging y te  is smaller than one this implies that the 

observed aging rate is even smaller. So growth of the literature increases the 

obsolescence effect. I f  the observed aging rate is larger than one (period in which 

the burgundy effect prevails) the corrected one is even larger. So, if the observed 

citation curve is unimodal (say roughly lognormally distributed) the above 



observations mean that the mode of the corrected curve is shifted towards larger t- 

values. So, a decreasing reversed growth (ie. increasing growth) intensifies the 

immeaiacy effect This is shown in Fig.2. For clarity's sake we have used continuous 

distribution functions in this illustration. 

Fig. 2 Increasing growth intensifies the immediacy effect 
a. reversed growth distribution 
b. observed aging distribution 
c. corrected aging distribution 

One could also consider instantaneous impact factors, denoted as it(n), and defined 

as: 

I f  the observed citation curve exactly followed the reversed growth curve, the 

instantaneous impact factors would be constant. One could say that in this situation 



there is no relative obsolescence. Table 2 gives an example of a situation where this 

is the case. 

Table 2 An example where the instantaneous impact curve is always constant. 

The following proposition shows that correcting a citation distribution for the growth 

of the literature is exactly the same as considering impact factors. 

Proposition 1 

The corrected instantaneous citation distribution is the same as the instantaneous 

impact factor distribution. 

Proof 

We know that, for fixed t, 

Ct (4 k, (n) = K, - 
x( t ,n)  

(7) 

On the other hand, multiplying (11) by an appropriate factor in order to obtain a 

distribution function leads to: 



where we have kept the same notation for impact. However, by Equation (4), we 

have: 

with Kt j(t) = It. This proves Proposition 1. 

Therefore we note that the instantaneous corrected aging rate is equal to the 

instantaneous impact rate. 

Proposition 2 

I f  x is decreasing and if the instantaneous observed aging rate functions pt are 

strictly increasing in t, then the instantaneous corrected aging rate functions pt are 

strictly increasing in t. 

Proof: this result follows from: 

Similarly we obtain: 

I f  x is increasing and if the instantaneous observed aging rate functions pt are strictly 

decreasing in t, then the instantaneous corrected aging rate functions pt are strictly 

decreasing in t. 



The comments made about Equation (10) concerning the observed and the corrected 

aging curves and aging rates, may, by Proposition 1, also be made concerning the 

observed aging curve and rates and the impact. 

With the functions ct and j we can define (generalized) impact factors, denoted as IF. 

We can consider, e.g.: 

These impact factors were introduced in (Rousseau, 1988) and studied, in a 

continuous setting, by Egghe (Egghe, 1988). We note (and prove) one result as an 

example. 

Proposition 3 

For all no E NO: IFt(no) = IFt(n0 -1) if and only if it(n0) = IFt(no). 

Proof. I f  it(no) = IFt(no), then 

c , ( n , ) o ( t ) + . . . +  j(no + t ) ) =  j(n, + t ) ( c , ( n , ) + . . . + c , ( ~ ) )  

Consequently, we also have: 

c,(n,)(j(t)+.. .+ j(n, - l+t ) )=  j(no +t)(c,(n, - l )+ . . .+c t (0) )  

Hence: it(no) = IFt(n0 - I), and, thus IFt(no) = IFt(no -1). The other implication may 

be shown in a similar way. 

This ends our observations about the influence of reversed growth on aging if one is 

mainly interested in one particular year, i.e. ct, with t fixed. Most of what we have 

written here is well known (see Section 7). In  the other sections of this article we 



study what happens if one considers a longer time period, i.e. considering several t- 

values at once. To a great extent this is a new aspect of aging. 

3. Definitions and properties of average age, aging and utilization 

Suppose we consider a bibliography, i.e. a set of documents, published over a certain 

time period, denoted as [O,TJ Here, the symbol 0 (zero) represents the present and 

T refers to the moment of publication of the oldest document in the collection. Of 

course, there may exist documents older than T, but these are not considered as 

sources. They may, however, play the role of items, i.e. it is possible to cite articles 

older than T. 

3.1 The growth function 

We denote by g(t), t G [O,Tl, the discrete growth distribution function in the 

investigated period [O,TI. For the growth function g, time increases from the oldest 

document in the collection under study (which came into existence at time 0) in the 

direction of the present (time T). See Fig.3 

now 

Fig.3 Growth function 



We note that also g, being a distribution function, satisfies: 

I f  j(t) = 0 for t > T, then, for all t E [O,TI: 

Xt) = gu-t) (16) 

For simplicity's sake we assume from now on that (16) is always satisfied. 

The growth rate function of the bibliography is, fo r t  E [O,T-11, defined as: 

a(t) = g(t+l) 1 (17) 

Then: 

a(t) = 
1 1 

x ( T - t - 1 )  
> or x(0 = 

a(T-(-1) 
(1 8) 

The instantaneous aging rates studied in the previous section only present 

information about aging at a fixed time t. It is much more important to define aging 

functions that measure aging of the bibliography as a whole (hence considering the 

whole period [ O n ) .  To this end we introduce a number of functions. Note that, 

although we work with the observed aging distributions ct(n), we could (and perhaps 

better) use the corrected aging distributions kt(n) as well. At this point this is, 

however, only a matter of notation. 

3.2 The average aging distribution function of a bibliography (in short: the aging 

distribution), denoted as CA. 

The function c&), n E N, is defined as the average of the instantaneous aging 

distributions ct over t E [O,Tl: 



It is easy to check that the function CA is itself a distribution function: 

The function CA is the basic aging function of the bibliography if growth is not taken 

into account during the averaging process. Indeed, what we do is looking - over the 

period under study - at the different citation curves (as distributions). We then take 

the average number of citations received by an article that is n years old. During this 

averaging process we do not take into account how many articles have been 

published in the different years. We will henceforth drop the adjective 'average' 

because otherwise confusion could arise when taking averages involving the function 

CA 

3.3 The global aging distribution function, denoted as CG. 

The function ~ ( n )  is defined, for n E N, as: 

This is the weighted average of the instantaneous aging distribution functions ct. 

Weighting occurs through the functions j(t). Hence it is the aging function of the 

bibliography weiahted for arowth over the period [ O , l .  It is clear now that in the 

definition of the aging function cn(n) all periods were considered with the same 

weight, or, stated otherwise, weighting was done using a uniform distribution over 

the interval [O,TJ Note further that also Q is a bona fide density function, i.e. 



cc 

C % ( " )  = 1 
n=o 

(22)  

The function CG is the basic aging distribution function for the bibliography (over a 

period with length T) when growth is taken into account. Comparison between the 

functions CA and CG (and of derived measures, see further) will reveal important 

aspects of the influence of growth on aging. 

The difference between average and global measures was studied extensively in 

(Rousseau & van Hwydonk, 1996; Egghe & Rousseau, 1996a,b). From these studies 

it is known that c~(n) < cc(n), c~(n) = ~ ( n )  and c~(n) > c~(n) are all possible, 

showing that CA and CG have truly different properties. 

We recall that, in our opinion, studying the 'influence of growth on obsolescence' 

over a period of length T, means studying the differences between the aging 

functions CA and CG and functions or measures derived thereof. 

3.4 The utilization distribution function cu 

The utilization distribution function cu(n) is defined, for n E N, as: 

It is not difficult to show that also cu is a distribution function, i.e. 



The function cu(n) gives the relative number of references to articles that are n years 

old (as measured from the present, i.e. time 0). Indeed, a reference to a publication 

that is (now) n years old comes from a reference in a paper that is (now) t years old 

when at the time of the publication of this paper the cited publication was n-t years 

old. Here t E [O,TJ The function cu(n) measures the relative use that has been made 

of publications published n years ago. This is done independently from the exact 

time of citation. I n  the same way as the fundion j measures the (reversed) growth 

of articles, the function cu measures the use that has been made of these articles. I n  

this sense it can be considered as a citation analog of the reversed growth function j. 

3.5 The average utilization function cAu 

I f  we replace in (23) the function ct by CA we obtain what we call the average 

utilization function, denoted as CAU: 

It measures analogous features as CU, but uses, at every moment, the average aging 

distribution CA instead of the instantaneous one. Therefore, also CAU can be 

considered a citation analog of the reversed growth function j. 

From (25) it follows that 

CAU(~) = (j * CA)(~) = (CA * j)(t) (26) 



where + denotes the convolution operator. For more information on the convolution 

operator and its use in informetrics we refer the reader to the tutorial (Rousseau, 

19%). 

The average utilization function was studied in (Egghe, 1993) and in (Egghe et al., 

1995). Yet, in the first one cnu(t) was considered more as an aging function. The 

more appropriate approach, namely considering it as an utilization function, was 

taken in the second article. 

Density functions such as (23) and (25) really represent the relative use of 

publications (as gauged by citation counts), considered from the present on (and not 

from the time the reference was given). This means that, if we consider a scientific 

domain in which all activity has stopped, say p years ago, and if cu denotes the 

density function (23) and CU,, denotes the density function as it was p years ago , i.e. 

at the time all activity stopped, then, for all t r p, 

cdt) = cu,p(t-P) (27) 

Proof. Put j,(t) = j(t+p) (and note that j(m) = 0 for 0 2 m < p). Similarly, we put 

~ ~ , ~ ( n )  = ~ ~ + ~ ( n ) .  Then: 

Now, putting m = n+p gives: 

This proves Equation (27). 



The previous result illustrates the use of the utilization function. A similar result can 

be shown for CAIJ. 

Having introduced the basic distribution functions, we now define some derived 

measures. 

4. Derived measures 

In  the previous sections we showed that growth had a close relation to aging. 

Indeed, from a methodological point of view, we know that they are both defined 

and studied in analogous ways, 6. Equations (4),(8),(9). But further, we note that 

growth has an influence on aging in at least two ways. 

The more a field grows, the more articles come into existence, acting as sources for 

references to the past, i.e. to articles published earlier. 

The faster a field grows the heavier the competition between 'older' articles to get 

into the reference list of the new ones (the dilution effect). 

These two opposing dynamic forces act on the aging function of a field. How this 

actually happens will be shown further on by using the distribution functions CA and 

cc. 

Growth data themselves yield 'aging' measures, more specifically on the age of a 

field. 



I n  this context we define the mean age of a field that started T years ago (measured 

through publications) as: 

Note that 

The median age of the field (or the publication half-life of the field) is denoted as 

Md(j). The preceding formulae show how age characteristics of a field (mean, 

median) are defined through the reversed growth function j(t) (or equivalently, the 

growth function g(t), as Md(g) = T - Md(j), if j = 0 for t > T). Aging on the other 

hand is defined using the functions CA or Q. Here use of the sources, as measured 

though their productive capabilities (e.g. citations), is of importance. 

The aging rate is defined, for all n E W, as: 

This is the aging rate of the field (measured via our bibliography and in such a way 

that growth has not been accounted for; it is based on observed data). The median 

of cn, denoted as Md(c& is called the citation half-life. It is the median time between 

the date of publication and the date of its references if growth is not taken into 

account. Hence it is also the observed half-life of the field. Finally, the mean citation 

age, denoted as E[cA], is defined as: 



It is the average time between the date of a publication and the date of its 

references, if growth is not taken into account. 

Similarly we define the global aging rate, denoted as RG(n), 

the global citation half-life Md(k), and the mean global citation age E[cG], (we do 

not repeat the defining formulae here) by replacing the function CA by the function 

CG. The importance of introducing these rates can be appreciated from the following 

observations. If, for a certain n, k (n)  > b(n) this means that the aging rate n 

periods ago, is larger if growth is taken into account, than when it is not. 

The utilization functions cu and CAU, being 'citation analogs' of the growth function g, 

also give information on the age of a discipline, but now from the utilization point of 

view. We call 

the mean utilization age of the field and Md(cu) the utilization half-life. Similar 

definitions can be given with CAU instead of cu. Also utilization rates can be defined. 

We think, however, that these are of less importance. Note that, because of (27): 

E[cu] = E[cu,pl + P (35) 



This is an obvious result. Its easy proof is left to the reader. Property (35) illustrates 

that the naming 'mean utilization age' is appropriate. 

5. Properties 

5.1 Aging 

When studying a whole period of length T, the influence of growth on aging 

(obsolescence) can best be studied by comparing the aging rates &(n) and RG(n). 

The next theorem gives the basic result. 

Theorem 1 

Supposing the growth function g to be strictly increasing on [0,1, i.e. a(t) > 1, the 

following assertions are true: 

a) I f  the instantaneous aging rate functions &(n) are strictly increasing in the 

variable t E [O,TJ, i.e. V t E [O,TJ and V n E W: 

then, for every n E N: 

w-4 > k(n)  (37) 

In words: under these circumstances an increasing growth reinforces aging. 

b) I f  the instantaneous aging rate functions pt(n) are strictly decreasing in the 

variable t E [O,V, then, for every n E N: 



%(n) < k (n )  (38) 

I n  words: under these circumstances aging diminishes, although growth increases. 

c) I f  the instantaneous aging rate functions pt(n) are conslant in the variable t E 

[O,TJ, then, for every n E N: 

%(n) = k ( n )  (39) 

I n  words: under these circumstances an increasing growth has no influence on 

aging. 

Proof of a): We have to show that for every n E N: 

From (36) we know that, for every n E N, and for every i and s such that 0 2 i < s s 

T, 

or: ~ ( n + l ) ~ ( n )  - &(n)~(n+l) > 0. We know, moreover, that for 0 I i < s I T, 

j(i) - j(s) > 0 (g increases, hence j decreases). Now, Equation (41) can be rewritten 

as: 



This inequality is clearly satisfied as each factor and each term of the left-hand side 

is positive. 

The cases b) and c) are similar and are left to the reader. 

Remark 1. The above result shows that an increasing growth can inhence aging but 

that it does not cause aging. This is most obvious from Equation (39). 

Remark 2. I f  g(t) is constant trivially RA = RG. If g(t) is decreasing we obtain the 

opposite results of those obtained in Theorem 1. 

Remark 3. I t  follows from the proof that it suffices that g increases strictly at least 

once in [ O , I  to obtain the results of Theorem 1. 

I n  the next section (6.2) we offer examples of distribution functions that actually 

meet the requirements of Theorem 1. 

5.2 Expected citation age and regression lines 

The influence of growth on citation age can be studied by comparing the averages 

E[cA] and E[cG]. We first note that: 

and 



We see that E[cA] is the average of the numbers E[ct], t = 0, ..., T and that E[cG] iS 

the weighted average of the E[ct], t = 0, ..., TI weighted by j(O),j(l),...,j(-r). The 

numbers E[ct] themselves refer to the mean age of the references of a document 

published t years ago. I n  order to prove a result relating these two quantities we 

recall a theorem shown in (Egghe & Rousseau, 1996a). 

Theorem 2 (Egghe & Rousseau, 1996a, Theorem 2) 

I f  (x&, i = 1 ,..., N is a set of positive numbers, and f(w) = ydxi, i = 1 ,.., N, where also 

the (yi)i are positive numbers, and if r denotes the slope cf the regression line of f(x) 

over x, then 

and, moreover, 

This leads to the following theorem on the influence of growth on age. 

Theorem 3 

E[cG] > E[cA] if and only if the slope of the regression line of the points 

((j(O),E[co]), ... (jot E[cr])) is positive. Moreover, if g, and hence j, are not constant 

functions, E[G] = E[cA] if and only if the slope of this regression line is zero. 



Proof. 

We apply Theorem 2 with j in the role of x and j E[c] in the role of y. We obtain from 

(45) that the slope of this regression line is strictly positive if and only if 

where we have used Equations (43) and (44). 

The other assertion results similarly from the other part of Theorem 2. 

Theorem 3 states that E[cG] > E[cA] if and only if E[ct] grows (on average) as the 

reversed growth function j(t). In  other words: E[cG] > E[cA] if and only if - on the 

whole - E[ct] is large whenever j(t) is. 

Note the fact that we have obtained a characterization, i.e. a necessary and sufficient 

condition, for the relation between E[cA] and E[Q]. 

Note also that, as in the previous section, growth alone does not cause aging nor a 

decrease or increase of the average citation age. Moreover, if the yearly growth is 

constant, clearly E[%] = E[cA]. 

Concerning the citation half-lives (medians of CA and CG) we obtain a similar result as 

follows. We first note that, for every m E N: 



I f  now 

A concrete example is given in the following proposition. First, we introduce the 

notation: 

C, (m) = 2 c, (n) (5 1) 
n=O 

Proposition 4 

I f  for every m E N, G(m) is strictly increasing whenever j(t) increases then 

M~(cA) 7 M~(G) (52) 

Proof. I f  for every m E N, (j(t), G(m)), t = 0, ..., T increases, its regression line also 

increases (Egghe & Rousseau, 1996a). Hence, applying Theorem 2 with j in the role 

of x, and j(t) G(m) in the role of y, we obtain: 

From this, it follows (by the definition of a median) that Md(cn) > Md(cc). 



Although the proofs of Theorem 3 and Proposition 4 are similar, their results seem 

contradictory. Note, however, that the condition that G(m) is strictly increasing in 

j(t), for every m E N implies that the numbers cdn) must be decreasing in j(t), 

(keeping in mind that 

for all t in [O,q), which explains the conclusion. 

6. Examples 

6.1 Exponential growth and exponential aging 

Although other functions can be used (see further) the exponential functions are the 

basic functions to describe growth and aging. Consequently, we first show what the 

basic measures are in the exponential case. 

For the ease of calculation we assume that all ct-functions have the same form: for 

every n E N, and every t E [O,q, 

c , (n)=kcn (54) 

As the ct-functions are distributions, k = 1 - c, with c < 1. Similarly, we define the 

growth function g(t) for t 6 [O,Tl, (and do not forget that the value 0 for the 

function g is T time periods ago, while the value T for g is 'now3 as: 

g ( 4  = K g '  ( 5 5 )  

Because also g is a discrete distribution function (but now on the interval [O,Tl), we 

have: K = (g-1)/(g T+l - 1) for g 2 1. If g = 1, the growth function is constant, and K 



= 1/(1+T). Note also that if g > 1 the growth function increases (the most natural 

case), while if 0 < g < 1, the growth function decreases. We further assume that g + 

c. The reversed growth function j(t), t E [O,TI, is equal to g(T-t) = K gT-t = L g+, 

with L = ~ g ~ .  

The growth rate is here constant, namely equal to g, as are the instantaneous aging 

rates: pt = c. Hence the aging distributions cn(n) and ~ ( n )  are both equal to k cn. 

Further, as to utilization, we obtain (Egghe et al. 1995): 

M"J1 1 - (gc ) - (n+l l  

c U ( n ) = c A U ( n ) =  C KgT-'kcn-' = ~ k ~ ~ ~ ~  , if n<T 
r=O 1 - (gc) 

1 - (gc)-"+" 
= KkgTcn , i f n  2 T (56)  

1 - (gc)" 

Note that utilization is, logically, a mix between c and g. We now proceed with the 

calculation of derived measures. The (average) age of articles that belong to an 

exponentially growing field, is: 

As example we take a field that annually grows by lo%, so g = 1.1, and began 20 

years ago (T = 20), then the average age of an article of this field is 6.7 years. For 

this example the median age of an article in this field is 20 - Md(g) = 20 - 16.05 = 

5.95 year. 



We clearly have: E[cA(n)] = E[c~(n)] = c/(l-c). I f  c = 0.8 the average age of a 

reference is 4 years. Of course, all rates of CA or CG are equal to c. Further: E[CIJ] = 

E[cnuI = 

For the rate functions of cu (= CALI) we obtain (for n < T): 

For n large (but smaller than T) this expression is approximately l/g, hence smaller 

than 1 if g > 1, but larger than 1 if g < 1. This means that for such n the utilization 

rate may increase or decrease depending on the growth rate. However, for the most 

common case that g > 1 the utilization rate decreases. For n > T it is equal to c, 

hence smaller than 1 (the utilization rate decreases). More information and results on 

utilization functions in this context may be found in (Egghe et al. 1995). 

6.2 An illustration of Theorem 1 

We next show that it is possible to have citation distributions that satisfy the 

requirements of Theorem 1. 

Let (at) be a sequence of strictly positive numbers, then we put, for all t E T: 

C, (n) = (1 - e-al)e-afn (59) 

It is easy to verify that for every t, ct is a distribution function, i.e. all ct(n) are non- 

negative numbers with sum (for n = 0, 1, ...) equal to 1. Now, 



pl(n) = e-- (60) 

Consequently, pt(n) is increasing in t if the sequence at is decreasing (take e.g. at = 

l/t); similarly, if at is increasing (take e.g. at = t), then pt(n) is decreasing in t. Of 

course, a constant sequence at leads to a sequence pt(n) that is constant in t. Note 

that the citation distribution is in any case a decreasing exponential function in n. 

6.3 Even if j(t) and all ct(n) are decreasing (respectively in t and in n), which means 

that the bibliography shows an increasing growth, it is possible that the relative 

impact rate, which is equal to the instantaneous corrected aging rate, is increasing in 

time. 

Example: let the reversed growth function be j(t) = Aft3; and let ct(n) = 

Bt/((n+l)zt), then clearly j and the aging functions ct(n) are strictly decreasing. The 

rate functions pt are (by (9)): 

Fort = 0 (now!) this function is decreasing in n but always larger than 1. This means 

that, relatively speaking (this means: taking growth into account), the older literature 

has a larger impact than the more recent one. For larger t this rate increases and, 

again, becomes larger than one for large n (although not for small values of n). 



7. Previous work and its relation to ours 

The "half-life" concept was made popular in the information sciences by Burton and 

Kebler (1960). It is used as a summary statistic to describe the rate of obsolescence 

of a scientific literature. They define it as the time during which one-half of all 

currently active literature was published. It is clear that this is a synchronous 

definition. 'Active' can mean 'being cited', but also 'being borrowed', etc ... I n  this 

article we have used the term 'citation half-life'. They calculated half-life values for 

the periodical literature (excluding books) for different fields, based on a fitted curve 

of the form: 

where a + b =I, and y denotes the cumulated fraction of cited literature (values 

between 0 and 1); t denotes time. They conclude that a short half-life, i.e. rapid 

obsolescence, is the result of rapidly changing techniques or interest. To some 

extent, rapid obsolescence could also be the result of poor quality. Note, though, 

that Equation (62) is only the result of a fitting exercise. No meaning should be given 

to the two exponential functions separately (Motylev, 1989). 

MacRae Jr.(1969), following Price (1965), assumes an exponential growth of the 

literature combined with an exponential time-independent corrected citation 

distribution (our terminology). He comes to the conclusion that the observed citation 

distribution must be exponential too. This conclusion is verified (and shown to be 



correct) for data taken from the Physical Review (1957), the biomedical sciences and 

the American Sociological Review. 

Line (1970) states that more rapidly the literature is growing, the shorter the half-life 

of a literature, unless the number of citations per article is decreasing at the same 

time. The so-called 'half-life' of a literature is therefore composed of its obsolescence 

rate and its growth rate. All this is quite correct! Taking all rate functions as 

constants, he defines the apparent obsolescence factor A as c,l/cn (hence his A is 

equal to our l/pt(n-1) or 1/p if we consider this rate also as a constant). Line 

continues by introducing c JG, where G is the growth factor (his terminology). In  our 

notation and terminology G is the growth rate, a, and is equal to l l x  (in the case of 

constant rates). Finally, Line introduces the corrected obsolescence factor as D = A.G 

. Here his D is defined as C,,-I/(CJG). I n  our notation, and with variable rates this 

becomes: 

or, with constant rates: 

Further, Line derives the corrected half-life, denoted as h, as a function of A and G; 

and as a function of G and the observed half-life (denoted as m). 

or, as a function of the observed half-life: 



Note though that Line forgets to mention that his expression for the corrected half- 

life is only valid for D < 1. Otherwise it leads to invalid results. I f  he took e.g. G = 

1.1 and A = 0.98, he would find a corrected half-life of -9.2 (?!). In  an added 

editorial note (Vickery, 1970) a referee remarks that D is the rate at which the 

likelihood of use declines with age. 

I n  a recent article in Nature Abt (1998) poses the question ' Why have some papers 

long citation lifetimes?' He considers the special case of the Astrophysical Journal and 

Physical Review. He finds that the speed of growth of the field is a crucial factor and 

proposes 'half-lives corrected for growth'. Although Abt does a diachronous study 

(with 1954 as starting date for articles in the Astrophysical Journal) and provides 

very little real information it seems that he has assumed a linear growth of the 

literature. Indeed, he writes that the Astrophysical Journal has an observed citation 

half-life of 29.3 years and that the number of articles has grown over 40 years by a 

factor of 11. From a citation half-life of 29.3 years we can derive a citation function 

of the form e-at, with a = 0.024. Assuming a linear growth of the literature and an 

exponential form of the 'corrected' citation function yields e-" = ct e'M with 40c = 11. 

This leads to b = 0.084 and hence a 'corrected' half-life of approximately 8.3 years. 

Abt gives as 'corrected' value 8.0, so that we assume that our reasoning is right. The 

main difference between Line's ideas and Abt's ones is the fact that Line assumes an 

exponential growth of the literature while Abt (probably) assumes linear growth. We 

think that both assumptions are arguable: Line considers the whole literature (which 



is often assumed to grow exponentially, 6. Price (1965), Van Raan (2000)), while 

Abt considers a single journal. The number of articles in a single journal never grows 

exponentially. Note though that Abt seems to assume that the growth rate of the 

Astrophysical Journal is characteristic for the field as a whole. 

Wallace (1986), following an idea of Buckland (1972), studied the following 

hypothesis: 'For a given subject literature, the median citation ages of the journals 

contributing to that literature will vary inversely with the productivity of those 

jouraals, where productivity is measured in terms of the number of articles 

contributed by each journal'. This question cannot be answered or studied within the 

framework of this article. Other models must be developed to do this. By the way, 

Wa!lace did not find a general confirmation of his hypothesis (nor did Buckland). 

8. Conclusions 

We have shown how to correct an observed citation distribution (G) for growth, once 

the growth distribution is known. This is done in the spirit of Line's earlier work. We 

have, moreover, shown that this corrected aging distribution coincides with the 

distribution of yearly impacts (citations per publication). 

More interestingly, we have shown how the influence of growth on aging can be 

studied over a complete period as a whole. Here the difference between the so- 

called average (CA) and global (CG) aging distributions is the main factor. Also 

utilization functions, describing the use of sources over a specific period, are defined. 

Our main results are that growth can influence aging but that it does not cause 



aging. Further, using regression techniques, we have shown the following relation 

between expectations: E[Q] > E[cn] holds, if and only if E[Q] is large whenever the 

reversed growth function is. 

Examples of the use of these functions and techniques are given. Finally, we have 

placed some classical articles on aging and obsolescence in our framework. 
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