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Abstract-This paper establishes the general relation between the distribution of N-tuples of 
letters (e.g., N-truncations, N-grams) or words (e.g., N-word phrases) and the distributions of the 
single letters or words. Here the very general case is treated: the case where there is dependence 
on the place 2 in the N-tuple (i = 1,. . , N) in the sense that, for each i = 1,. , N, a different 
distribution of the letters or words is supposed. 

Concrete calculations are performed in the important case of Zipfian distributions (i.e., power laws) 
for the single letters or words. In this case, we prove that the distribution of the N-tuples (N-fixed) 
is the sum of power laws. @ 2000 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The problem of studying the distribution of multiword phrases (i.e., chains of words, say of fixed 

length iV E W) has been introduced in [l] and solved in [2] in the case that, in an N-word phrase, 

the words appear independently of each other. Of course, as also noted in [2], this is not correct 
and the model only served as a first approximation. It must be noted that the model developed 
in [2] is already much more general than, e.g., Mandelbrot’s (see [3] or the more readable proof 

of it in [4] where one supposes (in the framework of N-tuples of letters) that the letters all 
have an equal chance to occur). This was not supposed in [2] nor in [5], where one gives a 
proof of the distribution of N-grams (N fixed) based on the distributions of the letters. In this 
framework, independence of letters in N-grams is supposed but also proven to be exact in the 
case of redundant N-grams. For more details on N-grams (especially on their importance in 
virtually every aspect of information science), we refer the reader to [6-91 or to (51 in which these 
works are briefly described in the introduction. 

The independence assumption may then well be true for N-grams. It is still an approximation 
of reality in the cases of N-word phrases and of texts consisting of words truncated to the length N 
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(right or left truncated). Indeed, in the former case, words do not occur independently of each 

other, and in the latter case, in truncated words (as is the case in normal words in texts), the 

letters do not occur independently of each other. At the time of the writing of the papers [2,5], it 

was not clear, however, how to deal with the dependent case, and more in particular, it was not 

clear to generalize the intricate proofs (as given in the appendices of [2] and [5]) to the dependent 

case. This paper presents the solution to this problem, not in the least stimulated by a positive 

review of [2] by R. Marcus, see [lo], in which the problem of knowing distributions of N-tuples 

of objects based on the objects’ distributions has been recognized as very important. We present 

the solution in the next section (and the Appendix). 

Section 3 presents applications of this general result to the cases of N-tuples of letters, and 

words: N-word phrases are discussed, texts of N-truncated words (i.e., left or right trun- 

cated words up to length N) are discussed as well as-for the sake of completeness-redundant 

N-grams, where we repeat briefly the results of [5]. Section 4 presents some conclusions and open 

problems. 

2. THE DISTRIBUTION OF N-TUPLES OF OBJECTS 
BASED ON THE DISTRIBUTIONS OF THE 

OBJECTS THEMSELVES-DEPENDENT CASE 

Since we want to capture the topics: N-word phrases and words consisting of N letters, we 

will use henceforth the terminology: N-tuples of objects. In the case of N-word phrases, the 

N objects are consecutive words; in the case of words consisting of N letters, the objects clearly 

are consecutive letters. Note also that, in this paper, N will be fixed in N = { 1,2,3, . . . }. 

For each i E (1,. . . , N}, we denote by S, the object set, i.e., the set of objects that can be used 

on the ith place. Usually the Sis are equal (e.g., the alphabet, the set of possible words, . . . ) but 

this is not supposed here. It is even so that the cardinals #S, (i.e., the number of elements in Si) 

do not have to be equal. 

Denote, for each i E { 1, . . . , N}, P(r, ( i) the rank-frequency distribution on “coordinate” i 

of the objects in Si. So we clearly work here in a framework of i-dependence. Of course, one 

more generalization could be possible, namely working with P(r, 1 ~1,. . . , T,-I), the probability 

to have the symbol in Si on rank ri, given that on the jth place in the N-tuple (j = 1,. . . , i - 1) 

we have the symbol on rank rJ in S,. We leave open this very general case of dependence and 

will work only with dependence on the place i E (1,. . . , N}. In other words, we put 

P(r, ] i) = P(rZ 1 7-1,. . . ,7-i-l) (1) 

for all 7-1, . . . , r,, being at least an important generalization of the independent case (there we 
would put P(rZ ] i) = P(r,) where all Si are equal and rz E (1;. . . , #&}). Let P(rl,. . . ,TN) 

denote the probability to have an N-tuple where, for each i = 1,. . . , N, we use the object on 

rank ri. By the very definition of conditional probability, applied repeatedly, we have 

P(rl,. . . ,w) = P(w I rl,. ..,w-dP(rl,.. . ,w--l) 

= p(rN rl,..., rN_l)P(rN-1 ( rl,. . 7rN-2).p(r1yf. 

= P(rN rl,..., rN_l)P(rN-1 1 rl, . . , TN-2) . . . p(r2 

= P(rN N)P(rN_l ] N - 1). . . P(rz 1 2)p(n), 

using (1). 

. , TN-2) 

I rdP(rl) 

(2) 

Denote by PN(r) the rank-frequency distribution of the N-tuples. It takes only a moment’s 

reflection to see that PN is obtained as 

(3) 
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where 
T = #{(Tl,. . . , cv) II P(7-1)Jy7-2 I 2). . . P(TN I N) 2 x). (4 

Formulae (3) and (4) are the basic parts in the solution of the problem dealt with in this paper. 
They provide the device to derive the N-tuple distribution from the objects distributions. Of 
course, in order to be able to produce “concrete” functional relationships for (3), we must put 
in “concrete” functional relationships for the conditional probabilities P(rz ) i), i = 2,. . . , N and 

for P(Q). For the case of N-word phrases, we assume the word distributions to follow Zipfian 
distributions. It is well known that this is the most evident assumption. But also in the case 
of N-tuples of letters, Egghe in [5] shows that Zipfian distributions can be used: especially for 
Asiatic languages the fit is almost perfect, but for the other languages the model is certainly 
acceptable. We therefore put 

i = l,... , N as the distributions of the objects on “coordinate” i. Here T, E IR+. Indeed we will 
adopt the continuous setting for the ease of calculation. On the same lines, (4) will be calculated 
by replacing # by vol, the volume of the N-dimensional set appearing in formula (4). We can 

prove the following theorem. 

THEOREM 2.1. Let N E W be fixed and let (5) denote the conditional distributions of the objects 
on coordinate i E (1,. . . , N}. Then 5 = J+(T) is the distribution of the N-tuples, where 

N 

c D 
r= 3 

xl/P, ’ (6) 
j=l 

where D, are constants. Hence, the inverse of (3) is a sum of Zipfian (i.e., power law) distributions. 

Since the proof is elaborate and unrelated with the paper’s topic, we present it in the Appendix. 
Since Theorem 2.1 deals with the dependent case, we supposed ,0, # & for all i # j. This will 
always be the case in practice. If some ,& are equal (but not all), we leave the result as an open 

problem. For the sake of completeness, if all /3, are equal, i.e., the Zipfian distribution of the 
objects is independent from the coordinate i E { 1,. . . , N}, we repeat here the result of [5]. 

THEOREM 2.2. Let N E N be fixed and assume that 

denotes the object distribution (the same for all i = 1, . . , N). Then x = pN(r) is the distribution 

of the N-tuples, where 
D lnNP1 (D/x’/~) 

r=- 
Xl/O (N-l)! ’ (8) 

and where D is a constant. Hence, 
fN(Y) 

r= (N-l)!’ 

where fN (y) = y In N-1(y) and y = D/(x’lfl). It is shown in [2,5] that (8) above. for large r, 

reduces to 

MT) = (&:i ) (9) 

where E is a constant and where Q,v = fi;‘, the inverse of fN. 

Theorem 2.1 above represents the case of dependence on the coordinate i E (1,. . . , N} of the 
object distributions; Theorem 2.2 represents the independent case. Both theorems have direct 
applications, as will be seen in the next section. 
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3. APPLICATIONS 

We start by repeating the independence result of [2,5], where Theorem 2.2 can be used. We 

include it here for the sake of completeness. 

CASE 3.1. THE CASE OF REDUNDANT N-GRAMS. We refer to [5] and the already-mentioned ref- 

erences on N-grams. Here we will suffice by explaining what redundant N-grams are. 

N-grams are, simply, words consisting of N letters. N-grams can be generated from normal 

texts by replacing each word (e.g., the word SYMBOL) by the string of N-grams, e.g., for N = 2, 

*S SY YM MB BO OL L-k 

and, e.g., for N = 3, 
-k*S *SY SYM YMB MB0 BOL OL* Ljot. 

The use of the stars makes sure that all letters in all words appear an equal number of times in the 

N-grams. This is the most important case for applications and are called redundant N-grams. 

Note that in this case, Theorem 2.2 applies since the distribution of the letters is the same 

(hence, independent) on the coordinate i E { 1, . . . , N}. We can conclude that redundant N-grams 

(as, e.g., derived from texts) have a rank-frequency distribution as in (B), hence, not a power law. 

NOTE. A general note is in order here. Both Theorems 2.1 and 2.2 show that the rank-frequency 

distribution PN of N-tuples is not a power law, even when we supposed the object distributions 

to be power laws. In Theorem 2.1, we obtained for PN essentially a power law of the inverse of 

the function fN(y) = ylnN-l (y). But since this last function very much resembles a power law 

(in the sense of statistical fitting), it will be perfectly possible to fit PN(T) by a power law. The 

same remark goes for the result in Theorem 2.2: there one essentially has that PN is the inverse 

of a sum of power laws, which resembles a power law in the statistical sense. In this paper, we 

showed that-as a mathematical model-the power law is not correct for N-tuples, when the 

object distributions are power laws, in all cases (dependence on the place i or not). 

CASE 3.2. THE CASE OF N-WORD PHRASES. Here Theorem 2.1 applies since we can assume 

that words in N-word phrases occur according to Zipfian laws but where these laws are all 

different since words do not occur independently from each other. Hence, (6) represents the rank 

frequency distribution (where z = PN(T)) for N-word phrases. 

This extends the result of [2]. 

CASE 3.3. THE CASE OF N-TRUNCATED WORDS. For, e.g., information retrieval and index- 

ing purposes, it is interesting to know what is the distribution of truncated words (say up to 

length N, N fixed). Indeed the knowledge of such a distribution gives information on the inequal- 

ity between occurrences of different N-truncated words. This, in turn, can be used in measures 

of concentration or diversity (as, e.g., the entropy measure-see [ll] or [12]) which are used (by 

applying some threshold on the concentration or diversity values) to determine the “selectivity” 

power of a key word. 

Of course, contrary to the case of redundant N-grams, the occurrence of letters in an 

N-truncated word is dependent on the place (the coordinate) in the N-tuple. Hence, here The- 

orem 2.1 applies and formula (6) can be used. This is also the case for nonredundant N-grams. 

4. CONCLUSIONS, OPEN PROBLEMS 

In this paper, we have established the rank-frequency distribution of N-tuples of objects, given 

the conditional object distributions in coordinate i E { 1, . . . , N}. We proved that this distribution 

is of the form z = PN(T), where 
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in case the object distributions on coordinate i are Zipfian with exponent /3%, and where i # j + 
pL # ,C$. The case where all ,&s are equal, dealt with in [2,5], was repeated here for the sake of 

completeness. 
We formulate here the problem of extending the conditional distributions P(r, 1 i) (as used 

here) to distributions of the form P(rz 1 i, IV) where the probabilities also depend on the length 
N of the N-tuple and to prove results similar to the ones here but using P(r% 1 i, N) instead 
of the simpler P(r, / i). In this connection also, a theory of truncation (right, left) would be 
interesting. A further extension could involve P(r, 1 ~1,. . . , T--I) for all i = 1,. : N. 

It would also be nice to develop an axiomatic theory of texts which consist of words and 

where words consist of letters, i.e., a kind of %omposition” of the separate results as described 

in Section 3. 

APPENDIX 

THEOREM. Let N E N be fixed and denote bJ 

the conditional distributions of the objects on coordinate i E (1, . , IV}. Then x = J+(T) is the 
distribution of the N-tuples where 

r= N D, c- 
j=l 

xl/P, ’ (44 

where the D,s are constants. 

PROOF. In the continuous setting, we have that L = Pin (the distribution of the N-tuples) iff 

(cf. (4)) 
r =vol {(?-I,... , TN) I( p(n)p(Tz 1 2). . p(TN 1 NJ > x}. (A3) 

The inequality in the set in (A3) yields 

Hence, denoting a = (cl . . . CN)/x 

llr1I 
fJl/Lh 

( 02 
r2 

fiN l/P1 
. .rN 

> 

Hence, the maximal value of r1 is 

02 r2 
4N 1101 : 

. .rN 
> 

whererz,..., TN can vary as follows. (A5) implies 

(W 

(A5) 

Hence, 

(A6) 
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In the same way, we have 

L. EGGHE 

llr3< 

fJ1/83 

( 

P4 r4 
ON 

> 

l/P3 ’ 
. . .rN 

(A7) 

(A@ 

and 

The above arguments yield 

,VPN-1 

r = J/P1 
J 

TN =a"'N drN TN-l= pN,p 

PN 
N-l drN_1 

. . . 
,-N=l BN /PI 

TN 
J 7-N-1=1 ON--I/ON 

‘N-1 J rz=l 

Z-21 . (A10) 

r2 

We suppose here that & # &, Vi, j = 1,. . . , N, i # j. We will evaluate the last integral, get 
an idea of what the general induction step will be and then complete the proof by complete 
induction. 

J &Pz-VP1 

rz=l 1 h03(1/82-1/al, 
-1 . 

r3 
fiN(l/P2-1/fl1) . . . rN 1 

Substituting this into (AlO) yields the form 

Here the bounds in all integrals are the same as in (AlO) and 

1 
72 = 1 _ p2,pl = -71. 

Suppose now, by complete induction that 

r= & yjz)al/oj J & J dr~-l . . . J a, 
PN--II& 

j=l TN rNN TN-1 rN_l f-,+1 ri+l 

where 7:” are constants. The last integral yields 

(All) 

6412) 

(A13) 



Distribution of N-Tuples 41 

Substituting this in (A12) and regrouping the terms yields (A12) but now for i replaced by i + 1. 
Of course, this also proves that 

N-l TN=cL’/~‘N drN 

r= 
c 

p$p, 
3 

s TN=1 
Tmz-1 

j=l TN 

which can be rewritten as (and denoting Tj for 7jN’) 

N 

r= c y,cw . 
3=1 

Substituting the value of a and denoting the new constant D,, this gives 

(A14) 

(A15) 

(AW 

completing the proof. Note that the ,BJs are the Zipf-law powers with which we started in (Al). 
Law (A16), interpreted inversely as z = pN(T) is the rank frequency distribution for N-tuples. 
Note also that these calculations are exact in the sense that no approximations are used. I 
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