
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A Formal Model of Dataflow Repositories

Peer-reviewed author version

Hidders, Jan; KWASNIKOWSKA, Natalia; Sroka, Jacek; Tyszkiewicz, Jerzy & VAN

DEN BUSSCHE, Jan (2007) A Formal Model of Dataflow Repositories. In:

Cohen-Boulakia, Sarah & Tannen, Val (Ed.) Data Integration in the Life Sciences,

4th International Workshop, DILS 2007, Philadelphia, PA, USA, June 27-29, 2007. p. 105-121..

DOI: 10.1007/978-3-540-73255-6

Handle: http://hdl.handle.net/1942/7898

A Formal Model of Dataflow Repositories

Jan Hidders1, Natalia Kwasnikowska2, Jacek Sroka3, Jerzy Tyszkiewicz3, and
Jan Van den Bussche2

1 University of Antwerp, Belgium
2 Hasselt University and Transnational University of Limburg, Belgium

3 Warsaw University, Poland

Abstract. Dataflow repositories are databases containing dataflows and
their different runs. We propose a formal conceptual data model for such
repositories. Our model includes careful formalisations of such features
as complex data manipulation, external service calls, subdataflows, and
the provenance of output values.

1 Introduction

Modern scientific research is characterized by extensive computerized data pro-
cessing of lab results and other scientific data. Such processes are often complex,
consisting of several data manipulating steps. We refer to such processes as
dataflows, to distinguish them from the more general workflows. General work-
flows also emphasize timing, concurrency, and synchronization aspects of a com-
plex process, whereas in this paper we are less interested in such aspects, and
our focus is mainly on data manipulation and data management aspects.

Important data management aspects of scientific dataflows include:

– Support of complex data structures, such as records containing different
attributes of a data object, and sets (collections) of data objects. When
combining, merging, and aggregating data, complex compositions of records
and sets can arise.

– It must be possible to iterate operations over all members of a set.
– It must be possible to call external resources and services, like GenBank.
– Subdataflows must be supported, i.e., one dataflow can be used as a service

in another dataflow.
– Dataflows must be specified in a clean, high-level, special purpose program-

ming formalism.
– A dataflow can be run several times, often a large number of times, on

different inputs.
– The data of these different runs must be kept, including input parameters,

output data, intermediate results (e.g., from external services), and meta-
data (e.g., dates).

The last item above is of particular importance and leads to the notion of a
dataflow repository: a database system that stores different dataflows together
with their different runs. Dataflow repositories can serve many important pur-
poses:

– Effective management of all experimental and workflow data that float around
in a large laboratory or enterprise setting.

– Verification of results, either within the laboratory, by peer reviewers, or by
other scientists who try to reproduce the results.

– Tracking the provenance (origin) of data values occurring in the result of a
dataflow run, which is especially important when external service calls are
involved.

– Making all data and stored dataflows available for complex decision support
or management queries. The range of such possible queries is enormous; just
to give two examples, we could ask “did an earlier run of this dataflow, using
an older version of GenBank, also have this gene as a result?”, or “did we
ever run a dataflow in which this AA sequence was also used for a BLAST
search?”

The idea of dataflow repository is certainly not new. It has been repeatedly
emphasized in the database and bioinformatics literature, and practical dataflow
systems such as Taverna [1] or Kepler [2] do accommodate many of the features
listed above. What is lacking so far, however, is a formal, conceptual data model
of dataflow repositories. This paper contributes towards this goal.

A conceptual data model for dataflow repositories should offer a precise spec-
ification of the types of data (including the dataflows themselves) stored in the
repository, and of the relationships among them. Such a data model is important
because it provides a formal framework that allows:

– Analyzing, in a rigorous manner, the possibilities and limitations of dataflow
repositories.

– Comparing, again in a rigorous manner, the functionalities of different prac-
tical systems.

– Highlighting differences in meaning of common notions as used by differ-
ent authors or in different systems, such as “workflow”, “provenance”, or
“collection”.

For the dataflow programming language, our model uses the nested relational
calculus (NRC), enhanced with subtyping and external functions. NRC [3] is a
well-studied language with exactly the right set of operations that are needed for
the manipulation of the types of complex data that occur in a dataflow [4]. The
suitability of NRC (in the form of a variant language called CPL) for scientific
data manipulation and integration purposes has already been amply demon-
strated by the Kleisli system [5,6]. We have confirmed this further by doing some
case studies ourselves (e.g., of a proteomics dataflow [7]). A detailed report on
several case studies of bioinformatics dataflows modeled using our formalism will
be presented in a companion paper.

In this paper we provide formalisations of a number of fundamental notions
related to dataflow repositories, such as:

– the notion of run of a dataflow;
– the provenance tracking of dataflow results;
– the binding of service names to external functions or to subdataflows; and
– the relationship between a run of a dataflow and the runs of its subdataflows.

2

2 Example

In this section we provide a simple example to illustrate different aspects involved
in modelling of both dataflows and dataflow repository.

We begin by showing two dataflows, expressed in the nested relational cal-
culus, for the following protocol: “Given two organisms A and B, extract all
messenger RNA sequences from GenBank belonging to A. Then for each found
sequence, search for similar sequences belonging to B.”

dataflow findSimilar (A : Organism, B : Organism) : MatchedSeqs is⋃
for s in entrez(A, genbank) return

if s .moltype = mRNA

then {〈a : s , b : filter(blast(s , 1e− 4), 300,B)〉}
else ∅

dataflow filterBlastRep(rep : BlastRep, min : Int, org : Organism) : Seqs is⋃
for a in accDb(rep,min) return

let seq := getSeq(a.accessionnr , a.database) in

if seq.organism = org
then {seq }
else ∅

These dataflows use the following complex types:

MatchedSeqs = {〈a : Seq, b : Seqs〉},
Seqs = {Seq},
Seq = 〈organism : Organism,moltype : MolType, content : NCBIXML〉,
AccNrDB = 〈accesionnr : AccessionNr, database : Database〉.

The dataflows also contain various service calls, with the following signatures:

entrez (org : Organism, db : Database) : Seqs,
filter(rep : BlastRep, score : Int, org : Organism) : Seqs,
blast(seq : Seq, evalue : String) : BlastRep,
accDb(rep : BlastRep, score : Int) : {AccNrDB},
getSeq(acc : AccNrDB): Seq.

Before we can execute the dataflows, we must bind the service names used
to express service calls to actual services. We bind entrez and blast to external
services provided by NCBI. We bind filter to dataflow filterBlastRep, which thus
becomes a subdataflow of findSimilar . Now we have to bind all service names
appearing in filterBlastRep, i.e., accDb and getSeq. We choose to bind both of
them to some external service. The binding process stops here, as filterBlastRep
does not have any subdataflows.

Suppose now that we have executed findSimilar with value cat for parameter
A, and mouse for B . Suppose the following value has been returned:

3

{〈a : 〈organism : cat,moltype : mRNA,ncbiXML : AY800278〉,
b : {〈organism : mouse,moltype : mRNA,ncbiXML : XM 908677〉,

. . . ,

〈organism : mouse,moltype : DNA,ncbiXML : NW 042634〉}〉,
. . . ,

〈a : 〈organism : cat,moltype : mRNA,ncbiXML : NM 001079655〉,
b : {〈organism : mouse,moltype : mRNA,ncbiXML : NM 053015〉,

. . . ,

〈organism : mouse,moltype : DNA,ncbiXML : NT 078297〉}〉},

where values like AY800278 are used as place holders for the corresponding XML
documents. We denote this complex value by finalresult .

In our dataflow repository model, however, not just the final result value will
be kept, but also information about the service calls that have happened during
the run. Such information would look as follows:

(entrez , [(A, cat), (B , mouse), (org , cat), (db, genbank)], catseqs),
(blast , [(A, cat), (B , mouse), (s , cat1), (seq , cat1), (evalue, 1e− 4)], rep1),
(filter , [(A, cat), (B , mouse), (s , cat1),

(rep, rep1), (score, 300), (org , mouse)], foundcat1),
(blast , [(A, cat), (B , mouse), (s , cat2), (seq , cat2), (evalue, 1e− 4)], rep2),
(filter , [(A, cat), (B , mouse), (s , cat2),

(rep, rep2), (score, 300), (org , mouse)], foundcat2),

Here, catseqs is a set containing the following tuples (among many others):

cat1 = 〈organism : cat,moltype : mRNA,ncbiXML : AY800278〉,
cat2 = 〈organism : cat,moltype : mRNA,ncbiXML : NM 001079655〉.

Also, repi would be documents of type BlastRep, and, for instance, foundcat2
would be a set containing the following tuples (among several others):

m1 = 〈organism : mouse,moltype : mRNA,ncbiXML : NM 053015〉,
m2 = 〈organism : mouse,moltype : DNA,ncbiXML : NT 078297〉.

Since all information needed to reconstruct the entire run is available, we can
trace the provenance (origin) of a particular subvalue appearing in finalresult ,
say m1 . We produce a back-trace of the entire run by using subexpression oc-
currences and their respective input values, as follows:

{(
⋃

, [(A, cat), (B , mouse)],m1),
(for, [(A, cat), (B , mouse), (s , cat2)],m1),
(if, [(A, cat), (B , mouse), (s , cat2)],m1),
({ }, [(A, cat), (B , mouse), (s , cat2)],m1),
(〈 〉, [(A, cat), (B , mouse), (s , cat2)],m1),
(filter , [(A, cat), (B , mouse), (s , cat2), (rep, rep2), (min , 300), (org , mouse)],m1)}.

Note that filter is bound to a subdataflow, so if desired, we can further track
the provenance of m1 in the corresponding run of filterBlastRep.

4

The main idea of a dataflow repository is that dataflows, as well as their runs,
type declarations, input values, intermediate results, and subdataflow links, are
all stored together in a database system. Here is an illustration of this idea:

The database should also contain meta-data stored in various additional ta-
bles. By meta-data we understand annotating information such as author of a
dataflow, date of a run, or version of an external service. Through dataflow iden-
tifiers, run identifiers, and referential integrity, these meta-data tables are linked
to the repository tables. In the above illustration, we use call-outs to represent
these links.

3 Dataflows, Runs, and Provenance

In this section, we present the formal dataflow model. Due to space limitations,
we will only be able to give a sample of the formal definitions, and all proofs of
mathematical properties will be omitted.

Complex Values. We model the complex data structures occurring in a work-
flow using complex values. Complex values are constructed, using record and set
constructions, from base values. Base values can be numbers or strings, but can
also be XML files; it is essentially up to the application to decide which kinds
of values are considered to be “atomic”, and of which kinds of values we want
to explicitly model the internal structure within the dataflow.

For example, consider the report returned by a BLAST search. One can
consider the entire report as a base value, e.g., an XML file, and use an XQuery
operation to extract information from it. This implies that the dataflow will
model the XQuery operation as a single step: we will model such single steps by
service calls. On the other hand, one can consider the structure of the report,
modeled as a long record with various attributes, including a set of search results,
and model this explicitly as a combination of record and set structures. Since
our dataflow model includes the operations of the nested relational calculus, the
process of extracting information from the report can be fully modeled in the
dataflow. It always depends on the designer of the workflow application which
data manipulation aspects of the dataflow need to be explicitly modeled, and
which can be modeled as a single step: a good formal model should not enforce
this choice in a particular direction.

Formally, we assume a given countably infinite set A of base values. To la-
bel attributes in tuples (records), we also need a countably infinite set L of

5

labels. Then the set V of complex values is the smallest set satisfying the fol-
lowing: A ⊆ V ; if v1, . . . , vn ∈ V , then the finite set {v1, . . . , vn} is a complex
value; if v1, . . . , vn ∈ V , and l1, . . . , ln ∈ L are distinct labels, then the tuple
〈 l1 : v1, . . . , ln : vn 〉 is also a complex value. The positioning of elements within
a named tuple is arbitrary.

Note that we work with sets as the basic collection type, because other kinds
of collections can be modeled as sets of records. For an ordered list, for example,
one could use a numerical attribute that indicates the order in the list.

Complex Types. Types are a basic mechanism in computer programming to avoid
the application of operations to inputs on which the operation is not defined.
Thus, all data occurring in our dataflow model is strongly typed. We use a type
system for complex objects with tuples and sets, known from database theory,
that includes a form of subtyping.

Our type system starts from a finite set B of base types. Then the set T of
complex types is the smallest set satisfying the following:⊥ ∈ T ; B ⊆ T ; if τ ∈ T ,
then the expression {τ } is also a complex type, called a set type; if τ1, . . . , τn ∈ T ,
and l1, . . . , ln ∈ L are distinct labels, then the expression 〈 l1 : τ1, . . . , ln : τn 〉 is
also a complex type, called a tuple type. The positioning of elements within a
tuple type is arbitrary.

The purpose of base types is obviously to organize the base values in classes.
The purpose of ⊥ is to have a generic type for the empty set; that type is the
set type {⊥}. More generally, the semantics of types is that for each type τ we
have a set [[τ]] of values of type τ , defined in the obvious manner (omitted).

Reasons of flexibility require that the type system is equipped with a form of
subtyping [8]. Base types provide an organization of the different types of base
values into different classes, and it is standard to allow for classes and subclasses.
For example, base types “Protein” and “Peptide” could be subclasses of a base
type “AminoAcidSeq”, which in turn could be a subtype of “BioSeq”. Moreover,
subtyping allows a flexible typing of if-then-else statements in dataflows. Thus,
the type system of our dataflow model, while guaranteeing safe execution of
operations, does not impede flexible specification of dataflows. Due to space
limitations, however, we omit all details concerning subtyping.

Abstract Services. A common and general view of dataflows is that of a complex
composition of atomic actions. In our model, the composition is structured using
the programming constructs of the nested relational calculus (NRC). Moreover,
the basic data manipulation operators of the NRC are already built in as atomic
actions. Any further atomic actions are modeled in our formalism as service calls.
Service calls can be really calls to external services, such as NCBI BLAST, but
can also be calls to library functions provided by the underlying system, such
as addition for numbers or concatenation for strings, or the application of an
XQuery to an XML file. Moreover, one dataflow can appear as a service call in
another dataflow, thus becoming its subdataflow.

In our model, dataflows use abstract service names to denote services. The
type system requires signatures to be attached to these names. Only at the time a

6

dataflow needs to executed we provide meaning to the service names by assigning
them service functions. In this section, service functions are merely abstract non-
deterministic functions, as this is already sufficient to formally define a run of a
dataflow. In Section 4, we will need to be more specific and distinguish between
external services (or library functions) on the one hand, and subdataflows on
the other hand.

Formally, a signature is an expression of the form τ1, . . . , τn → τout, where
the τ ’s are types. Likewise, a service function is an (infinite) relation L from
[[τ1]] × · · · × [[τn]] to [[τout]], that is total in the sense that for any given values
v1, . . . , vn of types τ1, . . . , τn respectively, there must exist at least one value
vout of type τout such that (v1, . . . , vn, vout) ∈ L. We denote the universe of all
possible signatures by S, and that of all possible service functions by F.

Service functions thus model the input-output behavior of services. Note
that service functions can be non-deterministic, in that there may be more than
one output related to a given input. This is especially important for modeling
external services over which we have no control. The internal database of an
on-line service (e.g., BLAST) may be updated, or the service may from time to
time fail and produce an error value instead of the actual output value.

Note that we assume service functions to be total. For external services over
which we have no control, or to model system failures, totality can always be
guaranteed using wrappers. We also assume that wrappers take care of all com-
patibility issues between used services, as data integration aspects are beyond
the scope of this paper.

The Nested Relational Calculus. NRC is a simple functional programming lan-
guage [3], built around the basic operations on records and sets, with for-loops
and if-then-else (and let-expressions) as the only programming constructs. We
naturally augment NRC with service calls.

Formally, we assume countably infinite sets X of variables and N of service
names. Then the NRC expressions are defined by the following BNF gram-
mar:

Expr → BaseExpr | CompositeExpr
BaseExpr → Constant | Variable | “∅”
CompositeExpr → “{” Expr “}” | Expr “∪” Expr | “

⋃
” Expr |

“〈” Element (“,” Element)∗ “〉” | Expr“.”Label |
“for” Variable “in” Expr “return” Expr |
Expr “=” Expr | Expr “= ∅” |
“if” Expr “then” Expr “else” Expr |
“let” Variable “:=” Expr “in” Expr |
ServiceName “(” Expr (“,” Expr)∗ “)”

Element → Label “:” Expr
Constant → a ∈ A
Variable → x ∈ X
Label → l ∈ L
ServiceName → f ∈ N

7

The variables in an expression that are introduced by a for- or a let-construct are
said to occur bound ; all other occurrences of variables in an expression constitute
the free variables of an expression. For simplicity of exposition, we disallow that
different for- or let-subexpressions bind the same variable. We also disallow that a
free variable occurs bound at the same time. We denote the set of free variables of
an expression e by FV (e). Naturally, the free variables are the input parameters
of the dataflow expressed by the expression. We also use the notation SN (e) for
the set of service names used in expression e.

When we want to run an expression, we need to assign input values to the
free variables, and we need to assign service functions to the service names used
in the expression. Formally, a value assignment is a mapping σ from FV (e) to
V , and a function assignment is a mapping ζ from SN (e) to F. The evaluation
of expressions is then defined by a system of rules (one rule for each construct
of NRC) by which one can infer judgments of the form σ, ζ |= e ⇒ v, meaning
“value v is a possible final result of evaluating e on σ and ζ”. Recall that there
can be more than one possible final result value, if non-deterministic service
functions are involved in the evaluation.

Since these inference rules are known from the literature [3], we just present
a sample of them, using big union, if-then-else, and for-loops as examples. We
also show the rule for service calls:

σ, ζ |= e⇒ {v1, . . . , vn}

σ, ζ |=
⋃

e⇒ v1 ∪ · · · ∪ vn

σ, ζ |= e1 ⇒ {w1, . . . , wn} ∀i ∈ {1, . . . , n} : add(σ, x, wi), ζ |= e2 ⇒ vi

σ, ζ |= for x in e1 return e2 ⇒ {v1, . . . , vn}

σ, ζ |= e1 ⇒ true σ, ζ |= e2 ⇒ v

σ, ζ |= if e1 then e2 else e3 ⇒ v

σ, ζ |= e1 ⇒ false σ, ζ |= e3 ⇒ v

σ, ζ |= if e1 then e2 else e3 ⇒ v

∀i ∈ {1, . . . , n} : σ, ζ |= ei ⇒ vi (v1, . . . , vn, w) ∈ ζ(f)

σ, ζ |= f (e1, . . . , en)⇒ w

In the rule for for-loops, by add(σ, x, wi) we mean the value assignment obtained
from σ by updating the value of x to wi.

In order to guarantee that expression evaluation will not fail, we must type-
check the expression. The typechecker requires that we declare types for the free
variables, and that we declare signatures for the service names. Formally, a type
assignment for e is a mapping Γ from FV (e) to T , and a signature assignment
is a mapping Θ from SN (e) to S. Typechecking is then defined by a system of
rules (omitted due to space limitations) by which one can infer judgments of the
form Γ, Θ ⊢ e : τ , meaning “e is well typed given Γ and Θ, with result type τ”.
The rules are such that there can be at most one possible result type for e given
Γ and Θ.

The following property now states that the type system assures safe execution
of expressions.

8

Property 1. If Γ, Θ ⊢ e : τ can be inferred, and σ and ζ are value and function
assignments consistent with Γ and Θ, then there always exists a value v of type
τ such that σ, ζ |= e⇒ v can be inferred.

Runs. In a dataflow repository, we want to keep the information about the
different runs we have performed of each dataflow. For this, it is not sufficient to
just keep the input values. Indeed, if external services are called in the dataflow,
merely rerunning the dataflow on the same inputs may not produce the same
result as before, because the behavior of the external service may have changed
in the meantime, or because it may even fail this time. It is also not sufficient
to keep only the final result value of every run in addition to the input values.
Indeed, the repository should support provenance tracking of output values, by
which the system can show how certain output values were produced during the
dataflow execution. Again, as before, merely rerunning the dataflow will not do
here.

We conclude that it is necessary to keep, for each run of an expression e,
the information about the service calls that have happened during the run.
We can naturally represent this information as a number of triples of the form
(e′, σ′, v′), where: e′ is a service call subexpression of e; σ′ is the value assignment
constituting the input values of the service call; and v′ is the output produced
by the service call. Note that there can be many such triples, even if e contains
only one service call subexpression, because that service call may occur inside a
for-loop.

From that information, the entire run can then be reconstructed. We can
represent the entire run equally well as a set of such triples, where now e′ is not
restricted to just service calls, but where we consider all subexpressions instead.4

Specifically, we have defined a new system of inference rules (one rule for each
construct of NRC) that allow to infer judgments of the form σ, ζ |≈ e ⇒ R,
meaning that R is a possible run of e on σ and ζ. Recall that service functions
may be non-deterministic, so that for the same value and function assignments,
there may be several different runs. The rules also define the final result value of
the run. Moreover, because we will need this for provenance tracking, our rules
define the set of subruns of a run R — these are runs of subexpressions of e that
happened as part of R. Formally, each subrun is represented by a triple of the
form (e′, σ′, R′), where e′ is a subexpression of e and σ′, ζ |≈ e′ ⇒ R′ holds.

Like before, we only show a sample of the rules:

e =
⋃

e′ σ, ζ |≈ e′ ⇒ R′ v =
⋃

result(R′) R = R′ ∪ {(e, σ, v)}

σ, ζ |≈ e⇒ R result(R)
def
= v Subruns(R)

def
= Subruns(R′) ∪ {(e, σ, R)}

4 For simplicity of exposition, in the present version of this paper, we will ignore
the complication that a subexpression may have several different occurrences in an
expression. We know how to incorporate this in the formalism.

9

e = for x in e1 return e2 σ, ζ |≈ e1 ⇒ R′

result(R′) = {w1, . . . , wn} ∀i ∈ {1, . . . , n} : add(σ, x, wi), ζ |≈ e2 ⇒ Ri

v = {result(R1), . . . , result(Rn)} R = R′ ∪R1 ∪ · · · ∪Rn ∪ {(e, σ, v)}

σ, ζ |≈ e⇒ R result(R)
def
= v

Subruns(R)
def

= Subruns(R′) ∪ Subruns(R1) ∪ · · · ∪ Subruns(Rn) ∪ {(e, σ, R)}

e = f (e1, . . . , en) ∀i ∈ {1, . . . , n} : σ, ζ |≈ ei ⇒ Ri

(result(R1), . . . , result(Rn), v) ∈ ζ(f) R = R1 ∪ · · · ∪Rn ∪ {(e, σ, v)}

σ, ζ |≈ e⇒ R result(R)
def

= v

Subruns(R)
def

= Subruns(R1) ∪ · · · ∪ Subruns(Rn) ∪ {(e, σ, R)}

Let us explain the rule for the flatten expression e =
⋃

e′. We see that, in order
to be able to derive a possible run R of e on given σ and ζ, we must first derive
a possible run R′ for e′ on σ and ζ. From this particular R′, we construct a final
result value v for e, and a run R of which v is the final result value. This R is
one of the possible runs of e on σ and ζ, in particular the one that has R′ as its
subrun. Therefore all subruns of R′ are also subruns of R.

The run inference rules have the following property.

Property 2. Given a run R, for each subexpression e′ and each σ′ there is at
most one R′ such that (e′, σ′, R′) ∈ Subruns(R). We denote this run R′ by
Subrun(e′, σ′, R).

Provenance. We are now ready to consider provenance tracking. We define prove-
nance tracking for any occurrence of a subvalue of the final result value of a run.
The following simple example will illustrate what we mean by subvalue occur-
rences. Consider the simple expression e = 〈a : x, b : f(5)〉, where we declare x

to be of type int, and assign the signature int→ int to service name f . Suppose
now that we run e on the value assignment where x = 3, and on a function
assignment ζ by which (5, 3) ∈ ζ(f). Then the tuple 〈a : 3, b : 3〉 is a final result
value of e. Note that 3 occurs twice as a subvalue in this result, but both occur-
rences have a quite different provenance: the first occurrence is simply a copy
of the input value x = 3, whereas the second occurrence was produced by the
service call f(5).

Formally, we define a subvalue path of some complex value v as a path from
the root in v, viewing v as a tree structure in the obvious manner. Space limi-
tations prevent us from giving the detailed definition. We will use the notation
ϕ ←• v to denote that ϕ is a subvalue path of v. Note that if v is a set value,
and ϕ is not just v itself, i.e., ϕ leads to a proper subvalue, then ϕ is of the form
v; ϕ′, with ϕ′ ←• u for some u ∈ v. We will use that observation in the inference
rules below.

Indeed, we have designed a new system of inference rules that defines, for
any run R, the provenance Prov (ϕ,R) for any subvalue path ϕ in result(R).
Intuitively, the provenance is the restriction of R to all subexpressions and sub-
values of intermediate results that have contributed to the production of ϕ in
R. Formally, considering that R is a set of triples of the form (e′, σ′, v′), we will

10

define Prov (ϕ,R) as a set of triples of the form (e′, σ′, ϕ′), where ϕ′ is a sub-
value path of v′. Intuitively, such a triple represents the information that the
intermediate result v′ (resulting from an evaluation of the subexpression e′) has
partly contributed to ϕ in the output—ϕ′ then indicates which part.

We give a sample of the provenance inference rules next.

e = e′.l σ, ζ |≈ e⇒ R

v = result(R) ϕ←• v S = Subrun(e′, σ,R) v′ = result(S)

Prov (ϕ,R)
def

= Prov (v′; l ; ϕ,S) ∪ {(e, σ, ϕ)}

e = 〈 l1 : e1, . . . , ln : en 〉 σ, ζ |≈ e⇒ R v = result(R)
i ∈ {1, . . . , n} S = Subrun(ei, σ,R) ϕ = v; li; ϕ

′ ϕ′ ←• result(S)

Prov (ϕ,R)
def

= Prov(ϕ′,S) ∪ {(e, σ, ϕ)}

e = if e1 then e2 else e3 σ, ζ |≈ e⇒ R

v = result(R) ϕ←• v result(Subrun(e1, σ,R)) = true

Prov (ϕ,R)
def
= Prov(ϕ,Subrun(e2, σ,R)) ∪ {(e, σ, ϕ)}

e = for x in e1 return e2 σ, ζ |≈ e⇒ R v = result(R)
w = result(Subrun(e1, σ,R)) ∀w′ ∈ w : Sw′ = Subrun(e2, add(σ, x, w′),R)

ϕ = v; ϕ′ ϕ′ ←• u u ∈ v

Prov (ϕ,R)
def

=
⋃

{w′∈w|result(S
w

′)=u}

Prov(ϕ′,Sw′) ∪ {(e, σ, ϕ)}

e =
⋃

e′ σ, ζ |≈ e⇒ R v = result(R)

S = Subrun(e′, σ,R) w = result(S) ϕ = v; ϕ′ ϕ′ ←• u u ∈ v

Prov(ϕ,R)
def
=

⋃

{w′∈w|u∈w′}

Prov (w; w′; ϕ′,S) ∪ {(e, σ, ϕ)}

The rule for tuple field selection delegates the provenance to the immediate
subexpression. Note that the rule for tuple construction includes only informa-
tion from the subrun of the subexpression corresponding to the tuple field in
which the subvalue path ϕ occurs. The rule for if-then-else (only given for the
then-case) is similar in this respect; only the then-branch is tracked. The rule
for for-loops shows how provenance is tracked in all subruns that contributed a
value in which ϕ occurs. The rule for big union is again similar in this respect.

4 Binding Trees

In a dataflow repository, different dataflows are stored together with their runs.
An important feature is that the same dataflow may have been run several
times, on distinct inputs (value assignments), but also with different function
assignments. Recall that a function assignment binds the service names occurring
in the dataflow expression to concrete service functions. While some of the service
names will be bound to external functions, in a dataflow repository, it should

11

also be possible to use an existing dataflow as the functionality of some service
name. In other words, one dataflow can be used as a “subdataflow” of another.
A complication now is that subdataflows may in turn contain service names, so
those must be bound as well. In order to avoid non-terminating executions, we
must pay attention not to create cycles in this binding process. This is taken
care by the notion of binding tree, which we formally introduce in the present
section.

Formally, consider a set D of dataflow identifiers. Each dataflow id has an
associated NRC-expression that serves as the dataflow expression. Formally, this
corresponds to a given mapping expr : D → NRC. Moreover, consider a set Ext
of external service identifiers. We now define:

Definition 1. A binding tree is a finite tree, where the nodes are labeled with
dataflow identifiers or external service identifiers, and the edges are labeled with
service names, with the following properties:

– The root is labeled with a dataflow identifier.
– Only leaves can be labeled with external service identifiers.
– Suppose a node x is labeled with a dataflow identifier d. Let f1, . . . , fn be

the different service names used in expr(d). Then x has precisely n children,
with edges labeled by f1, . . . , fn, respectively.

Intuitively, a binding tree specifies, for the dataflow mentioned in the root, which
service names in the dataflow expression are bound to external services, and
which to subdataflows. For these subdataflows, the binding tree again specifies
a binding for their own service names, and so on. Indeed, note that in a binding
tree, a subtree rooted in a node labeled with a dataflow id is itself a binding tree.
Note also that the same dataflow id can appear several times in a binding tree
(and with different binding subtrees), and that also the same external service
name can appear several times.

In order to define this formally, to begin with, we need an assignment of
service functions to external service identifiers, i.e., a mapping func : Ext →
F. We can then define the function assignment specified by a binding tree by
induction on the height of the tree:

Definition 2. Let β be a binding tree. Let the root of β be labeled with d, and
let expr(d) = e. We define a function assignment ζβ for e as follows. Let h be
the height of β.

– If h = 0, then ζβ is empty.
– If h > 0, then ζβ(f), for any service name f used in e, is defined as follows.

Let x be the f -child of the root of β.
• If x is labeled with an external service id z, then we define

ζβ(f) := func(z).
• If x is labeled with a dataflow id d′, then let e′ = expr(d′), and consider

the subtree β′ of β rooted at x. By induction, we already have a func-
tion assignment ζ′β′ for e′. Then we define ζβ(f) to be the relation that
associates input value assignments for e′ to final result values, given ζ′β′ .

12

In the above, due to space limitations, we have ignored the signatures of service
names and of external service identifiers. Incorporating these signatures requires
that we enrich a binding tree with mappings that associate parameter positions
of service calls to free variables of subdataflow expressions.

5 Repository Data Model

We are now in a position to give a formal definition of a dataflow repository. A
conceptual schema illustrating the different entities that play a role in a repos-
itory, and their relationships, is given in Fig. 1. We use the following notation:
G for all possible type assignments; S for all possible value assignments; Runs
for all possible runs; T for all possible signature assignments; B for the set of all
possible binding trees; and Triples for all possible triples in runs. Also, as in the
previous section, we assume a given set Ext of external service identifiers and a
mapping func : Ext → F. (External service identifiers also have signatures, but
we ignore these due to space limitations.)

Definition 3. A dataflow repository consists of two finite, pairwise disjoint sets
D and R, whose elements are called dataflow identifiers and run identifiers,
respectively, together with eight mappings of the following signatures:

expr : D → E inputtypes : D → G

servicesigs : D → T dataflow : R → D

inputvals : R → S binding : R → B

run : R → Runs internalcall : R× Triples → R

The first seven mappings are standard, total, many-to-one mappings; the last
mapping, however, is partial but must be one-to-one.

Moreover, the mappings must satisfy the following integrity constraints, for
any d ∈ D and any r ∈ R:

– inputtypes(d) is defined on FV (expr(d)).
– servicesigs(d) is defined on SN (expr(d)).
– expr(d) is well-typed under inputtypes(d) and servicesigs(d).
– inputvals(r) is defined on FV (expr(dataflow (r))), and is compatible with

inputtypes(dataflow (r)).
– The root of binding(r) is labeled with dataflow (r).
– run(r) is a run of expr(dataflow (r)) on inputvals(r), given ζbinding(r).
– The repository is closed by the mapping internalcall .

We still have to explain the last item in the above definition (closure). Closure
is an important integrity constraint that corresponds to the following intuition:
if the repository contains a run of some dataflow, then it also contains all corre-
sponding runs of its subdataflows. (Note that if a subdataflow is inside a for-loop,
the subdataflow may be run several times.) This is precisely the function of the
mapping internalcall , which given a run and a call in that run to a service name
bound to a subdataflow, will indicate the run identifier of the corresponding
subdataflow run. Formally, we define:

13

T Runs B

E D R S

G R × Triples
in
pu

tt
yp

es

servicesigs

expr dataflow

inputvals

bindingru
n

internalcall

Fig. 1. Conceptual dataflow repository schema.

Definition 4. A repository is closed by internalcall if for any r ∈ R and any
t = (Φ, σ, v) ∈ Triples, the following holds:

– internalcall(r, t) is defined if and only if t ∈ run(r) and Φ is (an occurrence
of) a service call to some service named f such that the f -child of the root
of binding(r) is labeled with a dataflow identifier d′.

– If internalcall(r, t) = r′ is indeed defined, then
• dataflow (r′) = d′;
• binding(r′) equals the subtree of binding(r) rooted in the f -child of the

root of binding(r);
• inputvals(r′) = σ; and
• the final result value of run(r′) equals v.

Note that we do not explicitly model meta-data in the repository data-model.
However, it is possible to extend the conceptual data model with meta-data, for
instance by adding mappings from various entities in the repository to annotation
identifiers, which represent diverse meta-data entities. The actual content of
meta-data is beyond the scope of this paper.

6 Related Work

Several researchers advocate integration of workflows and DBMSs [9,10,11], as
they provide mechanisms for planning, scheduling, and logging. We believe that
to properly design a dataflow repository, you need a formal model for dataflows
and runs. Although there are several dataflow specification languages [9,12,13,1,2],
to our knowledge, none of them presents a formal model of repository storing
dataflows and runs. With increasing importance of provenance [14,15,16,17], of-
ten with different interpretations for this term, it is essential that our model
includes a formal definition of the kind of provenance that our work targets. For
instance, our notion of provenance largely covers the queries of the Provenance
Challenge (http://twiki.ipaw.info/bin/view/challenge/). Pioneers in integration
of workflows and DBMSs are ZOO [9] and OPM [10]. The ZOO system, im-
plemented on top of an OODBMS, uses database schemas to model dataflows:
object classes model data, and relations between them model operations (associ-
ated rules specify their execution). An instance contains run information. OPM

14

uses schemas for workflow design with separate object and protocol classes. Pro-
tocol classes employ attributes for input, output and connections, and constrains
are used to enforce various rules. OPM is implemented in RDBMS, and runs
are stored as instances of relational schemas. More recently, Shankar et al. [11]
have proposed dataflow specification integrated with SQL and relational DBMS.
Dataflows are modeled as active relational tables, and invoked through SQL
queries. The Taverna [1] workflow system focuses on practical workflow design
and integration of bioinformatics tools and databases. They store runs and asso-
ciated meta-data in a provenance store implemented as a Web Service et al. [16].
There are also systems with dataflow design repositories, e.g., WOODSS [18],
mainly focusing on workflow reuse. Tröger et al. [12] present a language for work-
flow design, similar to in vitro experiments. Although the compiler produces a
persistent repository of workflow specifications and meta-data, it does not in-
clude (intermediate) results. Another well-known workflow system is Kepler [2].
Workflow design is actor-oriented and supports collections through an abstract
data model for actor design [19]. Intermediate results are recorded through au-
tomatic report generation.

7 Towards a Dataflow Repository System

A dataflow repository system, following the conceptual model presented in this
paper, could be implemented in various ways. An approach that seems promising
to us, and which is the object of our current work, is to build the system on top of
a modern relational DBMS using SQL/PSM and SQL/XML. A similar approach
was also advocated by Shankar et al. [11]. Base values are implemented using
SQL datatypes; more complicated base types such as NCBIXML can be imple-
mented using the XML column type, or as large objects (LOBs). Complex values
can be decomposed into tables using standard techniques. NRC expressions can
be compiled into SQL procedures that, when run, will insert not only the final
result value in the repository, but also the intermediate results of external service
calls. Service calls can be implemented using SQL user-defined functions. The
conceptual data model of the dataflow repository is readily mapped to the rela-
tional data model. All semi-structured data belonging to the repository, such as
NRC expressions, type assignments, signatures, or binding trees, can be stored
using XML columns.

Last but not least, the database may include various additional tables, which
contain meta-data such as author of a dataflow, date of a run, version of an exter-
nal databases, etc. Through dataflow identifiers, run identifiers, and referential
integrity, these tables are linked to the repository tables.

8 Conclusions

In this paper we have presented an attempt to lay the formal groundwork of
dataflow repository systems. Now that we have a precise specification of the var-
ious data stored in such repositories, we can start envisaging ways of querying

15

all this data. Note that computing provenance information can already be con-
sidered as a kind of query computed over a single run stored in the repository.
But clearly much more is possible, given that many different dataflows, with
many different runs, are in the database. Two examples of potential decision
support queries were already given in the introduction. It remains to be investi-
gated whether special-purpose query language mechanisms must be designed, or
whether SQL/XML, where XQuery and SQL can be freely combined, provides
enough flexibility and expressive power.

References

1. Oinn, T. et al.: Taverna: A tool for the composition and enactment of bioinfor-
matics workflows. Bioinformatics 20(17) (2004) 3045–3054

2. Ludäscher, B. et al.: Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice And Experience 18(10) (2006) 1039–1065

3. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with
complex objects and collection types. Theor. Computer Science 149 (1995) 3–48

4. Stevens, R., Goble, C., Baker, P., Brass, A.: A classification of tasks in bioinfor-
matics. Bioinformatics 17(1) (2001) 180–188

5. Chen, J., Chung, S.-Y., Wong., L.: The Kleisli query system as a backbone for
bioinformatics data integration and analysis. In Bioinformatics: Managing Scien-
tific Data. Morgan Kaufmann (2003) 147–187

6. Davidson, S. et al.: The Kleisli approach to data transformation and integration.
In The Functional Approach to Data Management. Springer (2004) 135–165

7. Gambin, A., Hidders, J., Kwasnikowska, N. et al.: NRC as a formal model for
expressing bioinformatics workflows. Poster at ISMB 2005, Detroit, MI, USA

8. Pierce, B.: Types and Programming Languages. The MIT Press (2002)
9. Ailamaki, A., Ioannidis, Y., Livny, M.: Scientific workflow management by database

management. Proceedings of SSDBM July 1998, IEEE Computer Society, 190–199
10. Chen, I., Markowitz, V.: An overview of the object protocol model (OPM) and

the OPM data management tools. Information Systems 20(5) (1995) 393–418
11. Shankar, S., Kini, A., DeWitt, D., Naughton, J.: Integrating databases and work-

flow systems. SIGMOD Record 34(3) (2005) 5–11
12. Tröger, A. et al.: A language for comprehensively supporting the In Vitro ex-

perimental process In Silico. Proceedings of BIBE March 2004, IEEE Computer
Society, 47–56

13. Zhao, Y. et al.: A notation and system for expressing and executing cleanly typed
workflows on messy scientific data. SIGMOD Record 34(3) (2005) 37–43

14. Cohen, S., Cohen Boulakia, S., Davidson, S.: Towards a model of provenance and
user views in scientific workflows. Proceedings of DILS 2006, LNCS 4075 264–279

15. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: A survey. ACM
Computing Surveys 37(1) (2005) 1–28

16. Wong, S., Miles, S., Fang, W. et al.: Provenance-based validation of e-science
experiments. Proceedings of ISWC 2005, LNCS 3729 801–515

17. Mutsuzaki, M. et al.: Trio-One: Layering uncertainty and lineage on a conventional
DBMS. Proceeding of CIDR Januari 2007, Asilomar, California

18. Medeiros, C. et al.: WOODSS and the Web: annotating and reusing scientific
workflows. SIGMOD Record 34(3) (2005) 18–23

19. McPhillips, T. et al.: Collection-oriented scientific workflows for integrating and
analyzing biological data. Proceedings of DILS 2006, LNCS 4075 248–263

16

