
A Data Model for Moving Objects Supporting Aggregation

Bart Kuijpers
Hasselt University &

Transnational University of Limburg

bart.kuijpers@uhasselt.be

Alejandro A. Vaisman
Universidad de Chile &

Universidad de Buenos Aires

avaisman@dcc.uchile.cl

Abstract

Moving objects databases (MOD) have been receiving
increasing attention from the database community in re-
cent years, mainly due to the wide variety of applications
that technology allows nowadays. Trajectories of moving
objects like cars or pedestrians, can be reconstructed by
means of samples describing the locations of these objects
at certain points in time. Although there are many propos-
als for modeling and querying moving objects, only a small
part of them address the problem of aggregation of moving
objects data in a GIS (Geographic Information Systems)
scenario. In previous work we presented a formal model
where the geometric components of the thematic layers in a
GIS are represented as an OLAP (On Line Analytical Pro-
cessing) dimension hierarchy, and introduced the notion of
spatial aggregation. In this paper we extend this proposal
in order to address moving object aggregation over a GIS.
In this way, complex aggregate queries can be expressed in
an elegant fashion. We present the data model, characterize
the kinds of queries that may appear in this scenario, and
show how these queries can be expressed as an aggrega-
tion over the result given by a first order formula expressing
constraints over the geometries of the layers.

1 Introduction

Geographic Information Systems (GIS) have been used

extensively in various application domains, ranging from

economical, ecological and demographic analysis, to city

and route planning [14, 20]. Spatial information in a GIS is

typically stored in different so-called thematic layers (also

called themes). Information in themes can be stored in dif-

ferent data structures according to different data models,

the most usual ones being the raster model and the vec-
tor model. In a thematic layer, spatial data is typically an-

notated with classical relational attribute information of (in

general) numeric or string type. While spatial data is stored

in data structures suitable for these kinds of data, associ-

ated attributes are usually stored in conventional relational

databases.

OLAP (On Line Analytical Processing) [8] comprises

a set of tools and algorithms that allow efficiently query-

ing multidimensional databases, containing large amounts

of data, usually called Data Warehouses. In OLAP, data is

organized as a set of dimensions and fact tables. Thus, data

is perceived as a data cube, where each cell of the cube con-

tains a measure or set of (probably aggregated) measures of

interest. OLAP dimensions are further organized in hierar-

chies that favor the data aggregation process.

Moving objects representation and computing have re-

ceived a fair share of attention over recent years in the

database community [2, 3, 10, 18]. In particular, we are in-

terested in aggregation of moving objects data. There are

many applications involving moving objects aggregation,

mainly regarding traffic analysis, like truck fleet behavior

analysis or commuter traffic in a city. The behavior of all

these moving objects is traceable by means of electronic

devices.

In [4] we have addressed the problem of aggregating spa-

tial data, and integrating OLAP and GIS environments. In

this work, we will extend the model in order to address the

aggregation of data about moving objects over a spatial GIS.

1.1 Motivating Example

Throughout this paper we will be working with the fol-

lowing example: on the one hand, we have a layered repre-

sentation of geographic features of a city. Each layer con-

tains information about neighborhoods (polygons), high-

ways (polylines), streets (polylines), hospitals, schools

(points), important stores (points), gas stations (points).

There is a river dividing the city into a northern and a south-

ern part. Also, a bounding box determines the portion of

the city and its surroundings under consideration. In addi-

tion, there is numerical and categorical information stored

in a conventional data warehouse. In this data warehouse,

there are dimension tables containing information about,

1

5461-4244-0832-6/07/$20.00 ©2007 IEEE.

for instance, stores, gas stations, schools; there is also a

fact table containing economic information based on these

dimensions. We also have information about moving ob-

jects (pedestrians, bicycles, cars, and so on) represented by

means of object identifiers. As we progress in the paper, we

will get into more detail on how this information is stored

in the different layers, and how it can be integrated into a

general GIS-OLAP framework.

1.2 Problem Statement

Assume that moving objects data are captured at a given

time interval, with a certain granularity. Thus, the trajec-

tory of a moving object is given by samples composed by

a finite number of tuples of the form (Oid, t, x, y), stating

that at a certain point in time, namely t, the object Oid was

located at coordinates (x, y). The elements in the tuples are

given by rational numbers and they are ordered. We do not

address here the problem of moving regions, i.e., we con-

sider regions as fixed over time. Let us consider the follow-

ing setting: we have a database containing the position of

six buses at each hour in our example city. Figure 1 shows

the estimated trajectories followed by these buses (assum-

ing linear interpolation between two consecutive samples);

the figure also shows the neighborhoods the city is divided

into, and their different incomes: the shaded regions are the

ones with income less than fifteen hundred Euros monthly

(in what follows, the “low income region”). Note that: ob-

ject O1 remains always within a low income region. Object

O2 starts its trajectory in a high income region, then enters

a low-income neighborhood, and then gets out of it again.

Objects O3, O4 and O5 are always in high-income neigh-

borhoods, while object O6 passes through a low-income re-

gion, but was not sampled inside it. A typical query that

can arise in the spatio-temporal/moving objects scenario de-

scribed above is “Give me the number of buses per hour in

the morning in the Antwerp neighborhoods with a monthly

income of less than C 1500,00.”

Efficiently supporting these kinds of queries requires a

solid formal model for spatio-temporal OLAP [17]. Hereto,

in this paper we will give a framework which naturally inte-

grates GIS, OLAP and moving objects concepts. Our model

builds on the one introduced in [4] for spatial aggregation.

The remainder of the paper is organized as follows. In

Section 2 we discuss related work in GIS and moving ob-

jects. Section 3 introduces the data model, while Section

4 shows an extensive set of example queries. Section 5

sketches a query evaluation strategy. We conclude in Sec-

tion 6.

Figure 1. A moving objects example.

2 Background and Related Work

GIS and OLAP Interaction Although some authors

have pointed out the benefits of combining GIS and OLAP,

not much work has been done in this field. Vega López

et al. [17] present a comprehensive survey on spatiotempo-

ral aggregation that includes a section on spatial aggrega-

tion. Rivest et al. [15] introduced the concept of SOLAP

(standing for Spatial OLAP), and described the desirable

features and operators a SOLAP system should have. How-

ever, they did not present a formal model. Han et al. [5] use

OLAP techniques for materializing selected spatial objects,

and proposed a so-called Spatial Data Cube. This model

only supports aggregation of such spatial objects. Peder-

sen and Tryfona [12] proposed the pre-aggregation of spa-

tial facts. Other approaches [13, 21] combine OLAP and

GIS for querying so-called spatial data warehouses using R-

Trees for accessing data in fact tables. The data warehouse

is then evaluated in the usual OLAP way.

Moving Objects Many efforts have been made in the field

of moving objects databases, specially regarding data mod-

eling an indexing. Güting and Schneider [3] provide a good

reference to this large corps of work. Wolfson [19] et al.
stated a set of capabilities that a moving object database

must have, and introduced the DOMINO system (stand-

ing for Database fOr MovlNg Objects), that develops those

547

features on top of existing database management systems

(DBMS) [18]. According to the authors, a DBMS support-

ing moving objects must address the following issues: loca-

tion modeling, uncertainty, specific spatio-temporal query

languages, indexing, and dynamic attributes. Güting et
al. also proposed a system of abstract data types as

extensions to DBMSs to support time-dependant geome-

tries [2]. They defined a set of spatial data types as point,
points (a set of point elements), line (a set of continuous

curves) and region, where regions can have holes. They

also defined spatial operations and predicates. Meng and

Ding [9] proposed a moving objects database model de-

noted DSTTMOD (standing for Discrete Spatio-Temporal

Trajectory Based Moving Objects Database model), where

trajectories are used to represent dynamic attributes of mov-

ing objects, like past, current, and future location informa-

tion. Trajectories of moving objects are represented by a

set of line segments in the spatio-temporal space, assuming

that within a segment, the object moves along a straight line,

and the speed of the moving object keeps constant. Moving

regions are addressed in [16]. Here, they are represented

starting from snapshots of an amorphous region taken at

different points in time. Interpolation of the snapshots of

the geometries yields so-called slices of the moving regions

representation. Hornsby and Egenhofer [6] introduced an

interesting framework for modeling moving objects, which

supports object visualization at different granularities, de-

pending on the sampling time interval. The basic modeling

element they consider is a geospatial lifeline, which is com-

posed of triples of the form (Id, location, time), where Id
is the identifier of the object, location is given by x-y coor-

dinates, and time is the timestamp of the observation (note

the similarity with our representation sketched in 1.2). The

possible positions of an object between two observation is

estimated to be within two inverted half-cones that conform

a lifeline bead, whose projection over the x-y plane is an

ellipse. This model accounts also for the speed of the object

and for the addition of intermediate observations.

Aggregate information is still a quite open field, either

in GIS or in a moving objects scenario. Meratnia and de

By [10] have tackled the topic of aggregation of trajecto-

ries. They identify similar trajectories and merge them in a

single one, by dividing the area of study into homogeneous

spatial units; each unit is associated to an integer, repre-

senting the number of times any object passes through it.

Based on this, they obtain the aggregated trajectories. They

claim that their method is insensitive to differences in se-

quence length and sampling intervals. With goals similar

to ours, Papadias et al. [11] index historical aggregate in-

formation about moving objects. They aim at building a

spatio-temporal data warehouse, and give ideas of possible

indexing schemes. These schemes allow querying aggre-

gate information about moving objects in a region during

a certain time interval. They include pre-aggregate data in

the nodes of the tree structures. Their approach could be

used by different data models addressing OLAP-like aggre-

gation. However, it is not clear how this proposal could be

used for solving queries that involve more than one class of

geometries, or involving trajectories (for instance, queries

like “number of cars that in Monday morning travelled from

Antwerp to Brussels”).

3 A Framework for Geometric and Moving
Objects Data Aggregation

Our conceptual model is based on the standard OLAP

notion of dimension hierarchies and fact tables [8]. How-

ever, there are some particularities that deserve a special

treatment. Our goal is to integrate in the same conceptual

model, geographic, warehousing and moving objects infor-

mation, in a natural way. These kinds of data may have been

produced and stored completely separated from each other.

We will model static and dynamic information in a different

way. Static information will be represented as a GIS dimen-

sion schema [4]. Information about moving objects will be

stored in another data structure, as we will see later.

Static Information A GIS dimension, consists, as usual,

in a dimension schema and dimension instances. Each di-

mension is composed of a set of hierarchies, each one de-

scribing a set of geometries in a thematic layer. Figure 2

shows a GIS dimension schema (there is also the Time

dimension, which we will comment later), with three hi-

erarchies, located in three different layers, following our

running example: rivers (Lr), schools (Ls), and neigh-

borhoods (Ln) (other layers are represented analogously).

We define three sectors, denoted the Algebraic part, the

Geometric part, and the Classical OLAP or Application
part. Typically, each layer will contain a set of binary rela-

tions between geometries of a single kind (the latter is not

mandatory). For example, an instance of the relationship

(line,polyline) will store the ids of the lines belonging to a

polyline.

The finest level in the dimension schema (represented by

a node with no incoming edges), called “point”, belongs

to the Algebraic part of the conceptual model. Here, data

are represented as infinite sets of points (x, y, l), where l
denotes a layer. We assume that the elements in the alge-

braic part are finitely described by means of linear algebraic

equalities and inequalities. In the Geometric part, data con-

sists of a finite number of elements of certain geometries.

This part is used for solving the geometric part of a query,

for instance to find all polygons that compose the shape of

a country. Each point in the Algebraic part corresponds to

one or more elements in the Geometric part.

548

Figure 2. An example of a GIS dimension
Schema.

Levels in the geometric part are associated with

application-dependent concepts, for example, information

about states, stored in a relational data warehouse, is asso-

ciated to polygons, or information about rivers, with poly-

lines. Typically, these concepts are represented as a set of

dimension levels or categories, which are part of a hierar-

chy in the usual OLAP sense. These hierarchies conform

the Application part.

The Time Dimension Besides the static information rep-

resenting geometric components (i.e., the GIS), there will

be a Time dimension (actually, there could be more than

one Time dimensions, supporting, for example, different

notions of time). Figure 2 shows a configuration of a Time

dimension following the standard OLAP convention. Note

that, of course, the application part could contain the time

dimension, but, since it is essential for addressing moving

objects, we believe that we must consider it as a special kind

of dimension.

Example 1 In Figure 2, the level polygon in layer Ln

is associated with two application-dependent categories,

neighborhood and city, such that neighborhood → city
(“A → B” means that there is a rollup function from level

A to level B in the application part). Each category may

even have attributes associated, like population, number of

schools, and so on. Thus, a geometrically-represented com-

ponent is associated with an application-dependant concept.

There is also an application hierarchy associated to the layer

Lr at the level of polyline. Notice that since dimension

levels are associated to geometries, it is straightforward to

associate facts stored in a data warehouse in the applica-

tion part, in order to aggregate these facts along geomet-

ric dimensions, as we will see later. Finally, notice that in

the algebraic part, the relationship represented by the edge

(point, polygon) associates infinite point sets with poly-

gons. Note that a point may belong to more than one ge-

ometry. For instance, this occurs when a point belongs to

two adjacent polygons. ��

We will now define the data model in a formal way. Let

us assume the following sets: a set of layer names L, a set A
of application-dependant attribute names and a set G of ge-

ometry names. Each element a of A has an associated set of

values dom(a). We assume that G contains at least the fol-

lowing elements (geometries): point, node, line, polyline,

polygon and the distinguished element “All”. More can be

added. Each geometry g of G has an associated domain

dom(g). The domain of Point, dom(Point), for example,

is the set of all triples in R2×L. The domain of All = {all}.

The domain of all elements G of G, except Point and All,
is Gid, a set of geometry identifiers.

Additionally, we make the following assumption, which

is usual in GIS: elements in a geometry intersect in objects

whose extension is at least one dimension lower, i.e., poly-

gons intersect in polylines or points and polylines in points.

Definition 1 (GIS Dimension Schema) Given a layer L ∈
L, a graph H(L) is a graph defined as follows: (a) there is

a node in H(L) for each kind of geometry G ∈ G in L;

(b) there is an edge from Gi to Gj if Gj is composed by

geometries of type Gi (i.e., the granularity of Gj is coarser

than that of Gi), where Gi and Gj ∈ G; (c) there is a dis-

tinguished member All that has no outgoing edges; (d) there

is exactly one node in H(L), labeled point, that has no in-

coming edges;

Also, there is a set A of partial functions Att with sig-

nature A → G × L such that, for each attribute A ∈ A,

Att(A) = (G, L) denoting that the attribute belongs to

the geometry G in the layer L. The application part is

composed by a set of dimension schemas D defined as in

[7], where each dimension D ∈ D is a tuple of the form

(dname,C,�), such that dname is the dimension’s name,

C is a set of dimension levels (in our model these levels are

actually the attributes A ∈ A mentioned above), and � is a

partial order between levels.

Finally, a GIS dimension schema is tuple Gsch =
(H,A,D) where H is the finite set {H1(L1), . . .Hk(Lk)}.

��

Example 2 In the dimension schema of Fig-

ure 2, the hierarchy for the layer containing

rivers is: H1(Lr) = ({point, line, polyline, All},

549

{(point, line), (line, polyline), (polyline, All)});
also, AtG(neighborhood) = (polygon, Ls),
AtG(river) = (polyline, Lr) and neighborhood � city.
Finally, in the application part we have dimensions

Rivers and Neighbourhoods (we omit the schemas for

the sake of brevity). Therefore, the GIS dimension

schema is: Gsch = ({H1(Lr), H2(La), H3(Ls)},
{AtG(neighborhood), AtG(river)}, {Rivers,
Neighbourhoods}). ��

Definition 2 (GIS Dimension Instance) Let Gsch = (H,
A,D) be a GIS dimension schema. A GIS dimension in-
stance is a tuple (Gsch,R,Ainst,Dinst), where R is a set

of relations r
GjGk

Li
in dom(Gj)× dom(Gk), corresponding

to each pair of levels such that (Gj , Gk) is in some graph

HGi
(Li) in Gsch. We denote each relation r

GjGk

Li
in R, a

rollup relation.

Also, for each triple (G, A, L) ∈ G × A × L such that

Att(A) = (G, L) there is a function αA,G
L ∈ Ainst with

signature dom(A) → dom(G) × dom(L).
Finally, for each dimension schema D ∈ D there is

a dimension instance defined as in [7], which is a tuple

(D,RUP), where RUP is a set of rollup functions that re-

late elements in the different dimension levels (intuitively,

these rollup functions indicate how the attribute values in

the application part can be aggregated). ��

Definition 3 (GIS Fact Table) Given a Geometry g in a

graph H(L) of a GIS dimension schema Gsch and a list of

measures M = (M1, . . . ,Mk), a GIS Fact Table schema is

a tuple FT = (G, L,M). A tuple BFT = (point, Lb, M)
is denoted a Base GIS Fact Table schema. A GIS Fact Table
instance is a function ft that maps values in dom(G) × L
to values in dom(M1) × · · · × dom(Mk). A Base GIS
Fact Table instance maps values in R2 × L to values in

dom(M1) × · · · × dom(Mk). ��

Example 3 A fact table containing neighborhood popula-

tions across time in our running example will be stored

at the polygon level. In this case, the fact table schema

would be (polyId, Lneighb, Y ear, Population). If infor-

mation is stored at the point level, for example, tem-

perature data, we would have a base fact table with a

schema (point, Ltemp, T emperature), with instances like

((x1, y1), Ltemp, 25). ��

Besides the GIS fact tables, there may also be classical

fact tables in the application part, defined in terms of the

OLAP dimension schemas. For instance, instead of storing

the population as in Example 3 (i.e., associated to a polygon

identifier), the same information may reside in a data ware-

house, with schema (neighborhood, Y ear, Population).

Definition 4 (Geometric Aggregation [4]) Given a GIS

dimension as introduced in Definitions 1 and 2, a Geometric
Aggregation is an expression of the form∫ ∫

C

δC(x, y) h(x, y) dx dy,

where C = {(x, y) ∈ R2 | ϕ(x, y)}, δC(x, y) = 1 on

the two-dimensional parts of C; δC(x, y) is a Dirac delta

function on the zero-dimensional parts of C; and δC(x, y) is

the product of a Dirac delta function with a combination of

Heaviside step functions for the one-dimensional parts of C.

Here, ϕ is a FO-formula in a multi-sorted logic L over R,

L and A. The vocabulary of L contains the function names

appearing in F and A, together with the binary functions

+ and × on real numbers, the binary predicate <. (Details

on the use of the Dirac and Heaviside functions are given

in [4]). ��

Moving Objects We need to integrate the information

about moving objects in the former framework. For this,

we will consider a distinguished Moving Object Fact Ta-
ble (MOFT), that contains tuples of the form (Oid, t, x, y),
where Oid is the identifier of the moving object, t is a time

instant, and (x, y) are the coordinates of the object Oid at

instant t.
Finally, we will formalize the concept of trajectory, and

state the difference between a trajectory and a trajectory
sample.

Definition 5 A trajectory T is the graph of a mapping

I ⊆ R → R2 : t �→ β(t) = (βx(t), βy(t)), i.e.,

T = {(t, βx(t), βy(t)) ∈ R × R2 | t ∈ I}. The image
of the trajectory T is the image of the mapping β that de-

scribes T . The set I is called the time domain of T . ��
Often, in the literature, conditions are imposed on the

nature of the mappings βx and βy . For instance, they may

be assumed to be continuous, piecewise linear [3], differ-

entiable, or C∞. For reasons of finite representability, we

assume that I is a (possibly unbounded) interval and that βx

and βy are continuous semi-algebraic functions (i.e., they

are given by a combination of polynomial inequalities in

x and t and y and t respectively). For example, the set

{(t, 1−t2

1+t2 , 2t
1+t2) | 0 ≤ t ≤ 1} describes a trajectory on

a quarter of a circle. In this example, βx is given by the

formula x(1 + t2) = 1 − t2 ∧ 0 ≤ t ≤ 1.

Definition 6 A trajectory sample is a list of time-space

points 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉, where

xi, yi, ti ∈ R for i = 0, ..., N and t0 < t1 < · · · < tN . ��
For the sake of finite representability we may assume

that the time- space points (ti, xi, yi), have rational coor-

dinates. This will be the case in practice, since these points

are typically the result of observations.

550

If S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉 is a

sample of a trajectory and T = {(t, βx(t), βy(t)) ∈ R ×
R2 | t ∈ I} is a trajectory that is consistent with S and if

I is the interval [t0, tN] and x0 = xN , y0 = yN , then T is

called a closed trajectory.

A classical model to reconstruct a trajectory from

a sample is the linear-interpolation model [3], where

a unique trajectory is constructed such that it con-

tains the sample and is obtained by assuming that

the trajectory is run through at constant lowest speed

between any two consecutive sample points. For a sam-

ple S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉,
the trajectory LIT (S) := ∪N−1

i=0 {(t,
(ti+1−t)xi+(t−ti)xi+1

ti+1−ti
, (ti+1−t)yi+(t−ti)yi+1

ti+1−ti
) | ti ≤

t ≤ ti+1)} is called the linear-interpolation trajectory of

S.

3.1 Spatio-Temporal Aggregate Queries

We are interested in answering aggregate queries involv-

ing both, geometric aggregation, and aggregation of mov-

ing objects over a spatial GIS. Our goal is to still be able

to address spatial queries as in the framework presented in

[4], adding the ability to express queries aggregating mov-

ing object samples. Let us characterize the different situa-

tions that may arise.

1. Spatial aggregation. The fact table is represented
by a density function given in the geometric part of the GIS
dimension schema. In this case, we have a typical geometric

aggregation. For instance, for queries like “Total population

of provinces crossed by a river,” where population is given

as a density function.

2. Spatial aggregation & numeric information. Nu-
meric information is stored in the application part. In this

case, we also have a geometric aggregation. However, the

numeric values can appear in the expression defining the

query region C, instead of in the main body of the query.

For instance, for queries like “total number of airports with

more than one hundred arrivals per day”.

3. Trajectory samples. A fact table of moving objects
(MOFT) exists, and a query asks for information not involv-
ing spatial data. The fact table will be denoted in what fol-

lows FM. In our running example, the query “Maximum

number of buses per hour on Monday morning” only re-

quires to operate over FM and the Time dimension.

4. Trajectory samples & condition over the geometry.
The query involves a computation over FM and spatial in-
formation. For example, “Number of buses per hour in the

morning in the neighborhoods with a monthly income of

less than C 1500,00.” We will study this query in detail be-

low. Here, C is a spatio-temporal structure that returns pairs

(Oid, t) such that Oid was located at time t in a coordinate

satisfying a spatial constraint.

After the region C is determined, any aggregation can be

computed over this structure (for instance, the number of

buses per hour).

5. Trajectory samples & spatial aggregation in C.
The query involves computation over FM, and the region
C includes aggregation. Here, computation requires the

aggregation of some function. For example, “Number of

buses per hour in the morning in the neighborhoods where

the number of people with a monthly income of less than

C 1500,00 is larger than 50,000.” The query region C now

requires a geometric aggregation to be computed, thus be-

coming a kind of “second order” aggregate query.

6. Trajectory as a spatial object. In this case, the tra-

jectory can be treated as a static polyline in a spatial query.

For instance, “How many cars are there in the Antwerp

neighborhood called Berchem at 9:15 on Monday, Jan 7th,

2006?”

7. Trajectory query. Requires knowing the trajectory

of the moving object. For example: “Average number of

cars that pass through Berchem in the morning”. In this

case, although two consecutive samples can be taken out-

side Berchem, a linear interpolation may indicate that the

object has passed through that neighborhood.

8. Trajectory Aggregation. Asks for an aggregation

over a trajectory defined by a moving object.

Definition 7 (Aggregation [1]) Let AGG be the set of ag-

gregate functions, with extension AGG = {MIN, MAX,
COUNT, SUM,AV G}, and r a relation. The aggregate
operation γf A(X)(r) is the relation γf A(X)(r) = {t : t

is an XA-tuple, t[X] ∈ πX(r), t[A] = fA(σX=t[X](r))},
over XA, s.t. XA ∈ schema(r), f ∈ AGG, and fA(r)
denotes the aggregation of the values in t[A], t ∈ r, using

the function f. ��

The semantics of a summable moving objects query

Q(C), where C is a relation of the form C =
{(Oid, t, x, y)} is Q = γAGGA(X)(C) where X and A are

subsets of the schema(C).
We will now go back to the example study how aggregate

queries can be answered in the proposed framework. Let

us analyze the query introduced in Section 1.2: “Number

of buses per hour in the morning in the Antwerp neighbor-

hoods with a monthly income of less than C 1500,00.” We

will be using the fact table FMbus (Table 1), that contains

the moving objects samples.

We will denote the geometries Pg for polygons, Pl for

polylines, Pt for points, and so on. We will use neighb as a

shorthand for the category neighborhood in the application

551

Oid t (x,y)

O1 1 (x1, y1)
O1 2 (x2, y2)
O1 3 (x3, y3)
O1 4 (x4, y4)
O2 2 (x5, y5)
O2 3 (x6, y6)
O2 4 (x7, y7)
O3 5 (x8, y8)
O4 6 (x9, y9)
O5 3 (x1, y4)
O6 2 (x5, y7)
O6 3 (x4, y9)

Table 1. The M.O. fact table FMbus.

part of the dimension schema. Also, for the sake of read-

ability we will slightly change the notation for the function

α : we will assume the layer to which the function refers

is implicit by the function’s name. For instance, the ex-

pression αneighb,Pg
Ln

(n) = (pg, Ln) will be written just as

αneighb,Pg
Ln

(n) = pg. (Recall that α is a function with sig-

nature dom(A) → dom(G) × dom(L)). Thus, the region

with the required income is expressed as: C = {(x, y) |
(∃n)(∃pg)rPt,Pg

Ln
(x, y, pg)∧αneighb,Pg

Ln
(n) = pg∧n.income <

1, 500}
The instants corresponding to the morning hours men-

tioned in the fact tables are obtained through the rollup

functions in the Time dimension. We assume in the Time

dimension a category denoted timeOfDay, rolling up to the

dimension category hour (i.e., timeOfDay → hour).

We will denote Rj
i a rollup function between two categories

i and j. The aggregation of the values in the fact table

corresponding only to morning hours is computed with

the following expression: FMbus
morning = {(Oid, t, x, y) |

RtimeOfDay
timeId (t) = “Morning” ∧ FMbus(Oid, t, x, y)}

Finally, our spatio-temporal region C is expressed:

C = {(Oid, t) | (∃x)(∃y)(∃pg)(∃n)n ∈ neighb ∧
FMbus

morning(Oid, t, x, y) ∧ rPt,Pg
Ln

(x, y, pg) ∧ αneighb,Pg
Ln

(n) =

pg ∧ n.income < 1, 500}.

Remark 1 Note that the query result, given the instance of

Figure 1 will be 4/3 = 1.333. This is because O1 will con-

tribute three times, O2 will contribute once, and the time

span is three hours. ��
We could summarize the complete expression in a sin-

gle one as follows: C = {(Oid, t) | (∃x)(∃y)(∃pg), (∃n)n ∈
neighb∧RtimeOfDay

timeId (t) = “Morning”∧ FMbus(Oid, t, x, y)∧
rPt,Pg

Ln
(x, y, pg) ∧ αneighb,Pg

Ln
(n) = pg ∧ n.income < 1, 500}.

Thus, we can see that our spatial region C turns, in the

spatio-temporal setting, into a set of pairs (objectId, time),

which are a key for an object’s position in time and space.

4 Examples

In this section we present an extensive set of typical

Moving Objects queries, and how they can be expressed in

our framework. For each query we will also include its type,

according to the characterization we proposed in Section 3.

1. “Give me the number of cars in region “South”

of Antwerp on Wednesday morning.” (Type 4) We

assume there is a layer with city regions. First, ob-

tain the objects satisfying the condition of the query:

C = {(Oid, t) | (∃x)(∃y)(∃pg)FM(Oid, t, x, y) ∧
RtimeOfDay

timeId (t) = “Morning” ∧ RdayOfWeek
timeId (t) =

“Wednesday”∧rPt,Pg
Lr

(x, y, pg)∧αregion,Pg
Lr

(“South”) = pg}.

We are assuming that cars are only in the regions where

they were sampled. Thus, C returns a set of object identi-

fiers. The aggregation (a sum) is performed over this set.

2. “Give me the maximal density of cars on all roads in

Antwerp on Monday morning.” (Type 4)

This query may have different meanings, namely: (a)

count all cars in each street, during the complete morn-

ing, and return the road with the highest number of

cars per km; (b) take the density for each road in

Antwerp at each moment (for the finest granularity) and

return moment and street with the highest number of

cars per km; (c) take, at each moment, the total num-

ber of cars in Antwerp divided by the total length of

the road network, returning the moment of highest den-

sity. In all cases, the expression for the region C will

return a set of triples of the form (Oid, instant, street),
capturing objects sampled in the same street more than

once. The aggregation will be then applied over these

tuples, according to the different interpretations. We

have C = {(Oid, t, s) | (∃x)(∃y)(∃pl)FM(Oid, t, x, y) ∧
RtimeOfDay

timeId (t) = “Morning” ∧RdayOfWeek
timeId (t) = “Monday” ∧

rPt,Pg
Ls

(x, y, pl) ∧ αstreet,P l
Ls

(s) = pl}.

3. “Give me the total number of cars passing completely

through cities with a population of more than 50,000 on

Wednesday morning.” (Type 4)

Here, we have C = {(Oid, t) |
(∃x)(∃y)(∃c)(∃pg)RtimeOfDay

timeId (t) = “Morning” ∧
RdayOfWeek

timeId (t) = “Wednesday” ∧ FM(Oid, t, x, y) ∧
rPt,Pg

Lc
(x, y, pg) ∧ αcity,Pg

Lc
(c) = pg,∧c.pop ≥

50, 000 ∧ ¬((∃x1)(∃y1)(∃pg1)(∃t1)(∃c1)c1.pop < 50, 000 ∧
FM (Oid, t1, x1, y1) ∧ rPt,Pg

Lc
(x1, y1, pg1) ∧ αcity,Pg

Lc
(c1) =

pg1)}.
A precise answer to this query requires knowing the tra-

jectory of the object. If the object leaves the city at some

instant, then it will not contribute to the result. Above,

552

we have made a simplification, considering only trajectory

samples.

4. “How many cars are there in the Berchem neighborhood

at 9:15 on Jan 7th, 2006?.” (Type 6)
Here, the integration region C can be defined by the

points denoting the objects’ positions (i.e., in an “static”
way): C = {(x, y) | (∃Oid)(∃pg)FM(Oid, t, x, y) ∧
F(x, y, pg)∧t = “2006-01-07 9:15”∧αneighbPg

Ln (“Berchem”) =
pg}.

An alternative version of this query would replace the

(x, y) coordinates in the result, by the object Id. Since an

object can be at most in one point in the plane at a given in-

stant, both solutions will return the same number of tuples.

5. “Total amount of time spent continuously (i.e., without

leaving the city) by cars in Antwerp on January 7th, 2006?.”

(Type 7)

Since a car may have been outside the city without being

sampled, we need interpolation in order to give a more

precise answer. The query would read: C = {(Oid, t) |
(∃pg)(∀t1)(∀x1)(∀y1)(∀t2)(∀x2)(∀y2)(∀x)(∀y)

Rday
timeId(t) = “2006-01-07” ∧ FM(Oid, t1, x1, y1) ∧

FM(Oid, x2, y2, t2) ∧ t1 < t2 ∧ rPt,Pg
Lc

(x, y, pg) ∧
αcity,Pg

Lc
(“Antwerp”) = pg ∧ x = (t2−t)x1+(t−t1)x2

t2−t1
∧ y =

(t2−t)y1+(t−t1)y2
t2−t1

}.
6. “Number of cars per hour within a radius of 100m from

schools, in the morning.” (Type 7)
If we do not perform any kind of interpola-

tion, and just consider the points (trajectory sam-
ple), the expression for region C reads (treating the
query as if it were of Type 4): C = {(Oid, t) |
(∃n)(∃x)(∃y)(∃x1)(∃y1)(∃sc)FM(Oid, t, x, y) ∧
RtimeOfDay

timeId (t) = “Morning” ∧ RtypeOfDay
timeId (t) =

“Weekday” ∧ rPt,Nd
Ls

(x, y, n) ∧ αschool,Nd
Ls

(sc) =

n ∧ (x − x1)
2 + (y − y1)

2 ≤ 100}.
Here, Ls stands for a layer containing schools. The sum

of the number of tuples returned, divided with the number

of intervals, gives the answer.

Suppose now that an object that was not sampled within

a radius of 100m from a school follows a trajectory that

passes through that region. This object will not count in the

result of the previous expression. Taking the trajectory into

account yields the following expression: C = {(Oid, t) |
(∃n)(∃t1)(∃x1)(∃y1)(∃t2)(∃x2)(∃y2)(∃x)(∃y)

RtimeOfDay
timeId (t) = “Morning”∧RtypeOfDay

timeId (t) = “Weekday”∧
FM(Oid, t1, x1, y1) ∧ FM(Oid, x2, y2, t2) ∧ t1 < t2 ∧
rPt,Nd

Ls
(x, y, n)∧αschool,Nd

Ls
(sc) = n∧ (x−x1)

2 +(y−y1)
2 ≤

1002 ∧ x = (t2−t)x1+(t−t1)x2
t2−t1

∧ y = (t2−t)y1+(t−t1)y2
t2−t1

}.

7. “Total number of persons waiting for the tram at Groen-
plaats, by minute and between 8:00 AM and 10:00 AM
on weekday mornings.” (Type 4) Here, we have C =

{(Oid, t) | (∃bs)(∃x)(∃y)(∃x1)(∃y1)(∃h)FM(Oid, x, y, t) ∧
RtimeOfDay

timeId (t) = “Morning”∧RtypeOfDay
timeId (t) = “Weekday”∧

Rhour
timeId(t) = h ∧ hrg ≤ 10 ∧ hrg ≥ 8 ∧

αstop,Nd
Lbus

(“Groenplats”) = bs∧rPt,Nd
Ls

(x1, y1, bs)∧ (x−x1)
2 +

(y − y1)
2 ≤ 16}.

We assume that a person is waiting for the tram if she is

less than four meters away from the tram stop.

5 Query Evaluation

In a previous paper [4], a spatial aggregate query of the

form Q =
∫ ∫

R2 δC(x, y) h(x, y) dx dy was defined as

being Summable if and only if the condition set C defines a

finite set of elements of some geometry and Q can be rewrit-

ten as (we will not give the details here)
∑

g∈C h′(g). It

follows immediately that the queries presented in the previ-

ous sections are a variation of summable queries where the

integration region is composed of a combination of moving

object identifiers, time instants and geometric object iden-

tifiers (unless the expression for C contains itself a non-

summable query). We also showed that many interesting

queries in GIS require computing operations, like intersec-

tions or unions, between geometric objects represented in

different layers, and proposed to precompute the overlay of

such layers.

We implemented the proposal denoted Piet, and pro-

posed a query language, Piet-QL. In short, a Piet-QL query

is composed of two parts: the first one contains the spatial

(geometric) query (see below), while the second one con-

tains the OLAP query, expressed in an MDX dialect. A

pipe acts as a separator of both parts.

In the outgoing implementation of the ideas presented in

this paper, we take advantage of the existing model and im-

plementation in order to allow efficient query evaluation of

moving objects aggregate queries over complex geometric

constraints. We will sketch the idea through an example. A

complete description of the process is beyond the scope of

this paper. Assume we have a layer with cities, a second

one with rivers and a third one with schools. Consider the

query “Total number of cars passing through cities crossed

by a river, containing at least one store”. The geometric part

of the query is expressed in Piet-QL as:

SELECT layer.usa_rivers,layer.usa_cities,
layer.usa_stores;
FROM PietSchema;
WHERE intersection(layer.usa_rivers,
layer.usa_cities,subplevel.Linestring)
AND(layer.usa_cities)
CONTAINS(layer.usa_cities,
layer.usa_stores, subplevel.Point);

Out Piet implementation returns the identifiers of the ge-

ometric objects (in this case, the cities), that satisfy the

553

query. A moving object aggregation query can be added

after the separator (i.e., in addition to the OLAP part we

will have a “Moving Objects part”). The input to this query

will be the object identifiers of the cities that satisfy the ge-

ometric query. Since we also have the geometric definition

of the cities that correspond to these identifiers, it is easy

to intersect these objects with the trajectories. This process

will check, for each object, and for each consecutive pair

of points in the moving objects fact table, if the intersection

between the segment defined by these two points and a city

in the answer to the geometric part of the Piet-QL query is

not empty. If so, it counts for the aggregation. In the worst

case, the whole trajectory must be checked.

6 Conclusion

We have proposed a formal model that integrates Moving

Objects, GIS and OLAP in a unified framework. The model

naturally extends GISOLAP, the model introduced in [4].

We characterized the aggregation queries that may may ap-

pear in this scenario, showed how they can be expressed in

our framework and sketched a query evaluation procedure

that takes advantage of the overlay precomputation strategy

presented in the paper mentioned above. Our immediate fu-

ture work will be devoted to implement this proposal over

the existing GISOLAP implementation.

Acknowledgments. This research has been partially

funded by the European Union under the FP6-IST-FET pro-

gramme, Project n. FP6-14915, GeoPKDD: Geographic

Privacy-Aware Knowledege Discovery and Delivery, by

the Research Foundation Flanders (FWO-Vlaanderen), Re-

search Project G.0344.05 and by Project PICT 21350–

Foncyt–Agencia–Argentina.

References

[1] M. Consens and A. Mendelzon. Low complexity aggrega-

tion in Graphlog and Datalog. In Proceedings of the 3rd In-
ternational Conference on Database Theory, Lecture Notes
in Computer Science n.470, pages 379–394, 1990.

[2] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A.

Lorentzos, M. Schneider, and M. Vazirgiannis. A foundation

for representing and quering moving objects. ACM Trans.
Database Syst., 25(1):1–42, 2000.

[3] R. H. Güting and M. Schneider. Moving Objects Databases.

Morgan Kaufman, 2005.

[4] S. Haesevoets, B. Kuijpers, and A. Vaisman. Spa-

tial aggregation: Data model and implementation. In

Submitted for review (http://alpha.uhasselt.be/
∼lucp1265/pdfs/solap.pdf), 2006.

[5] J. Han, N. Stefanovic, and K. Koperski. Selective material-

ization: An efficient method for spatial data cube construc-

tion. In Proceedings of PAKDD’98, pages 144–158, 1998.

[6] K. Hornsby and M. J. Egenhofer. Modeling moving objects

over multiple granularities. Ann. Math. Artif. Intell., 36(1-

2):177–194, 2002.

[7] C. Hurtado, A. Mendelzon, and A. Vaisman. Maintaining

data cubes under dimension updates. In Proceedings of
IEEE/ICDE’99, pages 346–355, 1999.

[8] R. Kimball. The Data Warehouse Toolkit. J.Wiley and Sons,

Inc, 1996.

[9] X. Meng and Z. Ding. Dsttmod: A future trajectory based

moving objects database. In DEXA, pages 444–453, 2003.

[10] N. Meratnia. Aggregation and comparison of trajectories. In

Proceedings of GIS’02, Virginia, USA, 2002.

[11] D. Papadias, Y. Tao, J. Zhang, N. Mamoulis, Q. Shen, and

J. Sun. Indexing and retrieval of historical aggregate in-

formation about moving objects. IEEE Data Eng. Bull.,
25(2):10–17, 2002.

[12] T. Pedersen and N. Tryfona. Pre-aggregation in spatial

data warehouses. Proceedings of SSTD’01, pages 460–480,

2001.

[13] F. Rao, L. Zang, X. Yu, Y. Li, and Y. Chen. Spatial hierar-

chy and OLAP-favored search in spatial data warehouse. In

Proceedings of DOLAP’03, pages 48–55, Louisiana, USA,

2003.

[14] P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases.

Morgan Kaufmann, 2002.

[15] S. Rivest, Y. Bédard, and P. Marchand. Modeling multidi-

mensional spatio-temporal data warehouses in a context of

evolving specifications. Geomatica, 55 (4), 2001.

[16] E. Tøssebro and R. H. Güting. Creating representations for

continuously moving regions from observations. In SSTD,

pages 321–344, 2001.

[17] I. Vega López, R. Snodgrass, and B. Moon. Spatiotemporal

aggregate computation: A survey. IEEE Transactions on
Knowledge and Data Engineering 17(2), 2005.

[18] O. Wolfson, P. Sistla, B. Xu, and S. Chamberlain. Domino:

Databases fOr MovINg Objects tracking. In Proceedings of
SIGMOD’99, pages 547 – 549, 1999.

[19] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving

objects databases: Issues and solutions. In SSDBM, pages

111–122, 1998.

[20] M. F. Worboys. GIS: A Computing Perspective. Tay-

lor&Francis, 1995.

[21] L. Zang, , Y. Li, F. Rao, , X. Yu, and Y. Chen. An approach to

enabling spatial OLAP by aggregating on spatial hierarchy.

In Proceedings of DaWak’03, pages 35–44, Prague, Czech

Republic, 2003.

554

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

