
Piet: a GIS-OLAP Implementation

Ariel Escribano
Universidad de Buenos Aires

aescribano@dc.uba.ar

Leticia I. Gomez
Instituto Tecnólogico de de Buenos Aires

lgómez@itba.edu.ar

Bart Kuijpers
Limburgs Universitair Centrum

bart.kuijpers@luc.ac.be

Alejandro A. Vaisman
Universidad de Buenos Aires

av2n@dc.uba.ar

ABSTRACT
Data aggregation in Geographic Information Systems (GIS)
is a desirable feature, although only marginally present in
commercial systems nowadays, mostly through ad-hoc solu-
tions. Integration between GIS and OLAP systems is still
needed in commercial systems. With this in mind, we have
developed Piet, a system that that makes use of a novel
query processing technique: first, a process called subpoly-
gonization decomposes each thematic layer into open con-
vex polygons; then, another process computes and stores in
a database the overlay of those layers for later use by the
query processor. We describe in detail the implementation
of Piet, and provide evidence, through experimentation over
real-world maps, that overlay precomputation for spatial ag-
gregate queries can be competitive with GIS systems that
employ indexing schemes based on R-trees. Given that the
data model and implementation do not prevent the use of
traditional indexing techniques as R-tree and aR-trees, we
our proposal against these techniques in our experiments.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial Databases and
GIS; H.4.2 [Information Systems Applications]: Deci-
sion Support

General Terms
Experimentation, Performance

Keywords
GIS, OLAP, View Materialization

1. INTRODUCTION
Geographic Information Systems (GIS) have been exten-

sively used in various application domains, ranging from eco-
nomical, ecological and demographic analysis, to city and
route planning [16]. In GIS, geometric objects within a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP ’2007 Lisboa, Portugal
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

map are organized in thematic layers (e.g., provinces in one
layer, rivers in another one). These spatial objects may
also be annotated with some numerical o categorical com-
plementary information. Typical queries in GIS ask for geo-
metric objects that satisfy some condition, or, even involve
the aggregation of geographic measures (i.e. area, length).
To evaluate queries efficiently, index structures for geomet-
ric objects are used, like some variation of R-tree [1], or
novel techniques like aR-trees [12]. Although is usual in
GIS practice to store non-spatial data in the thematic lay-
ers, when aggregation becomes important, it would be ad-
visable to organize the non-spatial GIS data in a data ware-
house. OLAP (On Line Analytical Processing) [7] comprises
a set of tools and algorithms for querying multidimensional
databases containing large amounts of data, usually called
data warehouses. In OLAP, data is usually perceived as a
data cube. Each cell in this data cube contains a measure or
set of measures representing facts and the contextual infor-
mation which conform dimensions, organized, typically in
hierarchies. OLAP tools allow us to aggregate the measures
along the dimensions. Efficient evaluation if OLAP queries
requires, more often than not, the use of precalculation tech-
niques [4].

Our proposal is aimed at integrating these two different
worlds in a single framework [2, 9], allowing, for instance,
to evaluate queries like “total income in provinces crossed
by at least one river”, where income information is stored
in the data warehouse and provinces and rivers information
is stored in a GIS. Moreover, the results will be navigated
in the usual OLAP way, through operations like roll-up and
drill-down. In this paper, after providing a quick overview
of the data model(Section 2), we describe the implementa-
tion of a system, denoted Piet (after the Dutch painter Piet
Mondrian), that accomplishes the goals mentioned above
(Section 3). This system integrates open source GIS and
OLAP technologies, and overlay precomputation. For the
latter, we introduce a novel technique denoted common sub-
polygonization which decomposes each thematic layer into
open convex polygons. We also discuss the key topics of
scalability and error management (Section 4), and report
experimental results over real-world maps (Section 5 show-
ing that overlay precomputation can compete with other
query optimization techniques.

Running Example. Throughout the paper we will be using
a real-world map of Belgium, consisting of five layers, con-
taining geographic information about rivers, regions, provinces,
districts and cities. Additionally, the maps contain demo-

1

Figure 1: Running example: a map of Belgium

graphic and economic information. The rivers are repre-
sented as polylines, the cities as points, and the other layers
as polygons. Figure 1 shows the map including a layer con-
taining the definition of two regions of interest for a query
(see Section 5). The maps were obtained from from the spa-
tial library of the GIS Center 1. There is also a data ware-
house with information about stores and sales for different
regions of Belgium (this information has been generated for
the experiments, and is not actual information).

1.1 Related Work
In general, the information in a GIS application is di-

vided over several thematic layers. The information in each
layer consists of purely spatial data on the one hand that
is combined with classical alpha-numeric attribute data on
the other hand (usually stored in a relational database).
For spatial data representation we will use (like most cur-
rent GIS do) the vector model [10]. Here, infinite sets of
points in space are represented as finite geometric struc-
tures, or geometries. More concretely, vector data within
a layer consists of a finite number of tuples of the form
(geometry, attributes), where a geometry can be a point,
a polyline or a polygon. There are several possible data
structures to actually store these geometries [19].

Although some authors have pointed out the benefits of
combining GIS and OLAP, not much work has been done
in this field. Vega López et al [18] presented a compre-
hensive survey on spatiotemporal aggregation that includes
a section on spatial aggregation. Rivest et al. [17] intro-
duced the concept of SOLAP (standing for Spatial OLAP),
and described the desirable features and operators a SO-
LAP system should have, without giving a formal model for
this. Han et al. [3] used OLAP techniques for materializ-
ing selected spatial objects, and proposed a so-called Spatial
Data Cube. This model only supports aggregation of such
spatial objects. Pedersen and Tryfona [14] proposed pre-
aggregation of spatial facts. First, they pre-process these
facts, computing their disjoint parts in order to be able to
aggregate them later, given that pre-aggregation works if the
spatial properties of the objects are distributive over some
aggregate function. However, this proposal ignores the ge-
ometry, and only addresses polygons. Thus, queries like
“Give me the total population of cities crossed by a river”
are not supported. Also, no experimental results are pro-

1
http://giscenter-sl.isu.edu

vided . Extending this model, Jensen et al. [6] proposed a
multidimensional data model for mobile services. With a dif-
ferent approach, Rao et al [15] combine OLAP and GIS for
querying so-called spatial data warehouses, using R-Trees
for accessing data in fact tables. The data warehouse is
then evaluated in the usual OLAP way. The only geome-
tries studied in this proposal are points, a quite unrealistic
assumption in a real GIS environment. Other proposals in
the area of indexing spatial and spatio-temporal data ware-
houses [11, 12] combine indexing with pre-aggregation, re-
sulting in a structure denoted Aggregation R-tree (aR-tree),
which annotates each MBR (Minimal Bounding Rectangle)
with the value of the aggregate function for all the objects
that are enclosed by it. We implemented an aR-tree for
experimentation (see Section 5).

In summary, the discussion above shows that the prob-
lem of integrating spatial and warehousing information in a
single framework is still in its infancy.

2. DATA MODEL OVERVIEW
The implementation we present in this work is based in

the data model introduced in [2, 9]. There, the authors pro-
posed model where GIS, OLAP, and moving objects data,
are integrated in a single framework. The model defines a
GIS dimension composed of a set of graphs, each one de-
scribing a set of geometries in a thematic layer. A GIS
dimension is considered, as usual, as composed of a schema
and instances. Figure 2 the schema of a GIS dimension: the
bottom level of each hierarchy, denoted the Algebraic part
of the dimension, contains the infinite points in a layer, and
could be described by means of linear algebraic equalities
and inequalities [13]. Above this part there is the Geometric
part, that stores the identifiers of the geometric elements of
GIS and is used to solve the geometric part of a query (e.g.,
find the polylines in a river representation). Each point in
the Algebraic part may correspond to one or more elements
in the Geometric part (e.g., if more than one polylines inter-
sect with each other). Thus, at the GIS dimension instance
level we will have rollup relations (denoted rgeom1→geom2

L .

For instance, rPoint→Pg
Lcity

(x, y, pg1) says that, in a layer L, a

point (x, y) corresponds to a polygon identified by pg1 in
the Geometric part We will see that the mechanism used
for precomputation of the overlayed layers in the map, will
take as back to the concept of rollup function, where a point
(x,y) will correspond to exactly one geometry identifier.

Finally, there is the OLAP part of the dimension for stor-
ing non-spatial data. This part contains the conventional
OLAP structures, as defined in [5]. The levels in the geomet-
ric part are associated to the OLAP part via a function, de-
noted αdimLevel→geom

L,D . For instance, αriverId→gr
Lr,Rivers associates

information about a river in the OLAP part (riverId) in
a dimension Rivers, to the identifier of a polyline (gr) in a
layer containing rivers (Lr) in the Geometric part.

Example 1. Figure 2 shows a GIS dimension schema,
where we defined three layers, for rivers, cities, and provinces,
respectively. The schema is composed of three graphs; the
graph for rivers, for instance, contains edges saying that a
point (x, y) in the algebraic part relates to a line identifier
in the geometric part, and that in the same portion of the
dimension, this line aggregates on a polyline identifier. In
the OLAP part we have two dimensions, representing dis-
tricts and rivers, associated to the corresponding graphs, as

2

point point point

line

node

polyline

All All All

Geometric part

Algebraic part

Lr (rivers)

polygon

All

OLAP part

Lc (cities) Lp (provinces)

districts

provinces

All

river

OLAP part

Figure 2: An example of a GIS dimension Schema

all

x1,y1

x2,y2

x3,y3

x4,y4

l1
l2

pl1

Layer Lr

α
Lr

point,line

line,polyline

r

r
Lr

Lr

Schelde

(Schelde)
river,polilyne

Figure 3: A GIS dimension instance for Figure 2.

the figure shows. For example, a river identifier at the bot-
tom layer of the dimension representing rivers in the OLAP
part, is mapped to the polyline level in the geometric part in
the graph representing the structure of the rivers layer.

Figure 3 shows a portion of a GIS dimension instance
for the rivers layer Lr in the dimension schema of Figure
2. We can see that an instance of a GIS dimension in the
OLAP part is associated (via an α function) to the poly-
line pl1, which corresponds to the Schelde river, in Antwerp.
For clarity, we only show four different points at the point
level {(x1, y1), . . . , (x4, y4)}. There is a relation rpoint,line

Lr

containing the association of points to the lines in the line
level. Analogously, there is also a relation rline,polyline

Lr
, be-

tween the line and polyline levels, in the same layer. ��

Elements in the geometric part can be associated with
facts, each fact being quantified by one or more measures,
not necessarily a numeric value. Besides the GIS fact tables,
there may also be classical fact tables in the OLAP part,
defined in terms of the dimension schemas. For instance,
instead of storing the population associated to a polygon
identifier, as in Example 2, the same information may reside
in a data warehouse, with schema (state, Y ear, Population).

Geometric Aggregation. Based on the data model de-
scribed above, the notion of geometric aggregation was de-
fined. However, general geometric aggregation queries are
hard to evaluate, because they require the computation of a
double integral representing the area where some condition
is satisfied. Thus, Piet addresses a class of queries denoted
Summable, of the form:

∑
g∈S h(g), where h is a function

(represented, for instance, by a fact table), and the sum is
performed over all the identifiers of the objects that satisfies
a condition. For example, the query “total population of
the cities crossed by the river “Schelde” reads:

Q ≡
∑

gid∈C

ftpop(gid, Lc).

C = {gid ∈ Gid | (∃x)(∃y)(∃pl1)(∃c ∈ dom(Ci))

(α
Ri→Pl
Lr,Rivers(‘schelde’) = (pl1, Lr) ∧ r

Pt→Pl
Lr

(x, y, Lr, pl1) ∧
α

Ci,Pg
Lc,Districts(c) = (gid, Lc) ∧ r

Pt→Pg
Lc

(x, y, Lc, gid))}.

The meaning of the query is the following: αRi→Pl
Lr,Rivers(‘schelde’)

maps the identifier of the Schelde river to a polyline in layer
Lr (representing rivers). The relation rPt→Pl

Lr
(x, y, Lr, pl1)

contains the mapping between the points and the polylines
representing the rivers that satisfy the condition. The other
functions are analogous. Thus, the identifiers of the geome-
tries that satisfy both conditions can be retrieved, and the
function ftpop is applied to them.

Overlay Precomputation. Many interesting queries in GIS
require computing intersections, unions, etc., of objects that
are in different layers. Hereto, their overlay has to be com-
puted. For the summable queries defined above, an on-the-
fly computation of the sets “C” containing all those cities
would be costly, mainly because most of the time we will
need to go down to the Algebraic part of the system, and
compute the intersection between the geometries (e.g., states
and rivers, cities and airports). Therefore, Piet implements
a different strategy, consisting in three steps: (a) partition-
ing each layer in subgeoemetries, according to the carrier
lines defined by these geometries (see below); this allows to
detect which geographic regions are common to the layers
involved; (b) precomputing the overlay operation; (c) evalu-
ating the queries using the layer containing all the precom-
puted subgeometries . We will show that this strategy can
be an efficient alternative for evaluating queries of this kind.
In Section 5 we compare overlay pre-computation against
other well-known indexing techniques like R-Trees [1], and
aR-Trees [11, 12].

To conclude this section, we will give some definitions. We
will work within a bounding box B × B in R

2, where B is a
closed interval of R, as it is usual in GIS practice.

Definition 1 (The carrier set of a layer). The car-
rier set Cpl of a polyline pl = (p0, p1, . . . , p(l−1), pl) consists
of all lines that share infinitely many points with the polyline,
together with the two lines through p0 and pl, and perpen-
dicular to the segments (p0, p1) and (p(l−1), pl), respectively.
Analogously, the carrier set Cpg of a polygon pg is the set of
all lines that share infinitely many points with the boundary
of the polygon. Finally, the carrier set Cp of a point p con-
sists of the horizontal and the vertical lines intersecting in
the point. The carrier set CL of a layer L is the union of the
carrier sets of the points, polylines and polygons appearing
in the layer. ��

Figure 4 illustrates the carrier sets of a point, a polyline
and a polygon. The carrier set of a layer induces a partition
of the plane into open convex polygons, open line segments
and points. Thus, the roullup relations r will turn into func-
tions (given that no two points can map to the same open
convex polygon). Given CL, the carrier set of a layer L,
and a bounding box, the set of open convex polygons, open
line segments and points, induced by CL, that are strictly

3

Figure 4: The carrier sets of a point, a polyline and
a polygon are the dotted lines.

inside the bounding box, is called the convex polygoniza-
tion of L. As we are interested in queries involving multiple
overlapped layers, we need to be capable of compute the
common sub-polygonization operation, that further subdi-
vides the bounding box according to the carrier sets of the
layers involved. Given two layers L1 and L2, and their car-
rier sets CL1 and CL2 , the common sub-polygonization of L1

according to L2, denoted CSP(L1, L2) is a refinement of the
convex polygonization of L1, computed by partitioning each
open convex polygon and each open line segment in it along
the carriers of CL2 . This can, of course, be generalized for
more than two layers.

3. PIET IMPLEMENTATION

System Architecture. The architecture is divided into three
modules. The first module (called raw data setup) gathers
information, and stores the acquired data in a data ware-
house and a map (geometric data, with (possibly) some rela-
tionship with the OLAP part). The whole process of gather-
ing and storing information is preformed using a data loader
component. The second module (denoted precalculated data
generator) allows the storage and execution of precomputed
data. Its main component is a so-called “data processor”
that processes raw data and generates (off-line) the following
information: (a) Precomputed data: containing the subge-
ometries generated in the subpoligonization step, fact values
associated to those subgeometries (conforming a GIS dimen-
sion), and overlay precalculated information for the original
geometric components of the map; (b)Metadata: describing
the data structures of the data warehouse and the maps, and
their association; (c) GIS-OLAP relations: containing the
information needed to associate geometric components and
data warehouse information (v.g., a point in the map can be
related with an Store concept in the data warehouse). The
third module (query processor) allows running four kinds
of queries (see Section 5: geometric, geometric aggregation,
OLAP and GIS-OLAP queries, based on the raw and the
precalculated data generated in the previous steps.

Implementation Details. Our framework was developed
using PostgreSQL 8.2.3 database2 with Postgis 1.2 spatial
extensions3. The source code was developed with Java 1.5.
The geometric functions used belong to the JTS library. The
WEB Plug-in run under Tomcat-Apache 5.5 WebServer.
The stand-alone plug-in runs under Jump 1.24. For OLAP

2
http://www.postgresql.org

3
http://postgis.refractions.net

4
http://www.jump-project.org

Figure 5: The Piet Components.

queries we used Mondrian5 and the MDX query language,
an industry OLAP standard6. This technological architec-
ture is shown in Figure 5. We will explain some of the
components in this figure as we progress in the paper.

Our Piet implementation consists of two main modules:
Piet-Jump, which provides a Graphical User Interface (GUI)
for displaying maps, and Piet-Web, which allows running
queries over the framework. Figure 5 shows a component
called PIET-Schema, which consists in a set of metadata
definitions, used by different modules of the system. The
definitions include: the storage location of the geometric
components and their associated measures, the subgeome-
tries corresponding to the subpolygonization of all the lay-
ers in a map, and the relationships between the geometric
components and the OLAP information used to answer inte-
grated GIS and OLAP queries. PIET uses this information
to answer the GISOLAP-QL queries described below. Meta-
data are stored in XML documents containing three kinds
of tags: Subpoligonization, Layer, and Measure. An ex-
ample of a Subpoligonization. We omit the description of
these documents due to space limitations.

Subpolygonization. As we explained above, the common
subpoligonization of a layer requires the computation of the
overlay of the thematic layers, using the carrier lines of Def-
inition 1. These carrier lines induce points, linestrings, and
polygons, common to the layers involved. After produc-
ing the carrier lines, the procedure continues by intersecting
pairs of carrier lines, and obtains the set of sub-nodes associ-
ated to each of these lines, using each pair of sub-nodes on a
carrier line to create a so-called sub-line. Finally, a method
called Polygonizer is used to generate the convex subpoly-
gons using these sub-lines. The procedure used for creating
sub-lines prevents either duplicates or lines too similar to
each other, as well as lines not belonging to a polygon. As
a remark, this subpolygonization turns the rollup relations
into rollup functions, given that the process produces open
convex polygons.

Overlay Precomputation. The original geometries in dif-
ferent layers overlap if they have in common one of the fol-

5
http://mondrian.sourceforge.net

6
http://msdn.microsoft.com

4

lowing: points, sub-lines of the carrierset (generated by the
intersection of the carrier lines), or subpolygons (the open
convex polygons generated by the sub-lines). The following
algorithm sketches the overlay computation (we used self-
descriptive function names for the sake of brevity), and its
storage in the Preoverlay table, for its during query pro-
cessing:
listLayers = determineListOfLayersInvolvedInTheQuery()

geoComponents = determineListOfGeometries(listLayers)

carrierlines = generateCarrierLines(geoComponents)

The next step generates points, subsegments and polygons in which the original

geoComponents are divided due the overlay. While the subgeometries are being

produced, the associated numeric fact values are propagated proportionally to

the area or length of the original one. This information is stored in a table called

Subpoligonization.

subgeometries = generateSubgeometriesAndPropagateFacts(carrierlines)

The next step computes the original geometries that have subgeometries in com-

mon, and stores their identifiers in a table called Preoverlay. This table also stores

the identifiers of the common subgeometries.

calculatePreoverlay(subgeometries)

Note that pure geometric queries (like “total of regions
crossed by rivers”), and geometric queries that do not re-
quire fact aggregation (e.g.,“total number of regions crossed
by rivers”) can be answered using just the Subpoligonization
table (this fact is reflected in our experimental results). More
complex kinds of queries also require the information stored
in the Preoverlay. For example, “total number of employ-
ees working in agricultural activities in Belgium, in regions
crossed by rivers”. In this case, the Preoverlay table is used
first to find the common subgeometries for the layers con-
taining regions and rivers; after this, table Subpoligonization
is used to find the values of the proportional facts previously
computed. Finally, for aggregation queries in the OLAP en-
vironment with geometric constraints, the Preoverlay table
is used to find the geometry identifiers of the original lay-
ers; this value is later used to access the layer table and the
corresponding OLAP dimension values.

Query Language. We implemented a query language that
combines, in a single expression, queries about geometric
and OLAP content, without losing the ability to express
pure GIS or OLAP queries. Queries can be submitted in
two ways: using the Piet-Jump interface, or through a query
language, denoted GISOLAP-QL, that we briefly describe
below. A GISOLAP-QL query is of the form: GIS-Query |
OLAP-Query. The pipe (“|”) separates two query sections:
a GIS query and an OLAP query. The OLAP section of the
query applies to the OLAP part of the data model (namely,
the data warehouse) and is written in MDX. The GIS part
has the typical SELECT FROM WHERE SQL form, except for a
separator (“;”) at the end of each clause:
SELECT list of layers and/or measures;

FROM PIET-Schema;

WHERE geometric operations;

This query returns the geometric components (or their as-
sociated measures) that belong to the layers in the SELECT

clause, and verify the conditions in the WHERE clause. The
SELECT clause contains a list of layers and/or measures,
which must be defined in the corresponding PIET-Schema
of the FROM clause. The WHERE clause in the GIS-Query part,
consists in conjunctions and/or disjunctions of geometric op-
erations applied over a the elements of the layers involved.

The expression also includes the kind of subgeometry used
to perform the operation. The syntax for an operation is
of the form operation name(list of layer members, subge-
ometry). The accepted values for subgeometry are “Point”,
“LineString” and “Polygon”7.

Example 2. Consider the query “Unit Sales, Store Cost
and Store Sales for products and promotion media offered
by stores only in provinces crossed by rivers”.
SELECT layer.bel prov;

FROM PietSchema;

WHERE

intersection(layer.bel river,layer.bel prov,subplevel.linestring); |
select [Measures].[Unit Sales], [Measures].[Store Cost],

[Measures].[Store Sales]

ON columns, ([Promotion Media].[All Media], [Product].[All Prod-

ucts])

ON rows from [Sales] where [Time].[2005]

The GIS-Query returns the provinces of the GIS dimension
intersected by rivers. The OLAP section of the query uses
the measures in the data warehouse in the OLAP part (Unit
Sales, Store Cost, Store Sales), in order to return the re-
quested information. The dimensions are Promotion Media
and Product. The hierarchy for the Store dimension de-
fined in the Piet-Schema is: store → city → province →
Country → All. Let us suppose, for simplicity, that the GIS
part of the query, returns three identifiers from 82 through
84, corresponding to the provinces of Antwerpen, Liege and
Luxembourg. These identifiers correspond to the ids in the
OLAP part of the model, stored in a PIET mapping table.
Then an MDX sub-expression is produced for each region,
traversing the different dimension levels (starting from All
down to province). ��

4. SCALABILITY AND ERROR HANDLING
The reader may wonder, at this point, why do we use the

carrier lines to divide the map in zones using the bound-
aries of the geometries involved. The reason is that using
the subpolygonization instead of dividing the map into arbi-
trary rectangles in order to approximate the original shape
of a geometry (an idea similar to Riemann Integral Ap-
proximation), increases the number of subgeometries (i.e.,
rectangles) required to minimize errors. In this section we
describe how we addressed in our implementation, two key
issues: scalability and error management.

Scalability. Usually, the layers of real-world maps contain
a large number of geometric objects, and their geometries
contain irregularities like holes, bays or gulfs. In this sce-
nario, the amount of lines generated may be huge. As long
as the complexity of objects increases, the number of carrier
lines and the interaction between them (i.e., the intersec-
tion points), will increase accordingly. introducing several
problems mainly because the carrier lines will usually go
beyond the geographic area of influence of the object that
generated them. Thus, the points that they generate pro-
duce irrelevant partitions that increase the computational
cost of the algorithms presented in Section 3. For example,
a line generated in Brussels is unlikely to have any relevant
impact on Liege. As a consequence, we improved the naive

7
For instance, when computing store branches close to rivers, we

would use linestring and point

5

Figure 6: Running example: carrierlines in each par-
tition generated by regions and rivers layers.

approach, and implemented a technique, denoted “grid par-
tition”. This technique divides the map in N×M rectangles
(where N and M are two integer parameters); the original
geometries in the different layers are also allocated to these
rectangles. Each rectangle is treated individually (i.e., the
algorithm described above will be applied to each partition),
and the carrier lines generated by the objects in each rect-
angle do not go beyond such rectangle. This technique re-
duces in several orders of magnitude the number of carrier
lines generated. Figure 6 shows, for our running example,
the result of dividing the original map (and the geometries
in each layer) in 20x10 rectangles. We can see the differ-
ent density of carrier lines in each rectangle. Also note that
regions within the bounding box, but not in the country,
contain no lines. With the naive approach, these regions
would have been affected, producing carrier lines in zones
that are outside the area of interest. Less dense rectangles
can be computed very efficiently. Moreover, if available, the
algorithm could be run in a parallelized environment. Fi-
nally, in the particular case where a few partitions generate
a number of carrier lines significantly higher than the rest,
they could be further partitioned, like in the well-known di-
vide and conquer technique. Thus, in the case that some
zone of the map would change over time (v.g., the surge of
new countries or provinces), we can take advantage of the
rectangle sub-division, and only recompute the subpoligo-
nization of the affected rectangles.

Error Handling. During data precalculation, finite numeric
representation problems affect the calculation of intersection
points between carrier lines. Two cases arise: (a) intersec-
tion of a pair of carrier lines; (b) intersection of more than
two carrier lines. Let us denote these carrierlines Li, i =
1, ..n. In the first case, for carrier lines L1 and L2, it could
be the case that P1 (generated by intersecting L1 and L2,) is
different (with a very small difference) from P2 (generated
by intersecting L2 and L1). This problem arises because of
the lack of robustness of the intersection algorithm provided
by JTS (see Figure 5). To solve this problem we extended
the JTS library, and created a carrier line representation,
which stores the carrier line vector and a list of intersection
points (cuts) with other carrier lines generated using the
current map. When calculating the intersection between L1

and L2, a point P1 is generated and stored both in the L1

and L2 cut lists. Therefore, it is not necessary to calculate
the intersection of L2 with L1, as this intersection will be
already in the list of L1, saving processing time and solving
the robustness problem. In the second case, it may occur
that carrier lines L1, L2 and L3 intersect in points P1, P2

and P3, very close to each other (but not exactly the same
points, because of finite representation problems or inaccu-
racies in the map definition). If we use these in the polygo-
nization algorithm using the functions provided by JTS, the
algorithm will fail to create subpolygons related with those
points, due to robustness problems. To solve this problem
our carrier line representation checks, before adding a new
cut in the cut list, if there is already a similar (very near)
cut as the one it is trying to add to the list. If that is the
case, the existing point is also added to the other carrier line
that generates the cut. To verify the similarity between a
pair of points we use an error margin, as shown below.
boolean isSimilarPoint(Point p1, Point p2) {
return result = ((-1.0) * ERROR<p1.getX() - p2.getX() && p1.getX() -

p2.getX()<ERROR

&& (-1.0) * ERROR<p1.getY() - p2.getY() && p1.getY() - p2.getY()<ERROR);

}
The “ERROR” variable represents the error margin used to

consider a pair of points similar. A standard value for this
variable should be in the order of 10−12.

Finally, to accelerate the search of similar points in the
cuts list and the subsequent step in the subpolygonization
process (sub-lines generation), the points are stored ordered
according to their distance to the coordinate origin. With
this idea, the search of similar cuts finishes as soon as the
distance of the searched point in the cuts list is exceeded.
Additionally, keeping the points ordered facilitates the gen-
eration of sub-lines. In Section 5 we will give additional
remarks to the error management topic.

5. EXPERIMENTAL EVALUATION
In this section we present the results of our experimental

evaluation of Piet over different sets of four kinds of queries.
The main goal of these experiments is to determine under
which conditions one strategy behaves better that the other
ones. This can be a first step toward a query optimizer that
can choose the better strategy for any given GIS query. We
ran our tests on a dedicated IBM 3400x server equipped
with a dual-core Intel-Xeon processor, at a clock speed of
1.66 GHz. The total free RAM memory was 4.0 Gb, and
there was a 250Gb disk drive. We used the running exam-
ple described in Section 1, i.e., five layers of a Belgium map
containing information of rivers, cities, districts, provinces
and regions. We defined a grid that partitions the bounding
box in 20 x 10 rectangles for computing the subpolygoniza-
tion. Five kinds of experiments were performed, measuring
average execution time: (a) polygonization; (b) geometric
queries without aggregation (GIS queries); (c) geometric ag-
gregation queries; (d) geometric aggregation queries includ-
ing a query region; (e) full GISOLAP-QL queries.

Subpolygonization. Table I shows the execution times for
the subpolygonization process for the 200 rectangles, from
the generation of carrier lines to the generation of the pre-
computed overlayed layers. Table II reports the maximum,
minimum, and average number of subgeometries in the grid
squares (for the overlay of the five layers). Finally, we com-
pared the sizes of the database before and after computing

6

Generation of CarrierLines 26 minutes 46.4420 seconds
Generation of Points 36 minutes 7.41700 seconds
Generation of Segment Lines 25 minutes 41.8650 seconds
Generation of Polygons 2 hours 59 minutes 15.8900

seconds
Polygon Associations 7 minutes 52.3340 seconds
Line Associations 18 minutes 39.7870 seconds
Point Associations 33 minutes 8.94200 seconds
Generation of Preoverlays 2.03600 seconds

Table 1: Execution times for the subpolygonization.

Subgeometry Max Min Average
of Carrier Lines per rectangle 99 4 28

of Points per rectangle
(carrier lines intersection within a rectangle) 2617 4 361

of Segment Lines per rectangle
(segment of carrier lines within a rectangle) 5136 4 694

of Polygons per rectangle 2518 1 335

Table 2: Number of subgeometries in the grid.

the subpolygonization: the initial size of the database is 166
Mb. After the precomputation of the overlay of the four
layers, the database occupies 621 Mega Bytes.

Pure Geometric Queries. For tests of type (b), we se-
lected four geometric queries that compute the intersection
between different combinations of layers, without aggrega-
tion. The queries were evaluated over the entire map (i.e.,
no query region was specified). The queries were: (a) Q1:
Districts crossed by at least one river.; (b) Q2: Districts
and the cities within them; (c) Q3: Districts and the cities
within them only for districts crossed by at least one river ;
(d) Q4: Districts crossed by al least five rivers. We first
ran the queries generated by Piet against the PostgreSQL
database. We then ran equivalent queries with PostGIS,
which uses an R-tree implemented using GiST [8] - General-
ized index search tree). All the layers are indexed. Finally,
we ran the postGIS queries without indexing for the postGIS
queries. PostGIS queries have been optimized analyzing the
generated query plans. All Piet tables have been indexed
over attributes that participate in a join or in a selection.
In all cases, queries were executed without the overhead of
the graphic interface. All the queries were ran 10 times,
and we report the average execution time. We do not show
the actual query expressions for the sake of space. Figure 7
shows the execution times for the set of geometric queries.
We can see that Piet clearly outperforms postGIS with or
without R-tree indexing. The differences range from ap-
proximately ten times (for Q4) to ninty times (for Q2), in
favor of Piet. The sizes of the query results are 40, 583, 562,
and 5 tuples, for Q1 through Q4, respectively. We can see
that query Q1 only needs to find districts that have sub-
geometries in common (linestrings) with rivers; thus, only
the pre-computed table gis pre linestring 26, which contains
subgeometries shared by this two layers needs to be queried.
A similar situation occurs in the case of Q2. Analogously, Q3
only needs to know about districts that have subgeometries
in common (points) with cities and which contains subge-
ometries in common (linestrings) with rivers. Therefore, it
only queries the pre-computed tables gis pre point 19 and
gis pre linestring 26. Q4 behaves in a similar way.

Figure 7: Execution time for geometric queries.

Figure 8: Execution time for geometric aggregation.

Geometric Aggregation Queries. For tests of type (c), we
selected four geometric aggregation queries that compute ag-
gregations over the result of some geometric condition which
involves the intersection between different combinations of
layers. These queries are: (a) Q5: List each region with the
total number of rivers that crossed it ; (b) Q6: List each re-
gion with the total number of rivers that crossed it, only for
regions that contains at least 20 cities; (c) Q7: List each dis-
trict with the total number of rivers that crossed it and the
total number of cities that contains; (d) Q8: For each region
show the total length of the part of rivers which intersects it,
only for regions with at least an area under cereal cultivation
equal or higher than 1000. Note that query Q8 does not only
require the pre-overlay table which binds together the lay-
ers involved, but also the subpologonization table. Figure 8
shows the results. We can see that Piet clearly outperforms
postGIS with or without R-tree indexing. The differences
range from approximately five times (for Q8) to ninty times
(for Q6), in favor of Piet. The sizes of the query results are
3, 2, 40, and 2 tuples, for Q5 through Q8, respectively.

Geometric Aggregation Queries including a query re-
gion. For the experiment (d), we ran the following three
queries, and added two different query regions (shown in
Figure 1). The results are depicted in Figures 9 and 10. We
denote query regions #1 and #2 the large and small regions
in Figure 1, respectively. The queries are: (a) Q9: List each
region with the total number of rivers that crossed it, con-
sidering only the part of the river that lies within the query
region; (b) Q10: For each district show the total number
of cities, for cities within the query region; Q11: For each
region show the total length of the part of each river which
intersects it, only for regions containing at least area under
cereal cultivation equal or higher than 1000, considering only
the part of the river that lies within the query region.

When a query is restricted to a region, like it is the case
of queries Q9 to Q11, Piet performance is still similar than

7

Figure 9: Geometric aggregation - query region 1.

Figure 10: Geometric aggregation - query region 2.

the other two methods, although in this case,the latter per-
forms slightly better than Piet. Obviously, here the problem
is the on-the-fly computation of the intersection between the
query region and the precomputed overlay. Indexing the lat-
ter with an R-Tree does not yield significant improvements.
Aggregation R-Trees. We implemented the aggregation R-
tree (aR-tree) [11], an R-tree variation that stores not only
the MBRs of different geometries but also the value of some
aggregation function for all objects that are enclosed by the
MBR. We ran geometric aggregation queries, with or with-
out a query region. We report the results obtained running
geometric aggregation queries: (a) Q12: Maximum area un-
der cereal cultivation, only for regions crossed by rivers, and
(b) Q13: Maximum area under cereal cultivation, only for
regions crossed by rivers and for regions within a query re-
gion in Wallonne. Table 5 shows the results.

Precision in Piet. In the special case of queries using query
regions, as the query region is not affected by the subpoligo-
nization process, the subgeometries shared by the layers may
not lie completely within the query region. Thus, the ones
that that are within the query region are discarded, affect-
ing the results. To illustrate the situation we show in Figure
11, a zoomed portion of the subgeometries of rivers that do
not lie inside the query region and which are not been con-
sidered in the answer to the query list each district with
its length of rivers, considering only parts of rivers within a
query region. This problem can be fixed in Piet at the cost
of computing the exact length (inside the query region) of
the segments that are intersected by the region boundaries,
as other indexing techniques, like R-Tree variation do.

GISOLAP-QL Queries. For the experiment (e), we ran
GISOLAP-QL queries (Section 3), that let us express inte-
grated GIS and OLAP queries in a very simple way. We
ran SQL queries and full GISOLAP-QL queries. First the
system computes the identifiers of the geometries that ver-
ify the geometric queries (i.e., the part before the ’—’), and

Query PostGIS with
spatial indexing
(ms)

aR-tree
(ms)

Piet (ms)

Q12 47.997 5 14.669
Q13 39.541 4.2 2955.060

Table 3: Piet vs. aRtree.

Figure 11: Precision in Piet.

then pass this information on to the MDX expression (the
part after the ’—’). The MDX expression is then merged
with the geometric information, producing the final MDX
query. The times for computing the SQL-like part were
similar to the ones already reported, and the time for gen-
erating the complete MDX expression is negligible. Due to
space limitations, we limit ourselves to show the result for
the query Q14: “Unit Sales, Store Cost and Store Sales for
the products and promotion media offered by stores only in
provinces crossed by rivers”. Figure 12 shows the result for
Q14, which includes the three dimensions: Store (obtained
through the geometric query), Promotion Media, and Prod-
uct. A Piet user can navigate this result (drilling-down or
rolling-up along the dimensions). Figure 13 shows an exam-
ple of a drill-down operation.

6. FUTURE WORK
Our implementation showed that integrating OLAP and

spatial data can be efficiently performed using the overlay
precomputation techniques. We are currently working to
provide Piet with spatio-temporal capabilities, specifically
in the field of moving object data, that can be naturally
added to this framework.

7. REFERENCES
[1] A. Gutman. R-trees: A dynamic index structure for spatial

searching. In Proceedings of SIGMOD’84, pages 47–57, 1984.

[2] S. Haesevoets, B. Kuijpers, and A. Vaisman. Spatial
aggregation: Data model and implementation. In Submitted for
revew, 2006.

[3] J. Han, N. Stefanovic, and K. Koperski. Selective
materialization: An efficient method for spatial data cube
construction. In Proceedings of PAKDD’98, pages 144–158,
1998.

[4] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing
data cubes efficiently. In Proceedings of SIGMOD’96, pages
205 – 216, Montreal, Canada, 1996.

[5] C. Hurtado, A.O. Mendelzon, and A. Vaisman. Maintaining
data cubes under dimension updates. In Proceedings of
IEEE/ICDE’99, pages 346–355, 1999.

[6] C.S. Jensen, A. Kligys, T.B Pedersen, and I. Timko.
Multidimensional data modeling for location-based services.
VLDB Journal 13(1), pages 1–21, 2004.

[7] R. Kimball and M. Ross. The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling, 2nd. Ed. J.Wiley
and Sons, Inc, 2002.

8

Figure 12: Result for the full GISOLAP-QL query.

Figure 13: Drilling down the result of Figure 12.

[8] M. Kornacker. Access methods for next-generation database
systems. Ph.D Thesis, UC at Berkeley, 2000.

[9] B. Kuijpers and Alejandro Vaisman. A data model for moving
objects supporting aggregation. In Proceedings of the First
International Workshop on Spatio-Temporal Data Mining
(STDM’07), Istambul, Turkey, 2007.

[10] G. Kuper and M. Scholl. Geographic information systems. In
J. Paredaens, G. Kuper, and L. Libkin, editors, Constraint
databases, chapter 12, pages 175–198. Springer-Verlag, 2000.

[11] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP
operations in spatial data warehouses. In Proceedings of
SSTD’01, pages 443 – 459, 2001.

[12] D. Papadias, Y. Taoy, P. Kalnis, and J. Zhang. Indexing
spatio-temporal data warehouses. In Proceedings of ICDE’02,
pages 166–175, 2002.

[13] J. Paredaens, G. Kuper, and L. Libkin, editors. Constraint
databases. Springer-Verlag, 2000.

[14] T.B Pedersen and N. Tryfona. Pre-aggregation in spatial data
warehouses. Proceedings of SSTD’01, pages 460–480, 2001.

[15] F. Rao, L. Zang, X. Yu, Y. Li, and Y. Chen. Spatial hierarchy
and OLAP-favored search in spatial data warehouse. In
Proceedings of DOLAP’03, pages 48–55, Louisiana, USA, 2003.

[16] P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases.
Morgan Kaufmann, 2002.

[17] S. Rivest, Y. Bédard, and P. Marchand. Modeling
multidimensional spatio-temporal data warehouses in a context
of evolving specifications. Geomatica, 55 (4), 2001.

[18] I. Vega López, R. Snodgrass, and B. Moon. Spatiotemporal
aggregate computation: A survey. IEEE Transactions on
Knowledge and Data Engineering 17(2), 2005.

[19] M. F. Worboys. GIS: A Computing Perspective.
Taylor&Francis, 1995.

9

