
Trajectory databases: data models, uncertainty

and complete query languages

Bart Kuijpers and Walied Othman

Theoretical Computer Science Group
Hasselt University & Transnational University of Limburg, Belgium

Abstract. Moving objects produce trajectories. We describe a data
model for trajectories and trajectory samples and an efficient way of mod-
eling uncertainty via beads for trajectory samples. We study transfor-
mations for which important physical properties of trajectories, such as
speed, are invariant. We also determine which transformations preserve
beads. We give conceptually easy first-order complete query languages
and computationally complete query languages for trajectory databases,
which allow to talk directly about speed and beads. The queries express-
ible in these languages are invariant under speed- and bead-preserving
transformations.

1 Introduction and summary

The research on spatial databases, which started in the 1980s from work in geo-
graphic information systems, was extended in the second half of the 1990s to deal
with spatio-temporal data. One particular line of research in this field, started
by Wolfson, concentrated on moving object databases (MODs) [4, 12], a field in
which several data models and query languages have been proposed to deal with
moving objects whose position is recorded at, not always regular, moments in
time. Some of these models are geared towards handling uncertainty that may
come from various sources (measurements of locations, interpolation, ...) and of-
ten ad-hoc query formalisms have been proposed [11]. For an overview of models
and techniques for MODs, we refer to the book by Güting and Schneider [4].

In this paper, we focus on the trajectories that are produced by moving ob-
jects and on managing and querying them in a database. We therefore think it is
more appropriate to talk about trajectory databases, rather than to refer to the
moving objects that produce these trajectories. We give a data model for tra-
jectory data, an efficient way of modeling uncertainty, we study transformations
for which important physical properties of trajectories are invariant and we give
first-order complete and computationally complete query languages for queries
invariant under these transformations.

We propose two types of trajectory data, namely trajectories, which are
curves in the plane (rationally parameterized by time) and trajectory samples,
which are well-known in MODs, namely finite sequences of time-space points.
A trajectory database contains a finite number of labeled trajectories or trajec-
tory samples. There are various ways to reconstruct trajectories from trajectory

samples, of which linear interpolation is the most popular in the literature [4].
However, linear interpolation relies on the (rather unrealistic) assumption that
between sample points, a moving object moves at constant minimal speed. It is
more realistic to assume that moving objects have some physically determined
speed bounds. Given such upper bounds, an uncertainty model has been pro-
posed which constructs beads between two consecutive time-space points in a
trajectory sample. Basic properties of this model were discussed a few years ago
by Egenhofer et al. [1, 7] and Pfoser et al. [9], but beads were already known in
the time-geography of Hägerstrand in the 1970s [6]. A bead is the intersection
of two cones in the time-space space and all possible trajectories of the moving
object between the two consecutive time-space points, given the speed bound,
are located within the bead. Beads manage uncertainty more efficiently than
other approaches based on cylinders [12] (by a factor of 3).

Speed is not only important in obtaining good uncertainty models, but also
many relevant queries on trajectory data involve physical properties of trajecto-
ries of which speed is the most important. Geerts proposed a model which works
explicitely with the equations of motion of the moving objects, rather than with
samples of trajectories, and in which the velocity of a moving object is directly
available and used [3]. If we are interested in querying about speed, it is impor-
tant to know which transformations of the time-space space preserve the speed
of a moving object. We characterize this group V of transformations as the com-
binations of affinities of time with orthogonal transformations of space composed
with a spatial scaling (that uses the same scale factor as the temporal affinity)
and translations. In [2], transformations that leave the velocity vector invariant
were discussed, but starting from spatial transformation that are a function of
time alone. Our result holds in general. We also show that the group V contains
precisely the transformations that preserve beads. So, the queries that involve
speed are invariant under transformations of V , as are queries that speak about
uncertainty in term of beads. Therefore, if we are interested in querying about
speed and dealing with uncertainty via beads, it is advisable to use a query lan-
guage that expresses queries invariant under transformations of V . Beads have
never before been considered in the context of query languages.

As a starting point to query trajectory (sample) databases, we take a two-
sorted logic based on first-order logic extended with polynomial constraints in
which we have trajectory label variables and real variables. This logic has been
studied well in the context of constraint databases [8] and also allows the ex-
pression of speed and beads. We remark that the V-invariant queries form an
undecidable class, and we show that this fragment is captured by a three-sorted
logic, with trajectory label variables, time-space point variables and speed vari-
ables, that uses two very simple predicates: Before(p, q) and minSpeed(p, q, v).
For time-space points p and q, the former expresses that the time-component
of p is smaller than that of q. The latter predicate expresses that the minimal
constant speed to travel from p to q is v. This logic also allows polynomial
constraints on speed variables. We show that using these two, conceptually in-
tuitive, predicates, all the V-invariant first-order queries can be expressed. This

language allows one to express all queries concerning speed on trajectory data
and all queries concerning uncertainty in terms of beads on trajectory samples.
In particular, a predicate inBead(r, p, q, v) can be defined in this logic, expressing
that r is in the bead of p and q with maximal speed v.

We also show that a programming language, based on this three-sorted logic,
in which relations can be created and which has a while-loop with first-order
stop conditions, is sound and complete for the computable V-invariant queries
on trajectory (sample) databases. The proofs of these sound and completeness
results are inspired by earlier work on complete languages for spatial [5] and
spatio-temporal databases [2]. Compared to [2], the language we propose is far
more user oriented since it is not based on geometric but speed-oriented predi-
cates. We remark that the completeness and soundness results presented in this
paper hold for arbitrary spatio-temporal data, but we present them for trajec-
tory (sample) data. In any case, in all the presented languages it is expressible
that an output relation is a trajectory (sample) relation.

This paper is organized as follows. In Section 2, we give definitions and results
concerning trajectories and Section 3 deals with uncertainty via beads. Trajec-
tory databases and queries are discussed in Section 4 and results on complete
query languages are in Section 5.

2 Trajectories and trajectory samples

2.1 Definitions and basic properties

Let R denote the set of real numbers. We will restrict ourselves to the real plane
R2 (although all definitions and results can be generalized to higher dimensions).

Definition 1. A trajectory T is the graph of a mapping I ⊆ R → R2 : t 7→
α(t) = (αx(t), αy(t)), i.e., T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I}. The image
of the trajectory T is the image of the mapping α that describes T . The set I is
called the time domain of T . ⊓⊔

Often, in the literature, conditions are imposed on the nature of the map-
pings αx and αy. For instance, they may be assumed to be continuous, piecewise
linear [4], differentiable, or C∞ [11]. For reasons of finite representability, we
assume that I is a (possibly unbounded) interval and that αx and αy are con-
tinuous semi-algebraic functions (i.e., they are given by a combination of poly-
nomial inequalities in x and t and y and t respectively). For example, the set

{(t, 1−t2

1+t2
, 2t

1+t2
) | 0 ≤ t ≤ 1} describes a trajectory on a quarter of a circle. In

this example, αx is given by the formula x(1 + t2) = 1 − t2 ∧ 0 ≤ t ≤ 1.

Definition 2. A trajectory sample is a list 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN ,
yN)〉, with xi, yi, ti ∈ R for i = 0, ..., N and t0 < t1 < · · · < tN . ⊓⊔

For the sake of finite representability, we may assume that the time-space
points (ti, xi, yi), have rational coordinates. This will be the case in practice,
since these points are typically the result of observations.

A classical model to reconstruct a trajectory from a sample is the linear-
interpolation model [4], where the unique trajectory, that contains the sample
and that is obtained by assuming that the trajectory is run through at constant
lowest speed between any two consecutive sample points, is constructed. For a
sample S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉, the trajectory LIT (S) :=
⋃N−1

i=0 {(t, (ti+1−t)xi+(t−ti)xi+1

ti+1−ti
, (ti+1−t)yi+(t−ti)yi+1

ti+1−ti
) | ti ≤ t ≤ ti+1)} is called the

linear-interpolation trajectory of S.
We now define the speed of a trajectory.

Definition 3. Let T = {(t, αx(t), αy(t)) ∈ R × R2 | t ∈ I} be a trajectory.
If αx and αy are differentiable in t0 ∈ I, then the velocity vector of T in t0 is

defined as (1, dαx(t0)
dt

,
dαy(t0)

dt
) and the length of the projection of this vector on

the (x, y)-plane is called the speed of T in t0. ⊓⊔

Let S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉 be a sample. Then for any
t, with ti < t < ti+1, the velocity vector of LIT (S) in t is (1, xi+1−xi

ti+1−ti
, yi+1−yi

ti+1−ti
)

and the corresponding speed is the minimal speed at which this distance between
(xi, yi) and (xi+1, yi+1) can be covered. At the moments t0, t1, ..., tN the velocity
vector and speed of LIT (S) may not be defined.

2.2 Transformations of trajectories

Now, we study transformations of trajectories under mappings f : R × R2 →
R×R2 : (t, x, y) 7→ (ft(t, x, y), fx(t, x, y), fy(t, x, y)). We assume that f preserves
the temporal order of events (for a technical definition we refer to [2]). It has
been shown that this is equivalent to the assumption that ft is a monotone
increasing function of time alone, i.e., that (t, x, y) 7→ ft(t) [2]. We further assume
transformations to be bijective and differentiable. We remark that if f is as
above and ft is a monotone increasing function of t, then f maps trajectories to
trajectories.

If f : R × R2 → R × R2 transforms a trajectory, then we can roughly say

that df =

∂ft

∂t
0 0

∂fx

∂t
∂fx

∂x
∂fx

∂y
∂fy

∂t

∂fy

∂x

∂fy

∂y

, the derived transformation of f , transforms in each

point of the trajectory the velocity vector.

Theorem 1. A mapping f : R × R2 → R × R2 : (t, x, y) 7→ (ft(t, x, y), fx(t,
x, y), fy(t, x, y)) preserves at all moments the speed of trajectories and preserves
the order of events if and only if

f (t, x, y) = a ·

1 0 0
0 a11 a12

0 a21 a22

t
x
y

 +

b
b1

b2

 ,

with a, b, b1, b2 ∈ R, a > 0, and the matrix

(

a11 a12

a21 a22

)

∈ R2×2 defining an

orthogonal transformation (i.e., its inverse is its transposed). We denote the
group of these transformations by V.

Proof. Let f : (t, x, y) 7→ (ft (t, x, y) , fx (t, x, y) , fy (t, x, y)) be a transformation.

If f preserves the order of events, then everywhere ∂ft

∂x
= 0, ∂ft

∂y
= 0 and ∂ft

∂t
>

0 [2], which means that ft is a reparameterization of time, i.e., (t, x, y) 7→ ft(t).

Consider a trajectory T = {(t, αx(t), αy(t)) ∈ R×R2 | t ∈ I}. The trajectory
T will be transformed to a trajectory f(T) given by β : R → R × R2 : τ 7→
(τ, βx (τ) , βy (τ)). Since ft is a reparameterization of time, we can write τ = ft (t)
and t = f−1

t (τ). The mapping f transforms (t, αx (t) , αy (t)) into f(T) which is
(ft (t) , fx (t, αx (t) , αy (t)) , fy (t, αx (t) , αy (t))) and which can be written as (τ,
fx(f−1

t (τ), αx(f−1
t (τ)), αy(f−1

t (τ))), fy(f−1
t (τ), αx(f−1

t (τ)), αy(f−1
t (τ)))). This

trajectory is given as β (depending on the parameter τ).

We assume that f preserves, at all moments in time, the speed of trajec-
tories, which means that the length of (1, ∂αx(t)/∂t, ∂αy(t)/∂t) equals that of

(1, ∂βx(τ)/∂τ, ∂βy(τ)/∂τ). Since (f ◦ α)
′

(t) and ∂β(τ)
∂t

have to be equal, and

since (f ◦ α)′ (t) = dfα(t) ◦ α′ (t) and ∂β(τ)
∂t

= β′ (τ) · ∂τ(t)
∂t

= β′ (τ) · f ′

t (t), we

have dfα(t) ◦ α′ (t) = β′ (τ) · f ′

t (t) which means
(

1
f ′

t
(t) · dfα(t)

)

◦ α′ (t) = β′ (τ)

and that 1
f ′

t(t)
· df(t,x,y) must be an isometry of R × R2 for each (t, x, y).

Let A be the matrix associated to the linear mapping 1
f ′

t
(t) · df(t,x,y). Since

this linear transformation must be orthogonal, we have that A ·AT = AT ·A = I
and det (A) = ±1. These conditions lead to the following equations. Firstly,
(∂ft

∂t
∂fx

∂t
)/(f ′

t(t))
2 = 0, which means ∂fx

∂t
= 0, because ∂ft

∂t
> 0. Similarly, we have

that
∂fy

∂t
= 0. Secondly, (∂fx/∂x)2 + (∂fx/∂y)2 = (f ′

t (t))
2
. We remark that the

right-hand side is time-dependent and the left-hand side isn’t, and vice versa the
left-hand side is dependent on only spatial coordinates and the right-hand side
isn’t, which means both sides must be constant. This implies that ft (t) = at+ b
where a > 0 since ft is assumed to be an increasing function. The condition
(∂fx

∂x
)2 + (∂fx

∂y
)2 = a2 is known as a differential equation of light rays [10], and

has the solution fx(x, y) = a11x + a12y + b1, where a2
11 + a2

12 = a2 and where b1

is arbitrary. Completely analogue, we obtain fy (x, y) = a21x + a22y + b2 where
a2
21 + a2

22 = a2 and where b2 is arbitrary.

Thirdly,
(

∂fx

∂x

∂fy

∂x
+

∂fy

∂y
∂fx

∂y

)

/ (f ′

t (t))2 = 0. And finally, det (A) = ±1 gives

a11a22 − a12a21 = ±1. If we write a′

ij =
aij

a
, then we all these equations lead to

the following form of f : f(t, x, y) =

a ·

1 0 0
0 a′

11 a′

12

0 a′

11 a′

22

t
x
y

 +

b
b1

b2

where a > 0, and the matrix of the a′

ij determines an orthogonal transformation
of the plane. It is also clear that transformations of the above form preserve at
any moment the speed of trajectories. This completes the proof. ⊓⊔

Examples of speed-preserving transformations include the spatial translations
and rotations, temporal translations and scalings of the time-space space.

3 Uncertainty via beads

In 1999, Pfoser et al. [9], and later Egenhofer et al. [1, 7], introduced the notion of
beads in the moving object database literature to model uncertainty. Before Wolf-
son used cylinders to model uncertainty [4, 12]. However, cylinders give less preci-
sion (by a factor of 3, compared to beads). Let S be a sample 〈(t0, x0, y0), (t1, x1,
y1), ..., (tN , xN , yN)〉. Basically, the cylinder approach to managing uncertainty,
depends on an uncertainty threshold value ε > 0 and gives a buffer of radius ε
around LIT (S). In the bead approach, for each pair (ti, xi, yi), (ti+1, xi+1, yi+1)
in the sample S, their bead related does not depend on a uncertainty threshold
value ε > 0, but rather on a maximal velocity value vmax of the moving object.

Definition 4. Given (ti, xi, yi), (ti+1, xi+1, yi+1), with ti < ti+1 and vmax > 0,
the bead of (ti, xi, yi, ti+1, xi+1, yi+1, vmax), denoted B(ti, xi, yi, ti+1, xi+1, yi+1,
vmax), is the set {(t, x, y) ∈ R×R3 | (x− xi)

2 + (y − yi)
2 ≤ (t− ti)

2v2
max ∧ (x−

xi+1)
2 + (y − yi+1)

2 ≤ (ti+1 − t)2v2
max ∧ ti ≤ t ≤ ti+1}. ⊓⊔

The bead in Figure 1 shows at each moment a disk or a lens.

(t1, x1, y1)

(t0, x0, y0)

Fig. 1. An example of a bead B(t0, x0, y0, t1, x1, y1, 1).

We remark that for a sample S = 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN)〉

the set
⋃N−1

i=0 B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) is called the bead chain of S [1].
Suppose we transform a bead B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) by a function

f : R × R2 → R × R2 : (t, x, y) 7→ (ft(t), fx(t, x, y), fy(t, x, y)), with ft strictly
monotone, as we have done earlier with trajectories. We ask which class of trans-
formations map a bead to a bead. Also here we assume transformations to be
bijective and differentiable.

Theorem 2. Let f : R × R2 → R × R2 : (t, x, y) 7→ (ft(t), fx(t, x, y), fy(t, x,
y)) be a transformation that preserves the order of events. Then for arbitrary
time-space points (ti, xi, yi) and (ti+1, xi+1, yi+1) with ti < ti+1 and arbitrary
vmax > 0, f(B(ti, xi, yi, ti+1, xi+1, yi+1, vmax)) is also a bead if and only if

f (t, x, y) =

a 0 0
0 ca11 ca12

0 ca21 ca22

t
x
y

 +

b
b1

b2

 ,

with a, b, c, b1, b2 ∈ R, a, c > 0, and the matrix of the aij defining an orthogonal
transformation. Furthermore, if these conditions are satisfied, then f(B(ti, xi,
yi, ti+1, xi+1, yi+1, vmax)) = B(f(ti, xi, yi), f(ti+1, xi+1, yi+1),

cvmax

a
).

Proof. Let f be a transformation of R × R2 that preserves the order of events.
Suppose that for any bead B = B(ti, xi, yi, ti+1, xi+1, yi+1, vmax), f(B) is a bead.

Let us first consider the special case, vmax = d((xi,yi),(xi+1,yi+1))
(ti+1−ti)

(this means

that the maximal speed is also the minimal speed). Then the bead B is the
straight line segment between (ti, xi, yi) and (ti+1, xi+1, yi+1) in the (t, x, y)-
space. This segment is not parallel to the (x, y)-plane (like all beads that are
lines). Since B is one-dimensional and since f(B) is assumed to be a bead and
since f(B) at any moment consists of one point also f(B) must be a straight line
segment not parallel to the (x, y)-plane in the (t, x, y)-space. We can conclude
that f maps line segments not parallel to the (x, y)-plane to line segments not
parallel to the (x, y)-plane.

Secondly, let us consider a bead B with (xi, yi) = (xi+1, yi+1) and vmax > 0.
This bead consists of a cone between ti and (ti + ti+1)/2 with top (ti, xi, yi) and
base the disk D = {((ti+ti+1)/2, x, y) | (x−xi)

2+(y−yi)
2 ≤ v2

max((ti+1−ti)/2)2}
and a cone between (ti+ti+1)/2 and ti+1 with top (ti+1, xi, yi) and the same disk
D as base. Consider the straight line segments emanating from the top (ti, xi, yi)
and ending in the central disk D. They are mapped to straight line segments in
f(B) (as we have argued before) that emanate from the top f (ti, xi, yi) of f(B)
and that end up in some figure f(D) in the hyperplane t = ft((ti + ti+1)/2).
Since f(B) is assumed to be a bead, the image of the bottom cone of B is again a
cone, and the aforementioned figure f(D) in the hyperplane t = ft((ti + ti+1)/2)
is also a closed disk. The same holds for the top cone of B. This half of B is
mapped to a cone with top f(ti+1, xi+1, yi+1) and base f(D).

Therefore, f(B) is the union of two cones, one with top f (ti, xi, yi), the other
with top f(ti+1, xi, yi) and both with base f(D). Since f(B) is a bead that at
no moment in time is a lens, it must itself be a bead with equally located tops.
This means that fx(ti, xi, yi) = fx(ti+1, xi, yi) and fy(ti, xi, yi = fy(ti+1, xi, yi).
In other words, the functions fx and fy are independent of t. This argument
also shows that ft((ti + ti+1)/2) is the middle of ft(ti) and ft(ti+1). This means
that for any ti and ti+1, ft((ti + ti+1)/2) = 1

2 (ft(ti) + ft(ti+1)). It is then easy
to show that, ft(t) = at + b with a > 0.

So, we have shown that a bead-preserving transformation f is of the form
f (t, x, y) = (at + b, fx (x, y) , fy (x, y)) . Now we determine fx and fy. If we re-
strict ourselves to a (x, y)-plane at some moment t between ti and ti+1, the bead
B = B(ti, xi, yi, ti+1, xi, yi, vmax) shows a disk. Since f(B) is a bead again, it
will also show a disk at ft(t). Since fx and fy are independent of t, they map
disks on disks, hence distances between points are all scaled by a positive fac-
tor c by this transformation. To determine what fx and fy look like we can
restrict ourselves to a mapping from R2 to R2, since fx and fy depend only on

x and y. Consider the transformation f̃ (x, y) = (fx (x, y) , fy (x, y)), we know

now that for all points x and y in R2, ‖x − y‖ = 1
c
‖f̃ (x) − f̃ (y) ‖. Now con-

sider f̂ = 1
c
f̃ , this means ‖x − y‖ = ‖f̂ (x) − f̂ (y) ‖ and thus f̂ is an isometry.

Just like before (cfr. speed preserving-transformations), we can conclude that
f̃ (x, y) = (fx (x, y) , fy (x, y)) is a plane-similarity, i.e., composed of a linear
plane isometry, a scaling and a translation.

We know that (x′ − x′

i)
2

+ (y′ − y′

i)
2

= c2((x − xi)
2

+ (y − yi)
2
) and that

(t′ − t′i)
2

= a2 (t − ti)
2
. That means that if B is a bead between the points

(t1, x1, y1) and (t2, x2, y2) and speed vmax, then B′ is a bead between the points
(t′1, x

′

1, y
′

1) and (t′2, x
′

2, y
′

2) and speed v′max = c.vmax

a
. This has to hold for all

beads, hence all vmax since degenerate beads must be transformed to degenerate
beads. This concludes the proof since it is clear that all transformations of this
form also map beads to beads. ⊓⊔

From this result it follows that if f maps a bead B with maximal speed vmax

to a bead f(B), the latter has maximal speed cvmax

a
. So, we get the following.

Corollary 1. If f : R × R2 → R × R2 is a transformation that preserves the
order of events, then f maps beads to beads with the same speed, if and only if, f
preserves the speed of trajectories (i.e., f belongs to V defined in Theorem 1). ⊓⊔

4 A model for trajectory databases and queries

4.1 Trajectory and trajectory sample databases and queries

We assume the existence of an infinite set Labels = {a, b, ..., a1, b1, ..., a2, b2, ...}
of trajectory labels. We now define the notion of trajectory (sample) database.

Definition 5. A trajectory relation R is a finite set of tuples (ai, Ti), i = 1, ..., r,
where ai ∈ Labels can appear only once and where Ti is a trajectory. Similarly,
a trajectory sample relation R is a finite set of tuples (ai, ti,j , xi,j , yi,j), with
i = 1, ..., r and j = 0, ..., Ni, such that ai ∈ Labels cannot appear twice in
combination with the same t-value and such that 〈(ti,0, xi,0, yi,0), (ti,1, xi,1, yi,1),
..., (ti,Ni

, xi,Ni
, yi,Ni

)〉 is a trajectory sample.
A trajectory (sample) database is a finite collection of trajectory (sample)

relations. ⊓⊔

Without loss of generality, we will assume in the sequel that a database
consists of one relation. In Section 2, we have discussed how we finitely represent
trajectories and trajectory samples.

Now, we define the notion of a trajectory database query. We distinguish
between trajectory database transformations and boolean trajectory queries.

Definition 6. A (sample-)trajectory database transformation is a partial com-
putable function from (sample-)trajectory relations to (sample-)trajectory re-
lations. A boolean (sample-)trajectory database query is a partial computable
function from (sample-)trajectory relations to {0, 1}. ⊓⊔

When we say that a function is computable, this is with respect to some
fixed encoding of the trajectory (sample) relations (e.g., rational polynomial
functions represented in dense or sparse encoding of polynomials; or rational
numbers represented as pairs of natural numbers in bit representation).

4.2 V-equivalent trajectory databases and V-invariant queries

Definition 7. Let R and S be trajectory (sample) databases. We say that R
and S are V-equivalent, if there is bijection µ : Labels → Labels and a speed-
preserving transformation f ∈ V such that (µ × f)(R) = S. ⊓⊔

In this paper, we are especially interested in transformations and queries that
are invariant under elements of V .

Definition 8. A trajectory (sample) database transformation Q is V-invariant
if for any trajectory (sample) databases S1 and S2 which are V-equivalent by
µ × f , also (µ × f)(Q(S1)) = Q(S2) holds.

A boolean trajectory (sample) database query Q is V-invariant if for any
V-equivalent trajectory (sample) databases R and S, Q(R) = Q(S). ⊓⊔

5 Complete query languages for trajectory databases

5.1 First-order queries on trajectory (sample) databases

A first query language for trajectory (sample) databases we consider is the fol-
lowing extension of first-order logic over the real numbers, which we refer to as
FO(+,×, <, 0, 1, S).

Definition 9. The language FO(+,×, <, 0, 1, S) is a two-sorted logic with label
variables a, b, c, ... (possibly with subscripts) that refer to trajectory labels and
real variables x, y, z, ... (possibly with subscripts) that refer to real numbers. The
atomic formulas of FO(+,×, <, 0, 1, S) are

– P (x1, ..., xn) > 0, where P is a polynomial with integer coefficients in the
real variables x1, ..., xn;

– a = b; and
– S(a, t, x, y) (S ia a 4-ary predicate).

The formulas of FO(+,×, <, 0, 1, S) are built from the atomic formulas using the
logical connectives ∧,∨,¬, ... and quantification over the two types of variables:
∃x, ∀x and ∃a, ∀a. ⊓⊔

The label variables are assumed to range over the labels occurring in the
input database and the real variables are assumed to range over R. The for-
mula S(a, t, x, y) expresses that a tuple (a, t, x, y) belongs to the input data-
base. The interpretation of the other formulas is standard. It is well-known that
FO(+,×, <, 0, 1, S)-expressible queries can be evaluated effectively [8].

The FO(+,×, <, 0, 1, S)-sentence

∃a∃b(¬(a = b) ∧ ∀t∀x∀yS(a, t, x, y) ↔ S(b, t, x, y)), (†)

for example, expresses the boolean trajectory query that says that there are two
identical trajectories in the input database with different labels.

The FO(+,×, <, 0, 1, S)-formula

S(a, t, x, y) ∧ t ≥ 0 (∗)

returns the subtrajectories of the input trajectories at positive time moments.
Boolean queries can be expressed by sentences in FO(+,×, <, 0, 1, S) (for

example, the sentence (†)). Trajectory transformations can be expressed by for-
mulas ϕ(a, t, x, y) in FO(+,×, <, 0, 1, S) with four free variables (for example, the
formula (∗)). We remark that not every FO(+,×, <, 0, 1, S)-formula ϕ(a, t, x, y)
defines a trajectory relation on input a trajectory. However, it can be syntac-
tically guaranteed that the output of such a query is a trajectory (sample),
since this can be expressed in FO(+,×, <, 0, 1, S). Indeed, it is expressible that
a semi-algebraic set is a function and also that it is continuous. By combining a
formula ϕ(a, t, x, y) with a guard that expresses that the output of ϕ(a, t, x, y) is
a trajectory, we can determine a closed or safe fragment of FO(+,×, <, 0, 1, S)
for transforming trajectories.

Property 1. There is a FO(+,×, <, 0, 1, S)-formula that expresses that S is a
trajectory (sample). ⊓⊔

5.2 A point-based first-order language for trajectory (sample)
databases

In this section, we consider a first-order query language, FO(Before, minSpeed, S̃),
for trajectory (sample) databases.

Definition 10. FO(Before, minSpeed, S̃) is a three-sorted logic with label vari-
ables a, b, c, ... (possibly with subscripts) that refer to labels of trajectories; point
variables p, q, r, ... (possibly with subscripts), that refer to time-space points (i.e.,
elements of R × R2); and speed variables u, v, w, ... (possibly with subscripts),
that refer to speed values (i.e., elements of R+).

The atomic formulas of FO(Before, minSpeed, S̃) are

– P (v1, ..., vn) > 0, where P is a polynomial with integer coefficients in the
velocity variables v1, ..., vn;

– equality for all types of variables; and
– S̃(a, p) (here S̃ is a binary predicate);
– Before(p, q), minSpeed(p, q, v).

The formulas of FO(Before, minSpeed, S̃) are built from the atomic formulas us-
ing the logical connectives ∧,∨,¬, ... and quantification over the three types of
variables: ∃a, ∀a, ∃p, ∀p and ∃v, ∀v. ⊓⊔

The label variables are assumed to range over the labels occurring in the
input database, the point variables are assumed to range over the set of time-
space points R × R2 and the velocity variables are assumed to range over the
positive real numbers R+.

If p is a time-space point, then we denote its time-component by pt and its
spatial coordinates by px and py. The formula S(a, p) expresses that a tuple
(a, pt, px, py) belongs to the input database. The atomic formula Before(p, q)
expresses that pt ≤ qt. The atomic formula minSpeed(p, q, v) expresses that (px−
qx)2 +(py−qy)2 = v2(pt−qt)

2∧(¬qt ≤ pt), in other words, that v is the minimal
speed to go from the spatial projection of p to that of q in the time-interval that
separates them.

For example, the FO(Before, minSpeed, S̃)-sentence

∃a∃b(¬(a = b) ∧ ∀pS̃(a, p) ↔ S̃(b, p)) (†′)

equivalently expresses (†). To define equivalence of (queries expressible by) for-
mulas in FO(Before, minSpeed, S̃) and FO(+,×, <, 0, 1, S), we define the canoni-
cal mapping can : (a, p) 7→ (a, pt, px, py). If Ã is an instance of S̃, then id×can(Ã)

is an instance of S. We say that a formula ϕ̃(a, p) in FO(Before, minSpeed, S̃) and
a formula ϕ(a, t, x, y) in FO(+,×, <, 0, 1, S) express equivalent transformations
if for any Ã, id × can({(a, p) | Ã |= ϕ̃(a, p)}) = {(a, t, x, y) | id × can(A) |=
ϕ(a, t, x, y)}. For boolean queries the definition is analogue.

For the formula (∗), there is no equivalent in FO(Before, minSpeed, S̃). The
reason for this is given by the following theorem in combination with the obser-
vation that the formula (∗) does not express a V-invariant transformation.

Theorem 3. A V-invariant trajectory (sample) transformation or a boolean tra-
jectory (sample) query is expressible in FO(+,×, <, 0, 1, S) if and only if it is
expressible in FO(Before, minSpeed, S̃).

Before giving the proof of Theorem 3, we introduce some more predicates on
time-space points and speed values, which will come in handy later on:

– inBead(r, p, q, v) expresses that r = (rt, rx, ry) belongs to the bead B(pt, px,
py, qt, qx, qy, v) (assuming that pt ≤ qt);

– Between2(p, q, r) expresses that the three co-temporal points p, q and r are
collinear and that q is between p and r;

– Between1+2(p, q, r) expresses that the three points p, q and r are collinear
and that q is between p and r;

– EqDist(p1, q1, p2, q2) expresses that the distance between the co-temporal
points p1 and q1 is equal to the distance between the co-temporal points p2

and q2;
– Perp(p1, q1, p2, q2) expresses that the vectors −−→p1q1 and −−→p2q2 of the co-temporal

points p1, q1, p2 and q2 are perpendicular.

Lemma 1. The expressions inBead(r, p, q, v), Between2(p, q, r), Between1+2(p,
q, r), EqDist(p1, q1, p2, q2), and Perp(p1, q1, p2, q2) can all be expressed in the logic
FO(Before, minSpeed). ⊓⊔

Proof. In the proof of Theorem 3, a key predicate to simulate addition and
multiplication in FO(Before, minSpeed) is Between2. Here, we only sketch how
this predicate can be expressed. We omit the other expressions.

��
��
��
�� ����

�
�
�
�

��

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

����
����
����
����

����
����
����
����

������������

����

q′

x

y

t

p
q

r

r′

Fig. 2. The geometric construction of Between
2.

First, we introduce predicates to denote co-spatiality and co-temporality.
Equality of the spatial coordinates, =S (p, q), is expressed as ∃v(minSpeed(p, q,
v) ∧ v = 0) ∨ p = q. Co-temporality of time-space points, =T (p, q), is expressed
as Before(p, q) ∧ Before(q, p). With the help of these predicates we can express
Between2(p, r, q) as

=T(p, r) ∧ =T(r, q) ∧ ¬(p = r ∨ r = q ∨ p = q) ∧

∃r′∃q′∃v(=S(r, r
′) ∧ =S(q, q

′) ∧ ¬Before(r′, p) ∧ ¬Before(q′, r′) ∧

minSpeed(p, q′, v) ∧ minSpeed(p, r′, v) ∧ minSpeed(r′, q′, v)).

The first line states that p, q and r should be co-temporal and distinct. Next we
say that there exist points r′ and q′ with the same spatial coordinates as r and
q respectively. The last line states that p, r′ and q′ are collinear and that r′ is
between p and q′. Therefore the projected points p, r and q are also collinear and
r is between p and q. The above expression describes the geometric construction
illustrated in Figure 2. ⊓⊔

For the purpose of the proof of Theorem 3, we need to give a more general
definition of V-invariance of FO(Before, minSpeed, S̃)-formulas.

Definition 11. A FO(Before, minSpeed, S̃)-formula ϕ(a1, ..., an, p1, ..., pm, v1, ...,
vk) expresses a V-invariant query Q if for any trajectory (sample) databases S1

and S2 for which there is a bijection µ : Labels → Labels and a transformation
f ∈ V such that (µ × f)(S1) = S2, also (µn × fm × idk)(Q(S1)) = Q(S2). ⊓⊔

This definition corresponds to the definition for transformations and boolean
queries (Definition 8), if we take n = m = 1, k = 0 and n = m = k = 0.

Proof (of Theorem 3). We have to prove soundness and completeness.
Soundness: Firstly, we show that every FO(Before, minSpeed, S̃)-formula is equiv-
alently expressible in FO(+,×, <, 0, 1, S) and that every query expressible in
FO(Before, minSpeed, S̃) is V-invariant.

We assume prenex normal form for formulas, and translate the atomic for-
mulas first. Logical connectives, and finally quantifiers, can then be added in
a straightforward manner. A label variable is left unchanged. A point vari-
able p is simulated by three real variables px, py and pt and a speed vari-
able v is simulated by a real variable v and when it appears it is accom-
panied with the restriction v ≥ 0. An appearance of the trajectory predi-
cate S̃(a, p) is translated into S(a, pt, px, py). By switching to coordinate rep-
resentations, the predicates minSpeed(p, q, v) and Before(p, q) are translated to

(px − qx)
2

+ (py − qy)
2

= v2 (pt − qt)
2
∧ (¬qt ≤ pt) and pt ≤ qt respectively.

Polynomial constraints on speed variables are literally translated (adding v ≥ 0).
Logical connectives, and finally quantifiers, can then be added in a straightfor-
ward manner (∃p is translated to ∃pt∃px∃py).

Speed-preserving transformations preserve the order of events. That means
the predicate Before is V-invariant. The predicate minSpeed is also V-invariant.
If f belongs to V , then we know from Theorem 1 that f is the composition of a
scaling by a positive factor a and an orthogonal transformation and a translation.
Suppose that f(pt, px, py) = (p′t, p

′

x, p′y) = p′ and f(qt, qx, qy) = (q′t, q
′

x, q′y) = q′.
Then (p′x − q′x)2 + (p′y − q′y)2 = v2(p′t − q′t)

2 = a2((px − qx)2 + (py − qy)2) =
v2a2(pt − qt)

2. So, minSpeed(p, q, v) holds if and only if minSpeed(p′, q′, v) holds.

The polynomial constraints on speed variables are by definition V-invariant
(see Definition 11). Now, it is easy to show, by induction on the syntactic struc-
ture of FO(Before, minSpeed, S̃)-formulas that they are all V-invariant.

Completeness: Now, we show that every V-invariant trajectory query, expressible
in FO(+,×, <, 0, 1, S), can equivalently be expressed in FO(Before, minSpeed, S̃).
We will sketch the proof, as a rigorous proof easily becomes long and tedious.
The general strategy that we outline is based on proof strategies introduced
in [5] for spatial data and later developed for spatio-temporal data in [2]. Label
variables are literally translated. The real variables are translated into point
variables and we simulate addition and multiplication operations and order in a
“computation plane”. To do this we need a coordinate system for R × R2 that
is the image of the standard coordinate system of R × R2 under some element
of V . Let (u0, u1, u2, u3) be such a coordinate system, meaning u0, u2 and u3

are co-temporal, −−→u0u1, −−→u0u2 and −−→u0u3 are perpendicular and have equal length
and u0 is a point Before u1. All of this is expressible in FO(Before, minSpeed, S̃)
with the predicates introduced in Lemma 1. The predicate CoSys(u0, u1, u2, u3)
expresses that (u0, u1, u2, u3) is the image of the standard coordinate system
under some speed-preserving transformation. Next all real variables are directly
translated into point variables on the line u0u2, the idea is to translate a real
variable x to a point variable px with a cross ratio (u0, u2, p

x) equal to x. Using
only Between2 we can express all addition and multiplication operations in the
plane spanned by the co-temporal points u0, u2 and u3.

At this point, we have in our translated formula too many free variables,
since we translated variables, which represent coordinates, to point variables and
added a coordinate system. We need to introduce new point variables and express
that the translated coordinate point variables are coordinates for these new point

variables. Thus linking every triple of coordinate point variables on the line u0u2

with a single point variable. This can be done with a predicate Coordinates(u0,
u1, u2, u3, t, x, y, u) which expresses that the cross ratios (u0, u2, t), (u0, u2, x)
and (u0, u2, y) are the coordinates for the point variable u with respect to the
coordinate system (u0, u1, u2, u3). This can be done using only the predicate
Between1+2 as was shown in [5]. The relation S is translated in a similar straight-
forward manner. Finally we add existential quantifiers for all the coordinate point
variables and for the points u0, u1, u2 and u3. ⊓⊔

As a corollary of Theorem 3 and Property 2, is the following.

Property 2. There is a FO(Before, minSpeed, S̃)-formula that expresses that S̃ is
a trajectory (-sample). ⊓⊔

5.3 Computationally complete query language for trajectory
(sample) databases

In this section, we consider computationally complete query languages for trajec-
tory (sample) databases. We start by extending the logic FO(Before, minSpeed, S̃)
with a sufficient supply of relation variables (of all arities), assignment statements
and while-loops. Afterward, we will prove that this extended language is compu-
tationally sound and complete for V-invariant computable queries on trajectory
(sample) databases.

Definition 12. A program in FO(Before, minSpeed, S̃)+while is a finite sequence
of assignment statements and while-loops :

– An assignment statement is of the form

R̃ := {(a1, . . . , ak, p1, . . . , pl, v1, . . . , vm) |ϕ (a1, . . . , ak, p1, . . . , pl, v1, . . . , vm)};

where R̃ is a relation variable of arity k in the label variables, arity l in the
time-space point variables and arity m in the speed variables, and ϕ is a
formula in the language FO(Before, minSpeed, S̃) extended with the relation
labels that were previously introduced in the program.

– A while-loop
while ϕ do P ;

contains a sentence ϕ in FO(Before, minSpeed, S̃) extended with previously
introduced relation labels and a FO(Before, minSpeed, S̃)+while-program P
(again extended with previously introduced relation labels).

– One relation variable is designated as an output relation R̃out. The program
ends once that particular relation variable has been assigned a value. ⊓⊔

The semantics of FO(Before, minSpeed, S̃)+while should be clear and is like
that of FO(+,×, <, 0, 1, S)+while. A program defines a query on a trajectory
(sample) database. Indeed, given an input relation, as soon as a value is assigned
to the relation R̃out, the program halts and returns an output; or the program

might loop forever on that input. Thus, a program defines a partial function from
input to output relations. We remark that the output relation is computable from
the input.

Once we have fixed a data model for trajectories or trajectory samples (see
Section 2) and concrete data structures to implement the data model, we say
that a partial function on trajectory (sample) databases is computable, if there
exists a Turing machine that computes the function, given the particular data
encoding and data structures (see [8] for details).

We omit the proof of the following result.

Theorem 4. FO(Before, minSpeed, S̃)+while is sound and complete for the com-
putable V-invariant queries on trajectory (sample) databases. ⊓⊔

Acknowledgments. This research has been partially funded by the European
Union under the FP6-IST-FET programme, Project n. FP6-14915, GeoPKDD:
Geographic Privacy-Aware Knowledege Discovery and Delivery, and by the Re-
search Foundation Flanders (FWO-Vlaanderen), Research Project G.0344.05.

References

1. M. Egenhofer. Approximation of geospatial lifelines. In SpadaGIS, Workshop on
Spatial Data and Geographic Information Systsems, 2003. Electr. proceedings, 4p.

2. F. Geerts, S. Haesevoets, and B. Kuijpers. A theory of spatio-temporal database
queries. In Database Programming Languages (DBPL’01), volume 2397 of Lec-
ture Notes in Computer Science, pages 198–212. Springer, 2002 (a full version will
appear in ACM Transactions on Computational Logic).

3. Floris Geerts. Moving objects and their equations of motion. In Constraint Data-
bases (CDB’04), volume 3074 of Lecture Notes in Computer Science, pages 41–52.
Springer, 2004.

4. R. Güting and M. Schneider. Moving Object Databases. Morgan Kaufmann, 2005.
5. M. Gyssens, J. Van den Bussche, and D. Van Gucht. Complete geometric query

languages. J. Comput. System Sci., 58(3):483–511, 1999.
6. T. Hägerstrand What about People in Regional Science? Papers of the Regional

Science Association vol.24, 1970, pp.7-21.
7. K. Hornsby and M. Egenhofer. Modeling moving objects over multiple granulari-

ties. Annals of Mathematics and Artificial Intelligence, 36(1–2):177–194, 2002.
8. J. Paredaens, G. Kuper, and L. Libkin, editors. Constraint databases. Springer-

Verlag, 2000.
9. D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-object represen-

tations. In Advances in Spatial Databases (SSD’99), volume 1651 of Lecture Notes
in Computer Science, pages 111–132, 1999.

10. A. D. Polyanin, V. F. Zaitsev, and A. Moussiaux. Handbook of First Order Partial
Differential Equations. Taylor & Francis, 2002.

11. J. Su, H. Xu, and O. Ibarra. Moving objects: Logical relationships and queries. In
Advances in Spatial and Temporal Databases (SSTD’01), volume 2121 of Lecture
Notes in Computer Science, pages 3–19. Springer, 2001.

12. O. Wolfson. Moving objects information management: The database challenge. In
Proceedings of the 5th Intl. Workshop NGITS, pages 75–89. Springer, 2002.

