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Abstract. The research presented in this paper is situated in the framework of constraint
databases introduced by Kanellakis, Kuper, and Revesz in their seminal paper of 1990, specifically,
the language with real polynomial constraints (FO + poly). For reasons of efficiency, this model
is implemented with only linear polynomial constraints, but this limitation to linear polynomial
constraints has severe implications on the expressive power of the query language. In particular,
when used for modeling spatial data, important queries that involve Euclidean distance are not
expressible. The aim of this paper is to identify a class of two-dimensional constraint databases
and a query language within the constraint model that go beyond the linear model and allow the
expression of queries concerning distance. We seek inspiration in the Euclidean constructions, i.e.,
constructions by ruler and compass. We first present a programming language that captures exactly
the first-order ruler-and-compass constructions that are expressible in a first-order language with real
polynomial constraints. If this language is extended with a while operator, we obtain a language that
is complete for all ruler-and-compass constructions in the plane. We then transform this language in
a natural way into a query language on finite point databases, but this language turns out to have
the same expressive power as FO + poly and is therefore too powerful for our purposes. We then
consider a safe fragment of this language and use this to construct a query language that allows the
expression of Euclidean distance without having the full power of FO + poly.
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1. Introduction and motivation. Kanellakis, Kuper, and Revesz [28, 29] (see
also [30]) introduced the framework of constraint databases which provides a rather
general model for spatial databases [32]. Spatial database systems [1, 7, 10, 21, 22, 37]
are concerned with the representation and manipulation of data that have a geomet-
rical or topological interpretation. In the context of the constraint model, a spatial
database, although conceptually viewed as a possibly infinite set of points in the real
space, is represented as a finite union of systems of polynomial equations and inequal-
ities. For example, the spatial database consisting of the set of points on the northern
hemisphere together with the points on the equator of the unit sphere in the three-
dimensional space R3 can be represented by the formula x2 +y2 +z2 = 1∧z ≥ 0. The
set {(x, y) | (y−x2)(x2 − y+1/2) > 0} of points in the real plane lying strictly above
the parabola y = x2 and strictly below the parabola y = x2 + 1/2 is an example of
a two-dimensional database in the constraint model. These are called semi-algebraic
sets [6].

Several query languages on databases using the constraint model have been stud-
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ied. One such query language is obtained by extending the relational calculus with
polynomial inequalities [32]. This language is usually referred to as FO + poly. The
query deciding whether the two-dimensional database S is a straight line, for instance,
can be expressed in this language by the sentence

∃a∃b∃c
(
¬(a = 0 ∧ b = 0) ∧ ∀x∀y(S(x, y) ↔ ax + by + c = 0)

)
.

Although variables in such expressions range over the real numbers, queries expressed
in this calculus can still be computed effectively. In particular, the closure property
holds: Any FO + poly query, when evaluated on a spatial database in the constraint
model, yields a spatial database in the constraint model. This follows immediately
from Tarski’s quantifier-elimination procedure for the first-order theory of real closed
fields [38].

However, Tarski’s quantifier-elimination procedure is computationally very expen-
sive. Since the 1970s various more efficient algorithms have been proposed, including
Cylindrical Algebraic Decomposition [8, 9], which are still unsuitable for practice.
The best known algorithms were proposed in the 1990s [4, 34], and, by the use of
alternative data structures [14], in the best case, quantifier elimination is exponential
in the number of quantifier blocks. (A recent textbook on this matter is [36], and for
a discussion on the influence of data structures we refer the reader to [25]). Due to
this complexity it seems to be infeasible for real spatial database applications to rely
on quantifier elimination (we discuss this further below). In existing implementations
of the constraint model, such as the DEDALE system [15, 16, 17], the constraints are
restricted to linear polynomial constraints, and the sets definable in this restricted
model are called semi-linear. It is argued that linear polynomial constraints provide
a sufficiently general framework for spatial database applications [17, 40]. Indeed, in
one of the main application domains, geographical information systems, linear ap-
proximations are used to model geometrical objects (for an overview of this field since
the early ’90s, see [1, 7, 10, 21, 22, 37]).

When we extend the relational calculus with linear polynomial inequalities, we
obtain an effective language which has the same closure property as above but this
time with respect to linear databases. We refer to this language as FO + lin, and
therefore an FO + lin query evaluated on a linear constraint database yields a linear
constraint database.

We return to the complexity of query evaluation by quantifier elimination. Al-
though for both FO + poly and FO + lin the cost of quantifier elimination grows ex-
ponentially with the number of blocks of quantifiers to be eliminated, an argument
in favor of the language FO + lin is that there exists a conceptually “easier” way
(Fourier’s method [27, 31]) to eliminate quantifiers for this language which makes an
effective implementation feasible [15, 16, 17]. This algorithm has the same asymptotic
complexity as the quantifier-elimination procedure for FO + poly, though there is a
slight gain in data complexity: Grumbach and Su have shown that the data com-
plexity for FO + lin is NC1, while it is NC for FO + poly (for certain restrictions of
FO + lin, namely �-bounded instances, an AC0 bound is obtained) [19]. From the prac-
tical point of view, a more significant advantage of the linear model is the existence
of numerous efficient algorithms for geometrical operations [33].

There are, however, a number of serious disadvantages to the restriction to linear
polynomial constraints, related to the limited expressive power of the query language
FO + lin. The expressive power of the language FO + lin has been extensively studied
(see, e.g., [2, 3, 18, 20, 40, 41] and references therein). Among the limitations of
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FO + lin, one of the most important is that the language is incapable of expressing
queries that involve Euclidean distance, betweenness, and collinearity. A query like
“Return all cities in Belgium that are further than 100 km away from Brussels” is,
however, a query that is of importance in spatial database applications. The goal
of this paper is to overcome these limitations of FO + lin for the special case of two-
dimensional spatial databases.

We note that languages whose expressive power on semi-linear databases is strictly
between that of FO + lin and FO + poly have already been studied. Vandeurzen,
Gyssens, and Van Gucht [40, 41] have shown that, even though FO + lin extended
with a primitive for collinearity yields a language with the complete expressive power
of FO + poly, a “careful” extension with a collinearity operator yields a language
whose expressive power is strictly between that of FO + lin and that of FO + poly on
semi-linear databases. However, even this extension does not allow the expression of
queries involving distance.

In this paper, we define a new query language, SafeEuQL↑, and a class of two-
dimensional constraint databases on which this language is closed, called semi-circular
databases. The language SafeEuQL↑ allows the expression of queries concerning dis-
tance, betweenness, and collinearity. The class of semi-circular databases obviously is
a strict superclass of the class of linear databases, since SafeEuQL↑ allows for the defi-
nition of data by means of distance. Semi-circular databases are describable by means
of polynomial equalities, inequalities that involve linear polynomials, and polynomi-
als that define circles. The language SafeEuQL↑ is strictly more powerful on linear
databases than FO + lin, and on semi-circular databases is strictly less powerful than
FO + poly.

To define this language, we have turned, for inspiration, to the Euclidean con-
structions, i.e., the constructions by ruler and compass that we know from high-school
geometry. These constructions were first described in the 4th century B.C. by Euclid
of Alexandria in the 13 books of his Elements [24]. Of the 465 propositions to be
found in these volumes only 60 are concerned with ruler-and-compass constructions.
Most of these constructions belong to the mathematical folklore and are known to all
of us. “Construct the perpendicular from a given point on a given line” or “construct
a regular pentagon” are well-known examples. Since the 19th century, we also know
that a certain number of constructions are not performable by ruler and compass, e.g.,
the trisection of an arbitrary angle or the squaring of the circle. For a 20th century
description of these constructions and the main results concerning them, we refer the
reader to [26].

An alternative to considering languages based on ruler and compass construc-
tions would be to use a constraint language based on the field of the constructible real
numbers. It follows from a result by Ziegler that this theory is undecidable [42], how-
ever. Ziegler showed, among other results, that any finitely axiomatizable subtheory
of the reals with addition, multiplication, and order is undecidable (as conjectured by
Tarski).

We define and study in the current paper three languages for ruler-and-compass
constructions.

First, we define a programming language that describes Euclidean constructions.
We will refer to this procedural language as EuPL (short for Euclidean Programming
Language). Engeler [11, 12] studied a similar programming language in the ’60s, but
his language contains a while-loop and therefore goes beyond first-order logic-based
languages. His language also differs from ours in that EuPL also contains a choice
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statement. This statement corresponds to choosing arbitrary points, which satisfy
some conditions, in the plane, something that is often done in constructions with ruler
and compass on paper. We claim that EuPL captures exactly the planar geometrical
constructions, i.e., the first-order expressible ruler-and-compass constructions. We
show that the choice statement, at least for deterministic programs, can be omitted.
We also prove a number of useful decidability properties of EuPL programs: that
equivalence and satisfiability of EuPL programs are decidable, and that it is decidable
whether a program is deterministic.

We then transform the programming language EuPL into a query language for
finite point databases, called EuQL (short for Euclidean Query Language). It turns
out that this calculus can express nonconstructible queries—in fact, we show that
EuQL has the same expressive power on finite point databases as FO + poly. It is
therefore too powerful for our purposes.

We then study a safe fragment of EuQL, in which all queries are constructible. In
particular, a SafeEuQL query returns constructible finite point relations from given
finite point relations.

SafeEuQL is the key ingredient in our query language SafeEuQL↑ for semi-circular
databases. Since SafeEuQL works on finite point databases, we interpret these queries
to work on intensional representations of semi-circular databases. We then give
FO + poly-definable mappings from databases to their representation and back. Using
these mappings, we can “lift” SafeEuQL to a query language on semi-circular data-
bases. This “lifting” technique has also been used by Benedikt and Libkin [5] and
Gyssens, Vandeurzen, and Van Gucht [23].

We then compare the expressive power of SafeEuQL↑ with the expressive power
of FO + poly on semi-circular databases, and show that on semi-linear databases
FO + poly is more expressive than SafeEuQL↑. Finally, we compare the expressive
power of SafeEuQL↑ and FO + lin on semi-linear databases.

Overview of the query languages. The following scheme gives an overview
of the different languages. A horizontal arrow indicates that a language is closed on
the given class of databases. A subscheme of the form

B
L1 � B

A
L2 �

�

�

A

means that on databases in the class A, the language L1, mapping databases in class A
to databases in class A, is more expressive than the language L2, mapping databases
in class B to databases in class B (where B is a larger class of databases than A). The
top part of Figure 1, for instance, expresses that SafeEuQL↑ is strictly more expressive
than FO + poly on semi-circular databases.

Organization of the paper. In the next section, we define FO + poly and
FO + lin. In section 3, we introduce the class of semi-circular databases and describe
a complete and lossless representation of them by means of finite point databases.
We devote the next three sections to the study of the three languages for ruler-and-
compass constructions: EuPL, EuQL, and SafeEuQL. The query language for semi-
circular databases is given in section 7, where we show that it is closed and compare
its expressive power with that of FO + lin on semi-linear databases and FO + poly on
semi-circular databases.
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{semi-algebraic databases} FO + poly � {semi-algebraic databases}

{semi-circular databases} SafeEuQL↑
�

�

�

{semi-circular databases}

{semi-linear databases} FO + lin �

�

�

{semi-linear databases}

{finite point databases} EuQL,SafeEuQL�

�

�

{finite point databases}

Fig. 1. Comparison of the expressive power of the different languages.

2. Constraint-based database models. In this section, we provide the nec-
essary background for the polynomial and linear constraint database models and for-
mally define two query languages, FO + poly and FO + lin, for the polynomial and the
linear database model, respectively. Since the linear database model is a submodel
of the polynomial database model, we start with the latter. We denote the set of the
real numbers by R.

2.1. The polynomial database model. A polynomial formula is a well-formed
first-order logic formula over the theory of the real numbers, i.e., over (+,×, <, 0, 1).
In other words, a polynomial formula is built with the logical connectives ∧, ∨, and
¬ and the quantifiers ∃ and ∀ from atomic formulas of the form p(x1, . . . , xn) > 0,
where p(x1, . . . , xn) is a polynomial with real algebraic coefficients and real variables
x1, . . . , xn.

Every polynomial formula ϕ(x1, . . . , xn) with n free variables x1, . . . , xn defines a
point set

{(x1, . . . , xn) ∈ Rn | ϕ(x1, . . . , xn)}

in the n-dimensional Euclidean space Rn in the standard manner. Point sets defined
by a polynomial formula are called semi-algebraic sets. We shall also refer to them
as semi-algebraic relations, since they can be seen as n-ary relations over the real
numbers.

We remark that, by the quantifier-elimination theorem of Tarski [38], it is always
possible to represent a semi-algebraic set by a quantifier-free formula. The same the-
orem also guarantees the decidability of the equivalence of two polynomial formulas.

A polynomial database is a finite set of semi-algebraic relations, and a query in the
polynomial database model is a computable mapping from m-tuples of semi-algebraic
relations to a semi-algebraic relation.

The most natural query language for the polynomial data model is the relational
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calculus augmented with polynomial equalities and inequalities, i.e., the first-order
language which contains as atomic formulas polynomial inequalities and formulas of
the form Ri(y1, . . . , yn), where Ri (i = 1, . . . ,m) are semi-algebraic relation names for
the input parameters of the query, and y1, . . . , yn are real variables. In the literature,
this query language is commonly referred to as FO + poly [30].

Example 2.1. The FO + poly formula

R(x, y) ∧ ∀ε(ε ≤ 0 ∨ ∃v∃w(¬R(v, w) ∧ (x− v)2 + (y − w)2 < ε))

has x and y as free variables. For a given binary semi-algebraic relation R, it computes
the set of points with coordinates (x, y) that belong to the intersection of R and its
topological border.

Tarski’s quantifier-elimination procedure ensures that every FO + poly query is ef-
fectively computable and yields a polynomial database as result [28, 29] (this property
is commonly referred to as “closure”).

2.2. The linear database model. Polynomial formulas built from atomic for-
mulas that contain only linear polynomials with real algebraic coefficients are called
linear formulas. Point sets defined by linear formulas are called semi-linear sets or
semi-linear relations.

We remark that there is also a quantifier-elimination property for the linear
model: Any linear formula that contains quantifiers can be converted to an equiv-
alent quantifier-free linear formula. There is a conceptually easy algorithm, usually
referred to as Fourier’s method, for eliminating quantifiers in the linear model (this
method is described in [27, 31]).

A linear database is a finite set of semi-linear relations. As in the polynomial
model, queries in the linear model are defined as mappings from m-tuples of semi-
linear relations to a semi-linear relation. A very appealing query language for the
semi-linear data model, called FO + lin, is obtained by restricting the polynomial
formulas in FO + poly to contain only linear polynomials. Using algebraic computation
techniques for the elimination of variables, one can see that the result of every FO + lin
query is a semi-linear relation [27, 31, 30].

Example 2.2. The FO + lin formula

R(x, y) ∧ ∀ε(ε ≤ 0 ∨ ∃v∃w(¬R(v, w) ∧ x− ε < v < x + ε ∧ y − ε < w < y + ε))

has two free variables: x and y. For a given binary semi-linear relation R, it computes
the set of points with coordinates (x, y) that belong to the intersection of R and its
topological border. In fact, this formula is equivalent to the one in Example 2.1, even
though it makes use of a different metric to compute the topological border. It should
be clear that not every FO + poly formula has an equivalent FO + lin formula.

3. Semi-circular relations. We now describe a class of planar relations in the
constraint model that can be described by linear polynomials and those quadratic
polynomials that describe circles, and then describe an encoding of these relations
as finite relations of points. This encoding will be complete, meaning that every
such relation has an encoding, and lossless, meaning that the original relation can be
recovered from the encoding (even in FO + poly).

Definition 3.1. We call a subset of R2 a semi-circular set or semi-circular
relation if and only if it can be defined as a Boolean combination of sets of the form

{(x, y) | ax + by + c θ 0},
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(a) (b)
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Fig. 2. A semi-circular relation (a) and its carrier (b).

where a, b, and c are real algebraic numbers with a 
= 0 or b 
= 0, and θ is either ≥ or
>; or

{(x, y) | (x− a)2 + (y − b)2 θ c2} ,

where a, b, and c are real algebraic numbers with c 
= 0, and θ is either ≥ or >.
As far as planar figures are concerned, the class of semi-circular relations clearly

contains the class of semi-linear relations.
Example 3.1. Figure 2(a) shows an example of a semi-circular relation. It is the

set

{(x, y) | x2 + y2 ≤ 1 ∨ (y = 0 ∧ 1 ≤ x < 2) ∨ (x > 2 ∧ ¬y = 0)} .

Given such a semi-circular database, we consider all of the sets of the form {(x, y) |
p(x, y) = 0} for each polynomial p(x, y) that occurs in the definition of the semi-
circular relation.

For the semi-circular relation of Figure 2(a), these sets are shown in Figure 2(b)
and are defined by the equations x2 + y2 − 1 = 0, y = 0, x − 1 = 0, and x − 2 = 0.
We refer to these lines and circles as a carrier of the semi-circular relation (or as
the carrier of a particular representation of the semi-circular relation). The carrier
in Figure 2(b) partitions the plane R2 into 21 classes, each of which belongs either
entirely to the semi-circular relation or to its complement. In general, these partition
classes can be disconnected. We then pick a representative of each of these classes,
illustrated by points p1, . . . , p21 in Figure 2(b). We can then represent a semi-circular
relation R by a finite point database1 that consists of three relations, L, P , and C,
as follows:

1. L contains, for each line in the carrier of R, a pair of its points;
2. C contains, for each circle in the carrier of R, its center and one of its points;
3. P contains a representative of each class in the partition induced by the

carrier of R that belongs to R.
The sets L and C are binary relations of points in the plane, while the set P is a

unary relation of points.

1These points can be represented explicitly by their real algebraic coordinates, or implicitly by a
real polynomial formula. Equality of such points can therefore be decided by Tarski’s theorem [38].
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We refer to such a finite representation of a semi-circular relation as an inten-
sional LPC-representation. Clearly, a semi-circular relation can have more than one
intensional LPC -representation, for example, because there may be more than one
constraint formula describing it.

For the semi-circular database of Figure 2(a) we can have the following finite
representation: L consists of the tuples (p7, p8), (p11, p12), and (p16, p17); C consists
of the single tuple (p3, p5); and P consists of the points p2, p3, p4, p5, p7, p9, p10, p12,
p19, and p21.

The complete plane R2 can be represented by L = ∅, C = ∅, and P = {p} for
any point p in R2.

We remark that an intensional LPC -representation of a semi-circular relation is
lossless in the sense that the semi-circular relation can be reconstructed from the repre-
sentation. In section 7, we show how to compute in FO + poly an LPC -representation
of a semi-circular relation and how to reconstruct, also in FO + poly, the semi-circular
relation from its LPC -representation.

As an immediate consequence of the existence of quantifier-elimination algorithms
for the real closed field, we get the following property.

Proposition 3.1. It is decidable whether two LPC-representations of semi-
circular relations represent the same semi-circular relation.

4. The language EuPL. We now define our first programming language, EuPL,
for expressing Euclidean constructions. This language is modeled after the language of
Engeler [11], with two key differences. The language of Engeler uses iteration, but we
are interested only in first-order database query languages. We therefore first explore
the consequences of defining a Euclidean programming language without iteration. An
additional feature of EuPL is that it includes a nondeterministic choice operator. We
decided to include this operator as it is used frequently in the Euclidean constructions
that we want to model, but we shall show that this choice operator is redundant, since,
under appropriate assumptions, it can be simulated by other operations.

EuPL has one basic type 〈var〉 which ranges over points in the Euclidean plane.
We use p, q, . . . to denote variables. There is no basic notion of lines and circles,
since lines are represented by pairs of points (p1, p2) and circles by triples (p1, p2, p3),
where (p1, p2) represents the line through the points p1 and p2 (assuming p1 and p2

are distinct) and (p1, p2, p3) (assuming p2 and p3 are distinct) represents the circle
with center p1 and radius equal to d(p2, p3), the distance between p2 and p3.

2

Our language corresponds to one view of Euclidean constructions, as it is known
that all ruler-and-compass constructions can be carried out on lines and circles that
are represented by points (see [13]). The main reason that we have chosen to use a
point representation in EuPL is to make the language similar to the database languages
in the following sections, where such an encoding really is necessary. As far as EuPL is
concerned, however, we could have defined a similar language with lines and circles as
primitive notions—all of the results in the current section, apart from Theorem 4.2,
would still hold.

The basic predicates in EuPL are as follows:

1. defined(p),
2. p1 = p2,
3. (i) p1 is on line (p2, p3),

2We could also represent circles by pairs (p1, p2), where p1 is the center and p2 a point on the
circle, or in other ways. Our choice is arbitrary, but tends to make actual constructions simpler.
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p2

p1

p3

p4

p1

p2

p3

p4

Fig. 3. The two orientations for c-order(p1, p2, p3, p4).

(ii) p1 is on circle (p2, p3, p4),
(iii) p1 is in circle (p2, p3, p4),
(iv) p1 is on the same side as p2 of line (p3, p4),

4. (i) l-order(p1, p2, p3),
(ii) c-order(p1, p2, p3, p4).

The first condition means that the variable p represents a point. Such a test is
needed, as a variable may be undefined if it is the result of an intersection of two
disjoint objects, such as parallel lines.

Given our encoding of lines and circles, the meaning of the predicates in 3(a–d)
should be clear. For example, p1 is in circle (p2, p3, p4) means that p1 is in the circle
with center p2 and radius d(p3, p4). The predicates in 4(a), 4(b) are order relations.
The predicate l-order(p1, p2, p3) (line-order) means that p1, p2, and p3 are on the
same line, and that p2 is between p1 and p3. c-order(p1, p2, p3, p4) (circle-order)
means that p1, p2, p3, and p4 are all on the same circle, in this order, in either
the clockwise or the counterclockwise direction (see Figure 3). Note that whenever
pairs (respectively, triples) of points do not define lines (respectively, circles), the
corresponding predicates are false.

The basic operations in EuPL to compute intersections of objects correspond to
the combinations line/line, line/circle, and circle/circle.

1. q := l-l-crossing(p1, p2, p3, p4);
2. q1, q2 := l-c-crossing(p1, p2, p3, p4, p5);
3. q1, q2 := c-c-crossing(p1, p2, p3, p4, p5, p6).

The semantics of these operators in most cases should be clear, except that the choice
of which intersection point to assign to q1 and which to q2 is arbitrary.3 In the case
of the intersection of two parallel lines (identical or not), q is undefined, and similarly
for the intersection of two disjoint circles, or for the intersection of a disjoint circle
and line. In the case of a line tangent to a circle or two circles that meet in a single
point, q1 and q2 will be identical.

The choice operator, whose syntax is

choose p such that 〈condition〉 ,

assigns to p, in a nondeterministic manner, a point p that satisfies the given condition.
When 〈condition〉 is unsatisfiable, p is undefined.

3This actually introduces an additional nondeterminism into the language. This can be handled
by straightforward modifications of the proofs that follow and will be ignored from now on.
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p2p1 r
q

p = p4

p′ s

p3

Fig. 4. Construction of the perpendicular.

The language also has a conditional statement if C then S1 else S2 with the
usual semantics. A formal specification of the language appears in the appendix. The
basic notion is that of a multifunction with n input variables and m output variables,
representing points in the plane. Each multifunction is defined by a sequence of
assignment statements and conditional statements, without looping, and its result is
returned by a result statement.

We illustrate the language by several examples, showing how to express several
Euclidean constructions in EuPL.

Example 4.1. Given a line (p1, p2) and a point p not on the line, construct the
perpendicular (p, p′) to the given line from p (see Figure 4).

multifunction perp(p, p1, p2) = (p′);
begin
choose q such that not(q is on the same side as p of line (p1, p2));

r, s := l-c-crossing(p1, p2, p, p, q);
p3, p4 := c-c-crossing(r, r, p, s, s, p);
p′ := l-l-crossing(p1, p2, p3, p4);
result(p′);

end

For another example, we show how to construct an arbitrary point on an ellipse.
Given collinear points a, b, p, and q, we construct, for each r between a and b, points
r′ and r′′ “corresponding” to r such that (a) r′ and r′′ are on the ellipse through a
and b with foci p and q and (b) as r ranges from a to b all the points on this ellipse are
constructed. Note that the ellipse itself is not constructible with ruler and compass
and therefore, as we shall see in Theorem 4.3, cannot be defined by an EuPL program.

Example 4.2. Given the collinear points a, b, p, and q, with d(a, p) = d(b, q), p
between a and q, and q between p and b, r′ is constructed as follows (see Figure 5):

multifunction put-ellipse(a, b, p, q) = (r′);
begin
choose r such that l-order(a, r, b);
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a bqrp

r′

r′′

Fig. 5. Construction of a point on an ellipse.

r′, r′′ := c-c-crossing(p, a, r, q, b, r);
result(r′);

end

The point r′ is on the ellipse with foci p and q and major axis d(a, b) since d(p, r′) +
d(q, r′) = d(a, r) + d(r, b) = d(p, a) + d(q, a) = d(p, b) + d(q, b).

4.1. Consequences of quantifier elimination: Representation indepen-
dence. As pointed out above, EuPL is at least as powerful as a language with lines
and circles as primitives. But EuPL is actually more powerful than desired. For ex-
ample, if we are given a line represented by points (p1, p2), the EuPL program that
returns p1 would have no natural geometric interpretation.

This leads to the following problem: Given an EuPL program, does the result
depend on the representation of the input lines and circles or not? The inputs and
outputs of an EuPL program are just points, with no indication as to what they
“really” represent. We therefore first need to impose an interpretation on these points,
i.e., specify which of these points represent lines or circles.

For example, given a program with inputs (p1, p2, p3, p4, p5) and outputs (q1, q2),
we could interpret (p1, p2) as a line, (p3, p4, p5) as a circle, and (q1, q2) as a line. Other
interpretations of the inputs and outputs of the program are also possible: Given a
specific interpretation we shall refer to P as an interpreted EuPL program.

The formal definition of an interpreted program is very simple. As objects (points,
lines, or circles) are represented by 1, 2, or 3 points, respectively, all we need are two
equivalence relations on the input and output.

Definition 4.1. An interpretation of an EuPL program P is a pair of equivalence
relations Ei and Eo on the input and output variables of P , such that each equivalence
class has between 1 and 3 elements.

Remark. Note that all of the language primitives are well defined, regardless of the
interpretations of the variables. For example, q is in circle (p1, p2, p3) is well defined
even if (p1, p2) represents a line and (p3, q) another line, though it is unlikely to have
an intuitive result or be representation-independent. This means that we do not need
to address the issue of an interpretation of the internal variables of a program.

We now address the issue of whether an EuPL program P is representation-
dependent or not. It turns out that, given an interpretation of P , this is decidable.

First, we define representation dependence.
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Definition 4.2. Let P be an EuPL program with input parameters (p1, . . . , pn)
and output parameters (q1, . . . , qm) for which an interpretation is fixed. We call P
representation-independent if for any two inputs values (a1, . . . , an) and (a′1, . . . , a

′
n)

that represent the same points, lines, and circles in the plane (taking into account
the fixed interpretation), P returns outputs (b1, . . . , bm) and (b′1, . . . , b

′
m), respectively,

that also represent the same points, lines, and circles in the plane (taking into account
the fixed interpretation).

The following theorem follows from the fact that the input-output transformations
in EuPL can be expressed in first-order logic over the reals and from the fact that the
truth of sentences in this logic can be decided (via quantifier elimination) [38].

Theorem 4.1. It is decidable whether the output of an interpreted EuPL program
depends on the representation of its inputs or not.

Proof. Let P be an EuPL multifunction, with inputs �p = (p1, . . . , pn) and outputs
�q = (q1, . . . , qm). We shall write (px, py) for the x- and y-coordinates of a point p, and
shall also write expressions such as tp = q and d(p, q) = t for (tpx = qx ∧ tpy = qy)
and (px − qx)2 + (py − qy)2 = t2 ∧ t ≥ 0, respectively.

We define two formulas, φP (�p, �q,�r) and ψP (�p, �q,�r), over the theory of real closed
fields, where �r is the list of internal variables of P . Intuitively, φP describes how �q
depends on �p, given �r as the results of the choice operations, while ψP describes the
conditions that �r and �q must satisfy. In what follows, whenever ψS is not defined
explicitly, it will be a tautology. The separation between φ and ψ is not really needed
for the current theorem, but will be used later in Theorem 4.2. The basic idea is that
for each intersection operation we add a conjunct that says when the corresponding
objects are defined and have an intersection, while for each choice operation we add
a conjunct that says that the condition is satisfiable. The construction of φ and ψ is
by induction on the rules defining P . We omit some of the straightforward cases. As
a first step, rename variables if needed, to ensure they are not assigned a value more
than once.

1. P is the sequence of statements S1; S2; . . . ; Sk. φP is defined as φS1∧· · ·∧φSk

and ψP as ψS1 ∧ · · · ∧ ψSk
.

2. Assignment statements:
(i) S is q := l-l-crossing(p1, p2, p3, p4). φS can be informally given as

∃!t∃!t′(q = tp1 + (1 − t)p2 ∧ q = t′p3 + (1 − t′)p4).

Note that this formula is unsatisfiable whenever q is undefined.
(ii) S is q, q′ := l-c-crossing(p1, p2, p3, p4, p5). Let φ′

S(q, p1, p2, p3, p4, p5)
be

∃t(q = tp1 + (1 − t)p2 ∧ d(q, p3) = d(p4, p5)),

which means that q is one of the intersection points. Then φS is

φ′
S(q, p1, p2, p3, p4, p5) ∧ φ′

S(q′, p1, p2, p3, p4, p5)

∧(q 
= q′ ∨ (q = q′ ∧ ¬∃q′′(φ′
S(q′′, p1, p2, p3, p4, p5) ∧ q′′ 
= q)));

i.e., q and q′ are distinct intersection points if such exist, and both are
equal to the unique intersection point if only one exists.

(iii) S is q, q′ := c-c-crossing(p1, p2, p3, p4, p5, p6). This is similar to the
previous case.
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3. S is the conditional

if C then S1 else S2 end.

φS is

φC → φS1 ∧ φnot C → φS2 ,

and ψS is

φC → ψS1 ∧ φnot C → ψS2
.

4. S is the choice statement

choose v such that C.

φS is a tautology, and ψS is equal to φC .
5. Conditionals. Most of the conditionals, such as p1 is on line (p2, p3) are han-

dled in a similar way to assignments. The most complicated one is when
C is c-order(p1, p2, p3, p4). Here φC first computes the center of the cir-
cle through p1, p2, and p3 and tests whether p4 is on this circle. If so,
c-order(p1, p2, p3, p4) is true when p2 and p4 are not on the same side of the
line through p1 and p3.

6. C is defined (〈var〉). φC is defined as the appropriate Boolean value.
Assume now that �p and �p′ are two inputs to P that are equivalent with respect to

the given interpretation. Let �q and �q′ be the outputs of P on these inputs. From the
definition of φP and the semantics of P , it follows that ∃�r(φP (�p, �q,�r) ∧ ψP (�p, �q,�r))
and ∃�r′(φP (�p′, �q′,�r′) ∧ ψP (�p′, �q′,�r′)) hold.

Given the interpretation (Ei, Eo) we write formulas ξi(�p, �p
′) and ξo(�q, �q

′) that
specify when the inputs and outputs are equivalent. For example, if {p1, p2} is an
equivalence class in Ei, then

φ
p′
1 is on line(p1,p2)

∧ φ
p′
2 is on line(p1,p2)

∧ p′1 = p′2

is a conjunct in ξi, whereas if {q1, q2, q3} is in Eo, then

q′1 = q1 ∧ d(q′2, q
′
3) = d(q2, q3)

is a conjunct in ξo.
The output of P is then independent of the representation if and only if the

formula

∀�p∀�p′∀�q∀�q′∃�r∃�r′((ξi(�p, �p′) ∧ φP (�p, �q,�r) ∧ ψP (�p, �q,�r)

∧φP (�p′, �q′,�r′) ∧ ψP (�p′, �q′,�r′)) → ξo(�q, �q
′))

holds in the real numbers.
As this is a first-order formula over the theory of real closed fields, the result

follows from Tarski’s theorem.
Using the formulas φP and ψP , given in the proof of Theorem 4.1, it is clear that

we can write an FO + poly-sentence that expresses that two programs have the same
input-output behavior. Therefore, we have the following corollary.

Corollary 4.1. Equivalence of EuPL programs is decidable.
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Note that there were two different ways we could have interpreted the choice op-
erator in the above theorem. Either, for equivalent inputs, we make the same choices,
obtaining equivalent outputs, or we make different choices for both inputs, resulting in
equivalent outputs. We have chosen the first approach above, but modifying the proof
to use the latter approach is trivial. As discussed below, “good” programs should be
choice-independent anyway, so that the distinction is not very important.

The result of the program in Example 4.1 (computation of a perpendicular) does
not depend on the choice made by the choice operator. This is true for the classic
Euclidean constructions as well as for all other “reasonable” EuPL programs. As with
representation independence, the question whether the result of a program depends
on the results of the choice operators is decidable.

The following result holds both for interpreted and for uninterpreted EuPL pro-
grams.

Corollary 4.2. It is decidable whether the result of an EuPL program depends
on the choices made by choose operators.

Corollary 4.3. It is decidable whether the result of an interpreted EuPL program
depends on the representation of its inputs and on the results of the choice operations.

We now show that given two fixed points and a representation- and choice-
independent program P , the use of choice is actually redundant. This means that
P can be converted (effectively) into an equivalent deterministic program.

We now consider a variant EuPL2c of EuPL, which is just EuPL with two additional
distinct constant points p0 and p′0.

Theorem 4.2. Every representation- and choice-independent EuPL2c program P
is equivalent to a program P ′ which does not use the choose operator.

Proof. Let P be an EuPL2c program that is representation- and choice-indepen-
dent. The choice independence of P implies that the outcome of the program does
not depend on the particular value of p that is chosen in any expression

choose p such that ψ(p, p1, . . . , pn)

appearing in P . Therefore, any expression choose p such that ψ(p, p1, . . . , pn) ap-
pearing in P may be replaced by a series of EuPL2c statements, among which there is
no choice statement, provided that the result is a point p satisfying ψ(p, p1, . . . , pn).
We shall now construct such a sequence.

Note first that ψ(p, p1, . . . , pn) is a Boolean combination of basic choice predicates
in EuPL2c. We now show that there exists a formula ψ′(p, p1, . . . , pn), equivalent to
ψ(p, p1, . . . , pn), such that ψ′ is a Boolean combination of atomic predicates in all
of which the variable p is the first variable. It will then follow that p belongs to
an equivalence class of the plane determined by the lines and circles in these atomic
predicates, as these predicates describe how p is located with respect to certain lines
and circles determined by the points p1, . . . , pn.

We show how to move the variable p to the first position for one specific case; the
treatment of the other cases is similar. Consider the predicate

p1 is on the same side as p2 of line (p, p3).

For points p, p1, p2, and p3 that form a quadrangle, this expression is equivalent to
¬((ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2)), where ϕ1 and ϕ2 are, respectively,

p is on the same side as p1 of line (p2, p3)
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and

p is on the same side as p2 of line (p1, p3).

We now define an EuPL2c program that produces a set Sψ′ containing at least
one representative point of each of the equivalence classes of the plane determined by
the lines and circles in the formula ψ′(p, p1, . . . , pn). We then replace

choose p such that ψ(p, p1, . . . , pn)

by a formula that computes these representative points, checks for each of them
whether the condition ψ′(p, p1, . . . , pn) holds, and returns the first such point.

To start with, let Sψ′ be the set {p1, . . . , pn}. Then for each predicate
c-order(p, pi, pj , pk) in ψ′, construct the center of the circle through pi, pj , and pk,
and add it to Sψ′ . For each circle appearing in ψ′ such that no point of Sψ′ occurs
in the circle, take the intersections of the circle and the line that connects the center
to the fixed points p0 or p′0, and them to Sψ′ . Next, construct all of the intersection
points of the circles and lines in the formula and add them to Sψ′ . This deals with
all equivalence classes that are single points.

Next, for every pair of points in Sψ′ add their midpoints to Sψ′ ; for all pairs of
points on a circle then add the midpoints of the arc segments between them, and for
each unbounded line segment add the intersection of this segment and a circle whose
center is the start of the segment and whose radius is the distance between p0 and p′0.
This deals with the one-dimensional equivalence classes.

Finally, for all triples of points in Sψ′ , add their centroids to Sψ′ This deals with
the two-dimensional equivalence classes and completes the proof.

All of the languages that we shall discuss from now on are deterministic. We
should point out that the discussion of choice operators in this section is designed to
motivate the subsequent sections, not to apply directly to them. We have illustrated
why a language without choice operators is appropriate as a language for modeling
Euclidean constructions. This will still be the case for the database languages below,
even though some of our current results (such as decidability) no longer hold in the
presence of a database.

4.2. Euclidean constructions. We now compare the expressiveness of EuPL
with the Euclidean constructions it is intended to model. Our first result in this
direction follows directly from the definitions.

Theorem 4.3. All EuPL multifunctions are constructible with ruler and com-
pass.

What about the converse? The converse does not hold because our language
models first-order ruler-and-compass constructions. For an example of a non–first-
order ruler-and-compass construction, consider the following.

Example 4.3. Let p, q, r, and s be four different points as in Figure 6. Consider
the following construction: First we construct the point q1 on the line through p and
q such that d(q1, q) = d(q, p) such that q1 
= p. Then we repeat this construction until
we get to the other side of the line through r and s. The result will be the first point
to the right of the vertical line (qn with n = 10 in Figure 6).

The computation of this point requires iteration, as stated in the following lemma.
Lemma 4.1. The above construction cannot be expressed by an EuPL program.
Proof. From the proof of Theorem 4.1 it follows that any EuPL program can be

expressed in FO + poly. If the construction from Example 4.3 would be expressible
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Fig. 6. Non–first-order construction.

by an EuPL-program, it would therefore be possible in FO + poly to test whether
the distance from p to the vertical through r and s is a multiple of d(p, q), which
would allow integers to be definable in FO + poly. Results in [35] would imply the
undecidability of FO + poly, a contradiction.

5. The language EuQL. Our goal is to define a database query language for
Euclidean geometry. In this section we describe an initial attempt, EuQL, at defining
such a language. EuQL should be a declarative database language, so assignment
statements are replaced by predicates. For example, the crossing-point operators
become predicates rather than assignments. In addition, the defined predicate is not
needed, as existential quantifiers can be used instead.

The relations of the input database are finite two-dimensional point relations,
i.e., finite tuples of two-dimensional points, represented by real polynomial formulas.
The relation Ri, of arity mi, is an mi-ary finite two-dimensional point relation, i.e., a
2mi-ary relation over the reals. An EuQL query over a schema R1, . . . , Rn is of the
form

Q(R1, . . . , Rn) = {(v1, . . . , vm) | ϕ(R1, . . . , Rn, v1, . . . , vm)} ,

where ϕ is a formula in the first-order logic with equality, database predicates, all
constant points with real algebraic coordinates, and the following predicates:

1. 〈var〉 is on line (〈var〉 , 〈var〉),
2. 〈var〉 is on circle (〈var〉 , 〈var〉 , 〈var〉),
3. 〈var〉 is in circle (〈var〉 , 〈var〉 , 〈var〉),
4. 〈var〉 is on the same side as 〈var〉 of line (〈var〉 , 〈var〉),
5. l-order(〈var〉 , 〈var〉 , 〈var〉),
6. c-order(〈var〉 , 〈var〉 , 〈var〉 , 〈var〉),
7. 〈var〉 is l-l-crossing point of (〈var〉 , 〈var〉 , 〈var〉 , 〈var〉),
8. 〈var〉 is l-c-crossing point of (〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉),
9. 〈var〉 is c-c-crossing point of (〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉),

EuQL has three constant points o, e1, and e2, with (o, e1) perpendicular to (o, e2).
We shall refer to the line through o and e1 as the x-axis and to the line through o
and e2 as the y-axis.

The semantics of EuQL are defined as a function

S(Q) : R1 × · · · × Rn → R ,

where Ri is the type of relation Ri and R the type of the result relation of Q.
The interpretations of variables, logical connectives, etc., are standard. The other
predicates are interpreted in the natural way.

For example, we have the following:
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1. S(v1 is on line (v2, v3))(r1, . . . , rn) is the set of those tuples (av1
, av2

, av3
) for

which av2 and av3 are distinct and av1 , av2 , and av3 are collinear.
2. S(v1 is on circle (v2, v3, v4))(r1, . . . , rn) is the set of those tuples (av1 , av2 ,

av3 , av4) for which av1 is on the circle with center av2 and radius d(av3 , av4)
and av3 and av4 are distinct.

The three special points are interpreted as a coordinate system.

Example 5.1. Given a binary relation R that consists of pairs of points, return
the unary relation with the midpoints of each tuple of R:

{(p) | ∃p1∃p2((R(p1, p2) ∧ p1 = p2 ∧ p = p1)

∨ (R(p1, p2) ∧ ¬(p1 = p2) ∧ p is on line (p1, p2)

∧ ∃p3∃p4(p3 is on circle (p1, p1, p2)

∧ p3 is on circle (p2, p2, p1)

∧ p4 is on circle (p1, p1, p2)

∧ p4 is on circle (p2, p2, p1)

∧¬(p3 = p4) ∧ p is on line (p3, p4))))}.

Unfortunately, it turns out that EuQL is too powerful. To show why, we define
a query that constructs an ellipse, and thus show that EuQL expresses more than
just the Euclidean constructions. The construction is similar to the construction of
an arbitrary point on an ellipse in EuPL, but by using first-order quantifiers we can
essentially simulate choice operators and iterate over all possible choices.

Example 5.2. Given a 4-ary relation of points, for each tuple t return the ellipse
with foci t1 and t2, and major axis equal to d(t3, t4):

{(p) | ∃t1∃t2∃t3∃t4∃q
(R(t1, t2, t3, t4) ∧ t2 is on circle (t4, t1, t3) ∧ l-order(t3, t1, t2)

∧ l-order(t1, t2, t4) ∧ ¬(t3 = t4) ∧ l-order(t3, q, t4)

∧ p is on circle (t1, t3, q) ∧ p is on circle (t2, t4, q))}.

Theorem 5.1. EuQL can express queries that are not constructible in Euclidean
geometry.

While this shows that EuQL does not match the intuition we had in mind, one
might hope that it would still serve as a language between FO + lin and FO + poly.
This is not the case, however, as the following result shows.

From Euclid, we know that multiplication can be performed with ruler and com-
pass, and so the following theorem holds.

Theorem 5.2. On finite point databases,4 EuQL has the same expressive power 5

as FO + poly.

In order to obtain the desired language, we shall now restrict EuQL in an appro-
priate way.

4We define finite point databases as database instances over some database schema R1, . . . , Rn

in which the interpretation of each relation Ri is a finite set of points in R2.
5Let can be the canonical bijection mapping a point p of R2 to the pair (px, py) of its real

coordinates. An EuQL query Q over an input schema R1, . . . , Rn has the same expressive power as
an FO + poly query Q′ over the schema R′

1, . . . , R
′
n, where the arity of R′

i is double the arity of Ri

if for any instance A1, . . . , An over R1, . . . , Rn, can(Q(A1, . . . , An)) = Q′(can(A1), . . . , can(An)).
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6. The language SafeEuQL. In this section we define a subset of EuQL, called
SafeEuQL, that consists of queries whose results, on finite databases, are constructible
in Euclidean geometry. This subset consists of those EuQL queries that satisfy a
syntactically defined safety condition, whose intuition is to restrict the domain over
which variables range to be finite, as soon as the input database is finite.

A 〈disjunction〉 is defined as a disjunction of 〈conjunction〉’s, and a 〈conjunction〉
is a conjunction of 〈factor〉’s. A 〈factor〉 is a 〈term〉 or a ¬ 〈term〉. Finally, a 〈term〉
is either ∃ 〈var〉 (〈disjunction〉) or is an EuQL primitive, including the three constant
points. We say that an EuQL expression is in safe-range normal form if it can be
defined as a 〈disjunction〉.

We now define the set of variables which are safe in an EuQL expression in safe-
range normal form. Let R be a relation with attributes of type point. Denote the set
of safe variables of an expression ϕ, with ϕ in safe-range normal form, by Sv(ϕ). The
set Sv(ϕ) then is defined as follows:

1. Sv(R(v1, . . . , vp)) equals {v1, . . . , vp}.
2. For each of the EuQL primitives ϕ, Sv(ϕ) equals the empty set.
3. Sv(∃vϕ) equals Sv(ϕ) − {v}.
4. Sv(¬ϕ) equals the empty set.
5. Sv(ϕ1 ∧ ϕ2) equals the smallest set S, with respect to ⊆, such that the

following properties hold:
(i) if ϕi is the expression “v1 = v2” with v1 or v2 in S, then both v1 and v2

are in S;
(ii) if ϕi is the expression “v1 is l-l-crossing point of (v2, v3, v4, v5)” and

the variables v2, . . . , v5 are in S, then v1 is in S;
(iii) if ϕi is the expression “v1 is l-c-crossing point of (v2, v3, v4, v5, v6)”

and the variables v2, . . . , v6 are in S, then v1 is in S;
(iv) if ϕi is the expression “v1 is c-c-crossing point of (v2, v3, v4, v5, v6,

v7)” and the variables v2, . . . , v7 are in S, then v1 is in S; and
(v) Sv(ϕ1) ∪ Sv(ϕ2) is a subset of S.

All the above cases also hold for the appropriate variables when the remaining
variables are constants. Showing existence of the set S is straightforward.

6. Sv(ϕ1 ∨ ϕ2) equals Sv(ϕ1) ∩ Sv(ϕ2).
Definition 6.1. An EuQL query {(v1, . . . , vm) | ϕ(R1, . . . , Rn, v1, . . . , vm)}, with

ϕ in safe-range normal form, is called safe if
1. for each subformula of ϕ of the form ∃vψ, it is the case that v ∈ Sv(ψ), and
2. every free variable vi of ϕ is in Sv(ϕ).

Example 6.1. Consider again the query which computes the midpoints of all
tuples of a binary relation R. This query can be expressed with a safe EuQL query as
follows:

{(p) | ∃p1∃p2(p1 = p2 ∧R(p1, p2) ∧ p = p1)
∨∃p1∃p2∃p3∃p4(¬(p1 = p2) ∧ ¬(p3 = p4) ∧R(p1, p2)
∧ p3 is c-c-crossing point of (p1, p1, p2, p2, p1, p2)
∧ p4 is c-c-crossing point of (p1, p1, p2, p2, p1, p2)
∧ p is l-l-crossing point of (p1, p2, p3, p4))}.

The variables p1 and p2 are safe in both parts of the disjunction because of the
EuQL term R(p1, p2). The variables p3 and p4 in the second part of the disjunction
are safe since they are the two intersection points of circles defined in terms of the
safe variables p1 and p2. Finally, p is safe because it denotes the intersection point of
two lines defined by safe variables.
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To show that safety of an EuQL query is a syntactical requirement, consider the
query that computes the midpoint of two points as given in Example 5.1. This time,
the formula is not safe because p3, p4, and p are not safe.

The set of all safe EuQL queries will be called SafeEuQL. The following closure
property holds.

Theorem 6.1. A SafeEuQL query applied to a finite point database yields a finite
point database which can be constructed by ruler and compass from the input.

Proof. Let B be a finite point database and ϕ a SafeEuQL expression. We show
that, when ϕ is applied to B, every variable v in Sv(ϕ) ranges over a finite domain.

First, let ϕ be quantifier-free. We prove the claim on the safe variable v in ϕ by
induction on the length of ϕ, i.e., on the number of propositional connectives in ϕ.

For the basis, observe that the only SafeEuQL expressions with v as a safe variable
are those of the form R(. . . , v, . . .), v = c1, v is l-l-crossing point of (c1, c2, c3, c4),
v is l-c-crossing point of (c1, c2, c3, c4, c5), or v is c-c-crossing point of (c1, c2,
c3, c4, c5, c6) with c1, . . . , c6 safe. By assumption the relation R is finite, and thus the
claim holds.

Now assume that the claim holds for safe variables in quantifier-free SafeEuQL
expressions of length at most k. Let v be a safe variable in the quantifier-free SafeEuQL
expression ϕ of length k + 1. There are two cases:

1. ϕ ≡ ψ1 ∨ψ2. From the definition of safety it follows that v is safe in both ψ1

and ψ2. By the induction hypotheses, we know that for ψ1 and ψ2 applied to
B, v ranges over finite domains, say D1 and D2. Then when ϕ is applied to
B, v must range over a domain contained in D1 ∪D2.

2. ϕ ≡ ψ1∧ψ2. Denote by S the union of Sv(ψ1) and Sv(ψ2). By the induction
hypothesis, when ψ1 and ψ2 are applied to B, each variable of S ranges over a
finite domain. Let D be the union of all these domains. Repeat the following
process until v is in S. Consider every SafeEuQL primitive in ϕ which does
not occur in any ¬ψ, where ¬ψ is a subformula of ψ1 or ψ2.
If the primitive is of the form v1 = v2 with v1 ∈ S, then add v2 to S. If the
primitive has the form v1 is l-l-crossing point of (v2, v3, v4, v5), v1 is l-c-
crossing point of (v2, v3, v4, v5, v6), or v1 is c-c-crossing point of (v2, v3,
v4, v5, v6, v7), where the points v2, . . . , v7 are all in S, then add v1 to S and let
D′ be the finite set of crossing-points obtained by letting the variables v2, . . . ,
v7 range over the points of D. Add the points in D′ to D. The resulting set
is still finite, and every variable of S ranges over at most the points in D.
Since, by assumption, v is safe in ϕ, it follows that this process terminates
after a finite number of steps. Thus, for ϕ applied on B, v ranges over a finite
set of points.

Note that the case ϕ ≡ ¬ψ cannot occur because it has no safe variables.

Next, consider a SafeEuQL term of the form ∃vψ with ψ quantifier-free. By the
definition of safety, v must be safe in ψ. As a consequence of the first part of the
proof, when ψ is applied on B, v ranges over a finite domain, say Dv. Replace the
formula ∃vψ in ϕ by Dv(v)∧ψ, which results in a SafeEuQL expression with the same
result on B as ϕ. Since ϕ has only a finite number of quantifiers, we can repeat this
process until we obtain a quantifier-free SafeEuQL expression with the same result as
ϕ on the finite point database B. All (free) variables in this expression range over a
finite domain, and thus the result of the expression will also be finite.

Finally, observe that every EuQL primitive can be simulated with ruler and com-
pass. Since every variable in a SafeEuQL expression applied to a finite point database
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ranges over a finite set of points, there exists a finite sequence of ruler-and-compass
constructions which yields the same set of points as the SafeEuQL expression. Thus,
for every SafeEuQL expression, the finite output database can be constructed with
ruler and compass from the input database, which concludes the proof.

Theorem 6.2. SafeEuQL has full arithmetical power on the coordinates of safe
variables; i.e., we can subtract, add, multiply, and divide coordinates of such vari-
ables.

Proof. Assume that p and q are safe variables. Using the three fixed points as a
coordinate system, we write SafeEuQL queries to compute the points with coordinates
(p1, 0), (0, p2), (q1, 0), and (0, q2), where p1, p2, q1, and q2 are the coordinates of the
points p and q, respectively. Without loss of generality, we can therefore assume that
p and q are safe variables with coordinates of the form (p1, 0) and (q1, 0). If we
then consider the well-known ruler-and-compass constructions for multiplication and
division, it is easy to see that they can be expressed as SafeEuQL queries. This
concludes the proof.

7. The main results. We now define two query languages which are closed on
semi-circular relations. The first, SafeEuQL↑, captures those first-order geometrical
constructions that can be described by ruler and compass. The second captures
all FO + poly expressible queries that map semi-circular relations to semi-circular
relations.

To define these languages, we lift the query language SafeEuQL, which is defined
on finite point databases, to a language called SafeEuQL↑, which is defined on semi-
circular databases. This is done by interpreting these SafeEuQL↑ queries to work on
the intensional representations of semi-circular databases defined in section 3.

We use the following convention: Rpoly refers to a two-dimensional semi-algebraic
relation, Rcirc to a semi-circular relation, and Rlin to a two-dimensional semi-linear
relation.

Given an LPC -database which, by definition, consists of finite relations of points
in the plane, there exists a database consisting of three relations containing the coor-
dinates of the points in the relations L, P , and C, respectively. Indeed, for every point
appearing in the relations L, P , or C, we can compute the coordinates of that point
with respect to the coordinate system defined by the constant points o, e1, and e2,
by constructing parallel lines with the line oe2 (respectively, oe1) through the points
in the finite relations, and then taking the intersection of these lines with the line oe1

(respectively, oe2).
In the following, we shall not distinguish between the point and coordinate rep-

resentation of an LPC -database; i.e., given L, P , and C relations, we will interpret
them as points or coordinates depending on the context in which they are used.

7.1. The query language SafeEuQL↑. Before defining SafeEuQL↑, we need
two lemmas. The first is straightforward.

Lemma 7.1. There exists an FO + poly query Q(L,P,C)→Rcirc
that maps the co-

ordinate representation of every intensional LPC-representation of a semi-circular
relation to the semi-circular relation it represents.

Lemma 7.2. There exists an FO + poly query

QRcirc→(L,P,C)

that maps any semi-circular relation to the coordinate representation of an intensional
LPC-representation of this relation.
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(L, P,C) (L, P,C)
SafeEuQL

Rcirc Rcirc

ψRcirc→(L,P,C) ψ(L,P,C)→Rcirc

Fig. 7. The query language SafeEuQL↑ is closed on semi-circular relations.

Proof. Let S be a semi-circular set. It is well known that the topological boundary
of S, ∂S can be expressed in FO + poly (e.g., using the first-order definition of ε-
environments of points). The same is obviously true for the complement of S, Sc and
therefore also for the boundary of the complement of S, ∂Sc.

Consider the following sets. Let LS be the set of all triples (a, b, c) of R3 such that
the line ax+by+c = 0 has infinitely many points in common with ∂S or with ∂Sc. Let
CS be the set of all triples (a, b, r) of R3 such that the circle (x−a)2+(y−b)2−r2 = 0
has infinitely many points in common with ∂S or with ∂Sc. Next, let us denote by
∂2S the set consisting of all isolated points of ∂S and of ∂Sc and of all end points of
half-lines, line segments, and circle segments on ∂S or ∂Sc (a point p is said to be an
end point of a line segment l with carrier c if there exists an ε > 0 and a point q such
that d(p, q) < ε and q ∈ c \ l; and end point of a circle segment is defined in a similar
way). Let IS be the set of all triples (1, 0,−a) and (0, 1,−b) of R3 such that (a, b)
are the coordinates of a point of ∂2S.

It is clear that all lines and circles in a carrier of S are appearing in LS ∪ IS ,
respectively CS , albeit multiple times (except for the lines given by IS). We can
consider the first-order definable equivalence relation ∼L on LS ∪ IS , defined as
(a, b, c) ∼L (a′, b′, c′) if and only if the equations ax+by+c = 0 and a′x+b′y+c′ = 0 de-
fine the same line (i.e., if and only if ac′ = a′c and bc′ = b′c). We can also consider the
first-order definable equivalence relation ∼C on CS , defined as (a, b, r) ∼L (a′, b′, r′) if
and only if the equations (x−a)2 +(y− b)2− r2 = 0 and (x−a′)2 +(y− b′)2− r′2 = 0
define the same circle (i.e., if and only if a = a′, b = b′, and r = ±r′). By the definable
choice property (see, e.g., Property 1.2 in Chapter 6 of [39]), representatives of each
equivalence class can be first-order defined. Once this is done it is easy to obtain
two representative points on each line in the L relation of S and the center and a
representative point on each circle in the C relation of S.

It remains to be shown that also the P relation of S can be first-order defined.
The sets LS ∪ IS and CS partition R2 according to the following first-order definable
equivalence relation ∼S : (x, y) ∼S (x′, y′) if and only if for all (a, b, c) ∈ LS ∪ IS ,
ax + by + c and ax′ + by′ + c have the same sign (= 0, < 0, or > 0) and for all
(a, b, r) ∈ CS , (x − a)2 + (y − b)2 − r2 and (x′ − a)2 + (y′ − b)2 − r2 have the same
sign.

Since ∼S is first-order definable, again by the definable choice property, represen-
tatives of each equivalence class of ∼S can be first-order defined and added to the P
relation of S whenever these representatives belong to S.

Definition 7.1. SafeEuQL↑ is the set of all queries Q of the form

Q(L,P,C)→Rcirc
◦QSafeEuQL ◦QRcirc→(L,P,C),

where QSafeEuQL is a SafeEuQL query (see Figure 7).
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Qlin

QSafeEuQL

(L, P,C)

Rlin

QSafeEuQL
(L, P,C)

Rlin

Qlin

QRlin→(L,P,C) Q(L,P,C)→Rlin

Fig. 8. Any FO + lin query on semi-linear relations can be simulated in SafeEuQL on the
intensional level. The two arrows at the left denote the property that any semi-linear relation can
be defined in the language FO + lin and that any LPC-database can be defined in SafeEuQL.

A SafeEuQL↑ query is therefore a composition of three queries. First, the query
maps a semi-circular relation to its LPC -representation. The point representation
of this LPC -database then is the input of a SafeEuQL query which produces an-
other LPC -database. Finally, the coordinate representation of this LPC -database is
mapped to the semi-circular relation it represents. (A similar “lifting” idea is used in
[5].)

The language SafeEuQL↑ is closed on the class of semi-circular relations. This is
illustrated in Figure 7. We thus have a syntactically defined subclass of FO + poly
that is closed on semi-circular relations.

7.2. On semi-linear relations the language SafeEuQL↑ is more expressive
than FO + lin. As discussed in section 3 and Lemma 7.2, every two-dimensional semi-
linear relation can be intensionally represented as a finite LPC -database. We will
show that every FO + lin query on semi-linear relations can be simulated in SafeEuQL
on the intensional level. Therefore, we can conclude that SafeEuQL↑, on semi-linear
databases, can express every FO + lin query. On the other hand, it is clear that
SafeEuQL↑ is more expressive than FO + lin on linear inputs, simply because the latter
can output linear databases only, while the former can also produce semi-circular ones.

This is illustrated in Figure 8 and stated more precisely in the following theorem,
whose proof follows later in this section.

Theorem 7.1. There exist FO + poly queries QRlin→(L,P,C) : Rlin �→ (L,P,C)
and Q(L,P,C)→Rlin

: (L,P,C) �→ Rlin such that, for every FO + lin query Qlin : Rlin �→
Rlin, there exists a SafeEuQL query QSafeEuQL : (L,P,C) �→ (L,P,C) such that

Qlin = Q(L,P,C)→Rlin
◦QSafeEuQL ◦QRlin→(L,P,C).

The main difficulty is to prove the existence of the SafeEuQL query which sim-
ulates a given FO + lin query. From Lemmas 7.1 and 7.2, it follows that there exist
FO + poly queries which translate a linear relation into the coordinate representa-
tion of a corresponding LPC -database, and vice versa. Moreover, an examination of
the proofs of Lemmas 7.1 and 7.2 shows that the corresponding LPC -database for
a linear relation has an empty C-relation; we shall refer to such an encoding as an
LP -database.
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The main difficulty in simulating an FO + lin expression by a SafeEuQL expression
is that, in general, subformulas of FO + lin expressions operate in a higher dimensional
space, due to the quantifiers that may be present in the expression. Therefore, the
LP -representation technique for two-dimensional linear relations has to be generalized
to allow the representation of higher dimensional linear relations. For any semi-linear
set of Rn, there exist a finite number of n-dimensional hyperplanes which partition Rn

into topologically open, convex cells, such that a finite number of these cells constitute
the given semi-linear set. These (n − 1)-dimensional hyperplanes are finitely repre-
sented with n linearly independent points. An n-dimensional point p can be repre-
sented within SafeEuQL as a tuple of n two-dimensional points as ((p1, 0), . . . , (pn, 0)),
where pi is the ith coordinate of p. Based on this, each n-dimensional semi-linear set
is represented in SafeEuQL by a pair of relations (Hn, Pn), where Hn is a 2n2-ary
relation containing the representation of a finite number of (n − 1)-dimensional hy-
perplanes, and where Pn is a 2n-ary relation containing the representations of the
representatives of the partition classes that constitute the semi-linear set. More pre-
cisely, the hyperplane in Rn through the points pi = (pi,1, . . . , pi,n) ∈ Rn, 1 ≤ i ≤ n, is
stored in Hn by the 2n2-ary tuple (((p1,1, 0) . . . , (p1,n, 0)), . . . , ((pn,1, 0) . . . , (pn,n, 0))).
As an example, the semi-linear subset {(x, y, z) ∈ R3 | z > 0 ∧ y > 0} of R3 could
be given by (H3, P 3), with H3 = {((0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (1, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0))} and P3 = {((1, 0), (1, 0),
(1, 0))}.

Before giving the proof of Theorem 7.1, we prove two lemmas.

The first follows immediately from the fact that we can do arithmetic with Eu-
clidean constructions.

Lemma 7.3. Denote by Hn the 2n2-ary point relation containing the representa-
tion of a finite number of hyperplanes of the n-dimensional space. Assume that x and
y are safe variables. There exists a SafeEuQL expression SameSide(Hn; p, q) which
decides whether the two n-dimensional points p and q are on the same side of each
hyperplane of Hn.

Lemma 7.4. Denote by Hn the 2n2-ary point relation containing the represen-
tation of a finite number of hyperplanes of the n-dimensional space. There exists a
SafeEuQL expression which computes the relation Pn that contains at least one rep-
resentative point for every partition class induced by the hyperplanes of Hn.

Proof. First, add the representation of every coordinate-plane of the n-dimensional
space to the relation Hn. The partition induced by the hyperplanes of this new rela-
tion Hn is a refinement of the partition induced by the old relation Hn. Therefore, a
finite set of representatives of this new partition is also a set of representatives of the
old partition.

Next, take n hyperplanes from the relation Hn which are linearly independent,
i.e., if no pair is either parallel or equal. We can test this in SafeEuQL as follows. Let
p be an arbitrary point on the first hyperplane and q on the second. If, for each point
r on the first hyperplane, the point as r+ q− p belongs to the second hyperplane, the
two hyperplanes are equal or parallel. Since p, q, and r have to be in Hn, they must be
safe variables, and by Theorem 6.2 we obtain a SafeEuQL expression which computes
r + q − p. From Lemma 7.3 we can test in SafeEuQL whether a point belongs to a
given hyperplane, and so we can test linear independence of hyperplanes in SafeEuQL.

Every set of n linearly independent hyperplanes of the n-dimensional space in-
tersects in exactly one point. Using Theorem 6.2 again, we construct a SafeEuQL
expression for computing this intersection point. Denote by I the set of all of inter-
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section points of all sets of n linearly independent hyperplanes of Hn. (I cannot be
empty since each hyperplane of Hn intersects at least n − 1 coordinate planes and
therefore contributes at least one point to I.)

We now compute representative points of the bounded partition classes induced
by the hyperplanes of Hn. Each bounded partition class is convex, since it is the
intersection of a finite number of open half-planes. Therefore, the topological closure
of a partition class can be written as the convex hull of a finite number of points, the
corner points, which must be in I, and the barycenter of these corner points can be
taken as a representative, which can be expressed in SafeEuQL.

For unbounded partition classes, the set I may not suffice to compute the rep-
resentative points. To handle this case we use a “bounding box”: Each partition
class will have a nonempty intersection with this bounding box, and we can choose a
representative of the intersection of the partition class with the bounding box.

We now show how to construct this bounding box. For each coordinate plane
of the n-dimensional space, we compute, in SafeEuQL, two hyperplanes parallel with
this coordinate plane such that all points of I are between these hyperplanes.

Denote by HB the resulting set of 2n, and let B be the open n-dimensional
bounding box defined by the hyperplanes of HB . We claim that B has a nonempty
intersection with each partition class induced by the hyperplanes of Hn. Indeed, each
unbounded partition class has at least one corner point: It intersects at least n − 1
coordinate planes which were added to Hn. This corner point was obtained from
intersections of hyperplanes of Hn and is therefore contained in B. Since B is open,
there exists a neighborhood of the corner point which is completely contained within
B. The corner point, however, is also in the topological closure of its partition class,
and therefore, this neighborhood has a nonempty intersection with the partition class.
Therefore B has a nonempty intersection with the partition class. Finally, bounded
partition classes are completely contained within B, since their topological closure
can be written as the convex hull of points of I.

Let I ′ be the set of all intersection points of n linearly independent hyperplanes of
Hn∪HB , which can be computed in SafeEuQL. The finite set of points Pn containing
the barycenter of each n-tuple of points from I ′ contains, for each partition class
induced by the hyperplanes of Hn, a representative of the intersection of that partition
class with B. Since each partition class has a nonempty intersection with B, the set
Pn contains a representative for each partition class induced by the hyperplanes of
Hn.

Proof of Theorem 7.1. Assume that Qlin is an FO + lin query defined by a formula
ϕ of FO + lin. Let Ilin be an arbitrary two-dimensional linear relation, and let Olin

be the result of Qlin applied on Ilin .

Denote the LP -representations for Ilin and Olin by IL, IP and OL, OP , re-
spectively, which can be computed in FO + poly (see Lemma 7.2). We now con-
struct SafeEuQL queries QL and QP such that for any input relation Ilin with LP -
representation IL and IP , QL(IL, IP ) = OL and QP (IL, IP ) = OP , where OL and OP

are an LP -representation of the output Olin = Qlin(Ilin).

We prove this by induction on the structure of ϕ. For each subformula of ϕ with
n free variables, we construct two SafeEuQL queries that construct the relations Hn

and Pn, corresponding to the two parts of the LP -representation of the result.

1. Atomic formula of the form Ilin(x, y). For each tuple (p, q) of IL, H2 should
contain a tuple of the form ((px, 0), (py, 0), (qx, 0), (qy, 0)), where px, py, qx,
qy are the coordinates of p and q. For each tuple (p) of IP , PI should contain
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a tuple ((px, 0), (py, 0)). This can easily be expressed in SafeEuQL.
2. Atomic formula of the form

∑n
i=1 aixi θ 0, with θ ∈ {=, <,>}. There exist

n linearly independent points p1, . . . , pn such that the smallest affine space
containing p1, . . . , pn is precisely the hyperplane given by

∑n
i=1 aixi = 0,

and there also exists a point p satisfying
∑n

i=1 aixi θ 0. Furthermore, the
coordinates of these points can be computed in SafeEuQL. From this, it
follows immediately that Hn and Pn can be expressed in SafeEuQL.

3. ϕ1(x1, . . . , xm) ∨ ϕ2(x1, . . . , xn). If m 
= n, assume without loss of generality
that m < n. Assume that we have already computed the sets (Hm

1 , Pm
1 )

and (Hm
2 , Pm

2 ) in SafeEuQL. We first convert (Hn
1 , P

n
1 ) to a representation

of the formula ϕ1(x1, . . . , xm, . . . , xn) in n-dimensional space by padding the
representation of each point with n−m zeros.
The representation (Hn, Pn) of ϕ1(x1, . . . , xn) ∨ ϕ2(x1, . . . , xn) is then com-
puted as follows. Hn is the union of Hn

1 and Hn
2 . Let P be a set of repre-

sentatives of all the partition cells induced by the hyperplanes represented by
Hn. The set Pn is then obtained from P as

{x | P (x)∧∃y((Pm
1 (y)∧SameSide(Hm

1 ;x, y))∨(Pm
2 (y)∧SameSide(Hm

2 ;x, y)))} .

4. ¬ϕ1(x1, . . . , xm). In this case, Hm = Hm
1 and Pm = {x | P (x)∧¬∃y(Pm

1 (y)∧
SameSide(Hm

1 ;x, y))}.
5. ∃xiϕ1(x1, . . . , xm). Let Hm and Pm be the representation of ϕ1. For every

two hyperplanes of Hm, compute a finite representation of their intersection,
and project this representation onto the appropriate m−1 dimensions. If the
projection of two points coincides, introduce an arbitrary new point, so that
we obtain (m − 1) linearly independent points denoting a hyperplane in the
ith coordinate plane, and add a tuple with these (m − 1) points to Hm−1.
To compute Pm−1, let P be the set of all representatives of the partition
induced by the hyperplanes in Hm−1. Let p be a point of P and q a point
of Pm. Compute the intersection point r of the perpendicular to the ith
coordinate plane through p with the hyperplane through q parallel with the
ith coordinate plane. If q and r belong to the same partition class induced by
the hyperplanes of Hm, add p to Pm−1. It is straightforward to verify that
this can be computed in SafeEuQL.

We have obtained two SafeEuQL queries that compute the relations

{((p1, 0), (p2, 0), (q1, 0), (q2, 0)) | OL((p1, p2), (q1, q2))}

and

{((p1, 0), (p2, 0)) | OP ((p1, p2))}.

From these, computing OL and OP is trivial.

7.3. On both semi-circular and semi-linear relations, FO + poly is more
expressive than SafeEuQL↑. We define the fragment of FO + poly that maps semi-
circular relations to semi-circular relations. Later on, we will show that this language
also allows for the formulation of “nonconstructible” queries and therefore is more
powerful than SafeEuQL↑.

Definition 7.2. Let FO + polycirc be the set of FO + poly queries that map semi-
circular relations to semi-circular relations.

The following result follows immediately from Lemma 7.5 below.
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QSafeEuQL

Qcirc

Rcirc

(L, P,C)

Qcirc
Rcirc

(L, P,C)
QSafeEuQL

Q(L,P,C)→Rcirc QRcirc→(L,P,C)

Fig. 9. The query languages SafeEuQL↑ and FO + polycirc. Again, the arrows at the left denote
which relations and databases can be defined in the respective languages.

Theorem 7.2. SafeEuQL↑ is a strict subset of FO + polycirc.

Lemma 7.5 (Figure 9). For every SafeEuQL query, there exists an FO + polycirc

query Qcirc : Rcirc �→ Rcirc such that

QSafeEuQL = QRcirc→(L,P,C) ◦Qcirc ◦Q(L,P,C)→Rcirc
,

but not conversely.

Proof. First, we show the existence of the FO + polycirc query Qcirc. From Theo-
rem 5.2, it follows that every query expressible in EuQL can be simulated in FO + poly.
The same holds for SafeEuQL, since it is a sublanguage of EuQL. Let Q̃circ be the
FO + poly query which simulates the SafeEuQL query QSafeEuQL; i.e., Q̃circ applied to
the coordinate representation of an LPC -database has the same result as QSafeEuql

applied to the LPC -database. Then let Qcirc be the query Q(L,P,C)→Rcirc
◦ Q̃circ ◦

QRcirc→(L,P,C). Clearly, Qcirc is an FO + polycirc query which satisfies the above con-
ditions.

For the second part, consider the query that maps a semi-circular relation con-
sisting of a line segment qr and a point p that is not collinear with q and r to the same
relation augmented with two line segments ps and pt such that the angles ∠pqs, ∠pst,
and ∠ptr are equal. This query is expressible in FO + poly. Since the query maps
every semi-circular relation to a semi-circular relation, it belongs to FO + polycirc.
However, it is not expressible in SafeEuQL↑, since the trisection of an angle cannot be
done with ruler and compass, and is therefore not expressible in SafeEuQL.

We conclude with a remark on FO + poly, which is defined on Rpoly relations. The
richer class of 2-dimensional figures on which FO + poly is defined allows us to express,
for example, the construction of an ellipse. Once restricted to semi-circular relations,
however, it follows immediately from the definitions that FO + poly and FO + polycirc

have the same expressive power.

8. Conclusion. Figure 10 summarizes our results.

1. On the bottom level of Figure 10, we have FO + lin as a query language
on semi-linear relations. Recall that queries concerning Euclidean distance
are not expressible in this language. Not only does the data model only
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‖

Fig. 10. Comparison of the different query languages.

allow semi-linear relations, but, moreover, there are FO + poly queries map-
ping semi-linear relations to semi-linear relations that are not expressible in
FO + lin, for example, the transformation of a relation into its convex hull
[41].

2. On the next level, we have more expressive power on (the intensional rep-
resentation of) semi-linear relations. We can also express queries that in-
volve Euclidean distance. The data model also supports a larger class of
relations than the semi-linear ones. All queries expressible in SafeEuQL are
constructible by ruler and compass. So, the trisection of a given angle, for
instance, is not expressible in SafeEuQL.

3. In FO + polycirc, we gain in expressive power compared to the previous level.
For example, trisection of an angle is expressible in this language. The lan-
guage FO + polycirc has the same expressive power as FO + poly on semi-
circular relations.

4. On the top level, we have FO + poly. Here, the data model supports all
relations definable with polynomial constraints, including queries (e.g., con-
struction of an ellipse) that are not expressible in FO + polycirc.

Appendix. Formal specification of EuPL. The formal specification of EuPL
is as follows. The basic notion is that of a “multifunction,” a function that takes a
fixed number of input points and constructs a fixed (possibly more than one) number
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of output points.
〈multifunction 〉 →

multifunction 〈name〉 ’(’ 〈var〉 (, 〈var〉) ∗ ’)’
= ’(’ 〈type〉 (, 〈type〉) ∗ ’)’;

begin
〈statement〉 (; 〈statement〉)∗

end

〈choice-condition 〉 →
true | false |
〈var〉 = 〈var〉 |
〈var〉 is on line ’(’ 〈var〉 , 〈var〉 ’)’ |
〈var〉 is on circle ’(’ 〈var〉 , 〈var〉 , 〈var〉 ’)’ |
〈var〉 is in circle ’(’ 〈var〉 , 〈var〉 , 〈var〉 ’)’ |
〈var〉 is on the same side as 〈var〉 of line ’(’ 〈var〉 , 〈var〉 ’)’ |
l-order ’(’ 〈var〉 , 〈var〉 , 〈var〉 ’)’ |
c-order ’(’ 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 ’)’ |
〈choice-condition〉 and 〈choice-condition〉 |
〈choice-condition〉 or 〈choice-condition〉 |
not 〈choice-condition〉 |

Eu-conditions are those used in if clauses. They are slightly more general than
the conditions used in choice statements.
〈eu-condition 〉 →

〈choice-condition〉 |
defined (〈var〉) |
〈eu-condition〉 and〈eu-condition〉 |
〈eu-condition〉 or〈eu-condition〉 |
not〈eu-condition〉〈 statement 〉 →
〈empty statement〉 |
〈assignment〉 |
〈conditional statement〉 |
〈choice〉 |
〈result〉

〈empty statement 〉 →
〈assignment 〉 →

〈var〉 := l-l-crossing(〈var〉 , 〈var〉 , 〈var〉 , 〈var〉) |
〈var〉 , 〈var〉 := l-c-crossing(〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉) |
〈var〉 , 〈var〉 := c-c-crossing(〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉) |

〈conditional statement 〉 →
if〈eu-condition〉
then〈statement〉(;〈statement〉)*
else〈statement〉(;〈statement〉)*
end

〈choice 〉 →
choose 〈var〉such that 〈choice-condition〉

〈 result 〉 →
result〈var〉 (, 〈var〉)∗
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[22] R. H. Güting, ed., Advances in Spatial Databases—6th International Symposium (SSD ’99),
Lecture Notes in Comput. Sci. 1651, Springer-Verlag, Berlin, 1999.

[23] M. Gyssens, L. Vandeurzen, and D. Van Gucht, An expressive language for linear spatial
database queries, in Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, ACM Press, New York, 1998, pp. 109–118.

[24] T. Heath, The Thirteen Books of Euclid’s Elements, Dover, New York, 1956.



FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1599

[25] J. Heintz and B. Kuijpers, Constraint databases, data structures and efficient query evalu-
ation, in Proceedings of the First International Symposium on Applications of Constraint
Databases (CDB’04), Lecture Notes in Comput. Sci. 3074, B. Kuijpers and P. Revesz, eds.,
Springer-Verlag, Berlin, 2004, pp. 1–24.

[26] D. Hilbert, Grundlagen der Geometrie, Teubner, Leipzig, 1899.
[27] J. E. Hopcroft and J. D Ullman, Introduction to Automata Theory, Languages, and Com-

putation, Addison–Wesley, Reading, MA, 1979.
[28] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz, Constraint query languages, in Proceed-

ings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Nashville, TN, 1990, pp. 299–213.

[29] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz, Constraint query languages, J. Comput.
System Sci., 51 (1995), pp. 26–52.

[30] G. Kuper, L. Libkin, and J. Paredaens, eds., Constraint Databases, Springer-Verlag, Berlin,
2000.

[31] J. L. Lassez, Querying constraints, in Proceedings of the Ninth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, ACM Press, New York, 1990,
pp. 288–298.

[32] J. Paredaens, J. Van den Bussche, and D. Van Gucht, Towards a theory of spatial data-
base queries, in Proceedings of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, ACM Press, New York, 1994, pp. 279–288.

[33] M. F. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York,
1985.

[34] J. Renegar, On the computational complexity and geometry of the first-order theory of the
reals, J. Symbolic Comput., 13 (1989), pp. 255–352.

[35] J. Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic, 14 (1949),
pp. 98–114.

[36] M.-F. Roy, S. Basu, and R. Pollack, Algorithms in Real Algebraic Geometry, Algorithms
Comput. Math. 10, Springer-Verlag, Berlin, 2003.

[37] M. Scholl and A. Voisard, eds., Proceedings of the Fifth International Symposium on Spatial
Databases, Lecture Notes in Comput. Sci. 1262, Springer-Verlag, Berlin, 1997.

[38] A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of California
Press, Berkeley, CA, 1951.

[39] L. van den Dries, Tame Topology and O-minimal Structures, Cambridge University Press,
Cambridge, UK, 1998.

[40] L. Vandeurzen, M. Gyssens, and D. Van Gucht, On the desirability and limitations of linear
spatial query languages, in Proceedings of the Fourth International Symposium on Spatial
Databases, Lecture Notes in Comput. Sci. 951, M. J. Egenhofer and J. R. Herring, eds.,
Springer-Verlag, Berlin, 1995, pp. 14–28.

[41] L. Vandeurzen, M. Gyssens, and D. Van Gucht, On query languages for linear queries
definable with polynomial constraints, in Proceedings of the Second International Confer-
ence on Principles and Practice of Constraint Programming, Lecture Notes in Comput.
Sci. 1118, E. C. Freuder, ed., Springer-Verlag, Berlin, 1996, pp. 468–481.

[42] M. Ziegler, Einige unentscheidbare Körpertheorien, Enseign. Math. (2), 28 (1982), pp. 269–
280.


