
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Real algebraic geometry and constraint databases

Non Peer-reviewed author version

GEERTS, Floris & KUIJPERS, Bart (2007) Real algebraic geometry and constraint

databases. In: AIELLO, Marco & van BENTHEM, Johan & PRATT-HARTMANN, Ian

(Ed.) Handbook of Spatial Logics, p. 799-856..

Handle: http://hdl.handle.net/1942/7903

Chapter 1

REAL ALGEBRAIC GEOMETRY AND

CONSTRAINT DATABASES

Floris Geerts
Hasselt University, Transnational University of Limburg & University of Edinburgh

Bart Kuijpers
Hasselt University & Transnational University of Limburg

Second Reader

Peter Revesz
University of Nebraska–Lincoln

1. From the relational database model to the
constraint database model

The constraint database model can be seen as a generalization of the
classical relational database model that was introduced by Codd in the
1970s to deal with the management of alpha-numerical data, typically
in business applications (?). A relational database can be viewed as a
finite collection of tables or relations that each contain a finite number
of tuples.

Figure 1.1 shows an instance of a relational database that contains
the two relations Beer and Pub. This database contains tourist in-
formation about beers and the pubs where they are served. It also
contains the location of the pubs, given in (x, y)-coordinates on some
tourist map. Each relation contains a finite number of tuples. A re-
lational database is usually modeled following a database schema. A
schema contains information on the relation names and on the names
of the attributes appearing in relation. In this example, the attributes
of Beer are Name, Pub, City and Postal code. The complete schema of

2

Beer

Name Pub City Postal code

Duvel De Muze Antwerpen 2000
Hoegaarden Villicus Hasselt 3500
Geuze La Bécasse Brussel 1000
...

Pub

Pub x y

De Muze 16 10
Villicus 16.1 14
La Bécasse 10.4 12.3
...

Figure 1.1. An example of a relational database consisting of the two relations Beer

and Pub.

the relational database of Figure 1.1 could be written as Beer(Name,
Pub, City, Postal code), Pub(Pub, x, y).

The x and y attributes of the relation Pub have a geometric or ge-
ographic interpretation. But values of these attributes can simply be
stored as numbers, as is usually done in business databases. A tourist
could consult this database to find out the locations of pubs where
his/her preferred beers are served. First-order logic based languages
(and their commercial versions, such as SQL) are used in the relational
database model, to formulate queries like this. The vocabulary of these
logics typically contains the relation names appearing in the schema of
the input database. For instance, the first-order formula

ϕ(x, y) = ∃p∃c∃p′(Beer(Westvleteren, p, c, p′) ∧ Pub(p, x, y))

when interpreted over the database of Figure 1.1, defines the (x, y)-
coordinates of the location of the pubs where they serve my favorite
beer.

But a tourist is usually also given more explicit geographic informa-
tion, e.g., in the form of maps such as the one depicted in Figure 1.2 and
he/she typically wants to ask questions that combine spatial and alpha-
numeric information, such as “Where in Flanders, not too far from the
river Scheldt, can I drink a Duvel?”

In the relational database model, it is difficult to support queries like
this one. Unlike the locations of pubs, the locations of rivers or regions
would require the storage of infinitely many x- and y-coordinates of
points. Storing infinitely many tuples is not possible and in computer

Real algebraic geometry and constraint databases 3

Liège

18

17

16

15

14

13

12

11

10

9

8

1

2

3

4

5

7

23222120191817161514131211101 2 3 4 5 6 7 8 9

Bastogne

Bruges

Hasselt

Charleroi

Scheldt

Brussels

Antwerp

Brussels

Meuse

Flanders

Walloon Region

6

Figure 1.2. Spatial information map of Belgium.

science it is customary to find finite representations of even infinite sets
or objects.

In the 1980s, extensions of the relational model have been proposed
with special-purpose data types and operators. Data types like “poly-
line” and “polygon” where introduced to support, e.g, the storage of
rivers and regions. Ad-hoc operations like intersection of polygons where
added to popular query languages such as SQL. Later on, spatial database
theory and technology has developed towards more sophisticated data
models and more elegant query formalisms supported by, for example,
appropriate indexing techniques. For an overview of the developments
in spatial databases in the last two decades, we refer to (?).

Looking again at the polylines and polygons in Figure 1.2, we may
remark that there are other finite ways to store them, besides the in-
direct method of storing their corner points. Indeed, each line segment
can be described by linear equations (equalities and inequalities). Also
polygonal figures can be described by combinations of linear inequali-
ties. This description is more explicit than listing the corner points. If
we agree that the combinations of linear equations may appear in the
tuples of the relations of a database under a geometric attribute name,
the spatial information displayed on the map of Belgium, which could be
categorized into region, city, and river information, could be captured in
a database with the three relations Regions, Cities, Rivers. Each of
these relations has Name and Geometry as attributes, where the latter
can be viewed as having an x-and a y-component. Name is a traditional
alpha-numeric attribute and Geometry has a spatial or geometric inter-

4

Cities

Name Geometry(x, y)

Antwerp (x = 10) ∧ (y = 16)
Bastogne (x = 19) ∧ (y = 6)
Bruges (x = 5) ∧ (y = 16)
Brussels (x = 10.5) ∧ (y = 12.5)
Charleroi (x = 10) ∧ (y = 8)
Hasselt (x = 16) ∧ (y = 14)
Liège (x = 17) ∧ (y = 11)

Rivers

Name Geometry(x, y)

Meuse
`

(y ≤ 17) ∧ (5x − y ≤ 78) ∧ (y ≥ 12)
´

∨
`

(y ≤ 12) ∧ (x − y = 6) ∧ (y ≥ 11)
´

∨
`

(y ≤ 11) ∧ (x − 2y = −5) ∧ (y ≥ 9)
´

∨
`

(y ≤ 9) ∧ (x = 13) ∧ (y ≥ 6)
´

Scheldt
`

(y ≤ 17) ∧ (x + y = 26) ∧ (y ≥ 16)
´

∨
`

(y ≤ 16) ∧ (2x − y = 4) ∧ (y ≥ 14)
´

∨
`

(x ≤ 9) ∧ (x ≥ 7) ∧ (y = 14)
´

∨
`

(y ≤ 14) ∧ (−3x + 2y = 7) ∧ (y ≥ 11)
´

∨
`

(y ≤ 11) ∧ (2x + y = 21) ∧ (y ≥ 9)
´

Regions

Name Geometry(x, y)

Brussels (y ≤ 13) ∧ (x ≤ 11) ∧ (y ≥ 12) ∧ (x ≥ 10)
Flanders (y ≤ 17) ∧ (5x − y ≤ 78) ∧ (x − 14y ≤ −150)∧

(x + y ≥ 45) ∧ (3x − 4y ≥ −53) ∧
`

¬
`

(y ≤ 13)∧
(x ≤ 11) ∧ (y ≥ 12) ∧ (x ≥ 10)

´´

Walloon Region
`

(x − 14y ≥ −150) ∧ (y ≤ 12) ∧ (19x + 7y ≤ 375)∧
(x − 2y ≤ 15) ∧ (5x + 4y ≥ 89) ∧ (x ≥ 13)

´

∨
`

(−x + 3y ≥ 5) ∧ (x + y ≥ 45)∧

Figure 1.3. Representation of the spatial database of Belgium shown in Figure 1.2.

pretation. Of course we could include more thematic information, e.g.,
we could add to the City relation the number of inhabitants.

The database instance with this schema, corresponding, to the map
shown in Figure 1.2, is given in Figure 1.3.

The geometric components of the relations in Figure 1.3 are described
using linear equalities, linear inequalities and boolean combinations there-
of, i.e., using ∧ (conjunction), ∨ (disjunction) and ¬ (negation). Figures
that can be described in this way are sometimes referred to as semi-linear
set figures.

One of the most important application areas of spatial databases is
Geographic Information Systems (GIS), where in most cases polygonal-

Real algebraic geometry and constraint databases 5

shaped geometric figures are considered. In most cases this data resides
in the two-dimensional plane or in the three-dimensional space (?). In-
deed, in GIS, information is mostly linear of nature, but in other appli-
cations, like CAD-CAM, or medical imaging we can find spatial figures
that are not linear. Using polynomial equalities and inequalities rather
than just linear ones, gives us wider modeling capabilities. Figure 1.4
gives an example of a figure in the plane that can be described by the
following combination of polynomial (in)equalities:

(x2/25 + y2/16 ≤ 1) ∧ (x2 + 4x+ y2 − 2y ≥ −4)

∧ (x2 − 4x+ y2 − 2y ≥ −4) ∧
(
(x2 + y2 − 2y 6= 8) ∨ (y > −1)

)
.

This figure is described by a formula containing two variables, namely
x and y, representing the coordinates of points in R2 (Here, R denotes
the set of real numbers).

Figure 1.4. An example of a semi-algebraic set in R2.

Figures that can be modeled by polynomial inequalities are known, in
mathematics, as semi-algebraic sets and their geometric and topological
properties are well-studied in real algebraic geometry (?).

Semi-algebraic sets are, together with classical alpha-numeric data,
the basic ingredients in constraint databases. As we have seen above
in Figure 1.2, these sets appear in a constraint database by means of
a defining formula. In this sense, the constraint database model is a
generalization of the relational database model.

Similar to the classical relational database model, first-order logic can
be used to formulate queries in the constraint model. Semi-algebraic sets
are described by boolean combinations of (linear) polynomials inequali-
ties, which basically are quantifier-free formulas in first-order logic over
the reals. This logic has addition and multiplication as functions, order
as relation and zero and one as constants. In the constraint database
model, an extension of this logic with predicates to address the rela-
tions in the input database, is used as a basic logical query language.

6

This logic turns out to be a language in which a lot of relevant spatial
database queries can be formulated. For example, the query “Where in
Flanders, not too far from the river Scheldt, can I drink a Duvel?” can
be expressed by the formula

ϕ(x, y) = Regions(Flanders, x, y) ∧

∃x′∃y′(Rivers(Scheldt, x′, y′) ∧ (x− x′)2 + (y − y′)2 < 1) ∧

∃p∃c∃p′(Pubs(p, x, y) ∧ Beer(Duvel, p, c, p′))

Here, we translate “not to far from the river Scheldt” by “at most dis-
tance 1 from the some point of the Scheldt”. We remark that some
variables in this expression are assumed to range over finite domains
(namely p, c, p′), but others range over the real numbers (namely x, y, x′

and y′). Nevertheless, it turns out that queries expressed by first-order
formulas like this one, can be effectively evaluated on constraint data-
bases. In our example the output is a two-dimensional geometric object
and the query evaluation algorithm guarantees that it also can be de-
scribed by a boolean combination of polynomial inequalities.

The ideas presented above are at the basis of the constraint database
model. The basic idea is to extend or generalize the relational model and
not only to allow finite relations, but also finitely representable relations.

We remark that the constraint database model was introduced by
Kanellakis, Kuper and Revesz (?). It has received a lot of research
attention since. An overview of research results in this field can be
found in (?) and Revesz has written a textbook on the subject (?).

Overview. This chapter is organized as follows. In Section 1.2, we
describe the constraint database model with its data models and basic
query languages. Section 1.3 gives an overview of some definitions and
results in real algebraic geometry, that will be used further on. In Sec-
tion ??, we discuss query evaluation in the constraint database model
through quantifier elimination. We also outline some quantifier elimina-
tion algorithms there. Section ?? is devoted to the expressive power of
first-order logic over the reals as a query language for constraint data-
bases. Topological queries get special attention. Finally, in Section ??,
we discuss some more powerful query languages for constraint databases
that are extensions of first-order logic, with transitive closure operators,
with while-loop and with topological operators.

Real algebraic geometry and constraint databases 7

2. Constraint data models and query languages

In this section, we define the logics FO(+,×, <, 0, 1), i.e., first-order
logic with polynomial constraints, and FO(+, <, 0, 1), i.e., first-order
logic with linear constraints, and show how they form the basis of the
constraint approach in both the modeling and querying of spatial data.
More specifically, we introduce the polynomial and linear constraint
model and extend FO(+,×, <, 0, 1) and FO(+, <, 0, 1) to query lan-
guages for the respective models.

2.1 The logics FO(+, ×, <, 0, 1) and FO(+, <, 0, 1)

Let (+,×, <, 0, 1) be a so-called vocabulary with two functions sym-
bols of arity two (+ and ×), one predicate symbol of arity two (<), and
two constant symbols (0 and 1). In the constraint model, this vocab-
ulary will be interpreted on the real field, i.e., the structure consisting
of the set of real numbers, R, equipped with the standard addition,
multiplication, and order.

We define FO(+,×, <, 0, 1) as the first-order logic over the vocabulary
(+,×, <, 0, 1). We build formulas in FO(+,×, <, 0, 1) in the standard
way: a term t in FO(+,×, <, 0, 1) is either a variable xi; a constant (0
or 1); or of the form t + t′ or t × t′ for terms t and t′. In other words,
terms are polynomials with integer coefficients. Next, atomic formulas
in FO(+,×, <, 0, 1) are formulas of the form t = t′ or t < t′ for terms
t and t′. Finally, formulas in FO(+,×, <, 0, 1) are built from atomic
formulas by using the boolean connectives (∧, ∨, or ¬) and quantifiers
(∀xi or ∃xi). A variable is called free in a formula if it is not bounded
by a quantifier. We denote by ϕ(x1, . . . , xn) that the FO(+,×, <, 0, 1)
formula ϕ has n free variables x1, . . . , xn. A formula without any free
variables is called a sentence. A formula without quantifiers is called
quantifier-free.

Similarly, we define FO(+, <, 0, 1) as the restriction of FO(+,×, <, 0, 1)
in which formulas are constructed from terms which do not use mul-
tiplication (i.e., formulas without ×). In other words, the terms in
FO(+, <, 0, 1) are polynomials with integer coefficients of degree at most
one. We also say that FO(+, <, 0, 1) is the first-order logic over the vo-
cabulary (+, <, 0, 1).

We define the satisfaction of a formula ϕ(x1, . . . , xn) in FO(+,×, <, 0, 1)
by real numbers r1, . . . , rn ∈ R, denoted by

(R,+,×, <, 0, 1) |= ϕ(r1, . . . , rn),

inductively on the structure of ϕ:

8

(R,+,×, <, 0, 1) |= (t = t′)(r1, . . . , rn) if t(r1, . . . , rn) = t′(r1, . . . ,
rn);

(R,+,×, <, 0, 1) |= (t < t′)(r1, . . . , rn) if t(r1, . . . , rn) < t′(r1, . . . ,
rn);

(R,+,×, <, 0, 1) |= (¬ϕ)(r1, . . . , rn) if (R,+,×, <, 0, 1) |= ϕ(r1,
. . . , rn) does not hold;

(R,+,×, <, 0, 1) |= (ϕ ∧ ψ)(r1, . . . , rn) if (R,+,×, <, 0, 1) |= ϕ(r1,
. . . , rn) and (R,+,×, <, 0, 1) |= ψ(r1, . . . , rn);

(R,+,×, <, 0, 1) |= (ϕ ∨ ψ)(r1, . . . , rn) if (R,+,×, <, 0, 1) |= ϕ(r1,
. . . , rn) or (R,+,×, <, 0, 1) |= ψ(r1, . . . , rn);

(R,+,×, <, 0, 1) |= (∀xnϕ)(r1, . . . , rn−1) if for all elements r ∈ R,
(R,+,×, <, 0, 1) |= ϕ(r1, . . . , rn−1, r); and

(R,+,×, <, 0, 1) |= (∃xnϕ)(r1, . . . , rn−1) if there exists an element
r ∈ R, (R,+,×, <, 0, 1) |= ϕ(r1, . . . , rn−1, r).

As described above, in the constraint model, the satisfaction of for-
mulas in FO(+,×, <, 0, 1) and FO(+, <, 0, 1) is defined with respect to
the real field R. However, any mathematical structure which interprets
the vocabularies (+,×, <, 0, 1) or (+, <, 0, 1) can be used instead.

Exercise 1.1 Let N denote the set of natural numbers equipped with
the standard addition, multiplication and ordering between natural num-
bers.

1 Give a sentence ϕdense in FO(+, <, 0, 1) that expresses that the
order < of R is dense, i.e., for any two real numbers r1 and r2 such
that r1 < r2, there exists a real number r3 such that r1 < r3 < r2.

2 Verify R |= ϕdense but N 6|= ϕdense.

Of particular importance in the constraint model are the quantifier-
free formulas in FO(+,×, <, 0, 1) and FO(+, <, 0, 1). As we will see
in the next section, the representation of spatial objects by means of
quantifier-free formulas is the basis of the data model in constraint
databases. In Section ??, we show that both FO(+,×, <, 0, 1) and
FO(+, <, 0, 1) admit quantifier elimination. In short, this means that
any formula in FO(+,×, <, 0, 1) (respectively FO(+, <, 0, 1)) is equiva-
lent to a quantifier-free formula in FO(+,×, <, 0, 1) over R (respectively
in FO(+, <, 0, 1)). Hence, we do not loose any generality by consid-
ering quantifier-free formulas only. As mentioned in the introduction,
a (quantifier-free) formula represents a possible infinite set of points.

Real algebraic geometry and constraint databases 9

More specifically, they describe sets of points which correspond to semi-
algebraic sets, in case of FO(+,×, <, 0, 1), and semi-linear sets, in case
of FO(+, <, 0, 1)(see also Section 1.3).

Example 1.2 In Figure 1.4 of Section 1.1, the smiling face shows all
pairs (r1, r2) ∈ R2 that satisfy ϕ(x, y), i.e., (R,+,×, <, 0, 1) |= ϕ(r1, r2),
where ϕ(x, y) is the quantifier-free formula

x2/25 + y2/16 ≤ 1 ∧ x2 + 4x+ y2 − 2y ≥ −4 ∧

x2 − 4x+ y2 − 2y ≥ −4 ∧ (x2 + y2 − 2y 6= 8 ∨ y > −1).

We remark that ϕ has two free variables and that it uses polynomials of
degree at most two.

Apart from the modeling of spatial data, the logics FO(+,×, <, 0, 1)
and FO(+, <, 0, 1) serve also as the basis of the standard query languages
in the constraint model. We come back to this point in the next sections.

2.2 The polynomial constraint data model

First, we discuss the general polynomial constraint model which is
based on FO(+,×, <, 0, 1). In the next section, we elaborate on the
linear constraint model which uses FO(+, <, 0, 1).

The polynomial constraint data model. A database schema S
is a finite set {S1, . . . , Sk} of relation names. Each relation name Si (i =
1, . . . , k) is of some arity ni, which is an integer. A polynomial constraint
relation instance of Si, or constraint relation of Si for short, maps Si to a
quantifier-free formula ϕSi

(x1, ..., xni
) with ni free variables in the logic

FO(+,×, <, 0, 1). A (polynomial) constraint database instance over S
consists of a set of constraint relations of S1, . . . , Sk.

The semantics of a relation instance of Si, denoted by I(Si), is the
possible infinite (semi-algebraic) subset

{(r1, ..., rni
) ∈ Rni | (R,+,×, <, 0, 1) |= ϕSi

(r1, ..., rni
)}.

The semantics of a (polynomial) constraint database instanceD, denoted
by I(D), over the schema S, is the collection of semi-algebraic sets I(Si),
with Si a relation name appearing in S.

Example 1.3 Let S = {S}, where S is a binary relation name. A
constraint database instance D over S maps, for instance, S to the
quantifier-free ϕ(x, y) given in Example 1.2. The semantics of D is the
smiling face shown in Figure 1.4.

10

Exercise 1.4

1 Give a formula describing (1) the smiling face of Figure 1.4 with
the left eye closed (i.e., filled) and (2) a sad version of this face.

2 Give an instance of a polynomial constraint database containing
two relations of arity 3 that contain respectively a representation
of the Earth and Saturn (including its rings).

It is clear that the same semi-algebraic set can be represented by
different formulas. Indeed, consider again Figure 1.4. Suppose that the
description of the smiling face given in Example 1.2 is extended with
the disjunct (x = 0 ∧ −1/2 ≤ y ≤ 1/2) (i.e., a vertical line segment),
representing a nose. This new representation will not lead to the addition
of new points in the smiling face, since all the points in the nose are
already part of the face.

Two constraint relations of S and S′ (i.e., formulas) are said to be
equivalent if I(S) and I(S′) are the same semi-algebraic set (i.e., if
I(S) = I(S′)). Similarly, we say that two database instances are equiv-
alent if their relations are pairwise equivalent.

Remark 1.5 In the remainder of this chapter, we will interchangeably
use constraint relation and semi-algebraic set, since these notions refer
to the same objects, albeit from different perspectives.

Database queries in the constraint model. Before we explain
how to use FO(+,×, <, 0, 1) as a query language for the polynomial
constraint model, we define what we mean by a query on a constraint
database. In standard relational databases, a query is a (partial) func-
tion associating with each input database instance an output relation
instance. In the constraint setting, however, there are two ways of look-
ing at a query.

First, similar to the relational setting, we can define a k-ary query
over a database schema S as a partial function which associates
with a database instance I(D) (i.e., a collection of semi-algebraic
sets), a semi-algebraic set in Rk, where D is any database instance
of S.

Second, we can also view a k-ary query over S as a partial func-
tion associating with each database instance D (i.e., a collection of
quantifier-free formulas), a quantifier-free formula in FO(+,×, <, 0, 1)
with k free variables.

Real algebraic geometry and constraint databases 11

We call the first type of query an unrestricted query ; the second is
called a constraint query. A constraint query clearly only makes sense
if it maps two equivalent database instances to equivalent relation in-
stances (i.e., equivalent quantifier-free FO(+,×, <, 0, 1)-formulas). If a
constraint query satisfies this property, we call a constraint query con-
sistent. We remark that a consistent constraint query corresponds to a
unique unrestricted query.

Example 1.6 Let S consist of binary relation S. Consider the con-
straint query Q which maps any constraint relation of S, given by ϕS , to
the highest degree of polynomials appearing in ϕS . This query is clearly
not consistent. Indeed, let ϕS ≡ x2 + y2 = 1 and ϕ′

S ≡ (x2 + y2)2 = 1.
Both formulas correspond to the same semi-algebraic set, i.e., the stan-
dard circle of radius 1. In contrast, Q returns 2 on input ϕS , whereas it
returns 4 on input ϕ′

S .

In the following, when we refer to a constraint database query, we
mean a consistent constraint query.

The logic FO(+,×, <, 0, 1) as a query language for polynomial

constraint databases. In this section, we take a closer look at
the standard query language for polynomial constraint databases which
is an extension of FO(+, <, 0, 1) with predicates to address constraint
relations that appear in the input database.

If we consider queries over a database input schema S = {S1, ..., Sk},
then we can associate a query with a formula in the first-order logic over
the vocabulary (+,×, <, 0, 1, S1, . . . , Sk). Let ϕ(x1, . . . , xm) be such a
formula over(+,×, <, 0, 1, S1 , . . . , Sk). Given a constraint database D
over S, we interpret ϕ(x1, . . . , xm) over the (R,+,×, <, 0, 1), extended
with the semi-algebraic sets, I(S1), ..., I(Sk) as given by D. More specif-
ically, the m-ary answer set of ϕ(x1, . . . , xm) is defined as

{(r1, . . . , rm) ∈ Rm | (R,+,×, <, 0, 1, I(S1), . . . , I(Sk)) |= ϕ(r1, . . . , rm)}.

We also write the above for short as

{(r1, . . . , rm) ∈ Rm | (R,D) |= ϕ(r1, . . . , rm)}.

It is clear that equivalent databases result in the same answer set. We
say that ϕ expresses the corresponding (unique) unrestricted query. In
the sequel, we refer to these extensions of FO(+,×, <, 0, 1) simply by
FO(+,×, <, 0, 1) if the input schema is clear from the context or irrele-
vant.

An important property of any query language is that it is closed,
i.e., the result of query should admit a representation in the same data

12

model as the source relations. In particular, for FO(+,×, <, 0, 1) to
be closed it should be the case that the result is a quantifier-free for-
mula in FO(+,×, <, 0, 1) again. However, since FO(+,×, <, 0, 1) ad-
mits quantifier-elimination and by the way FO(+,×, <, 0, 1)-formulas
are evaluated, this requirement is satisfied (see also Section ??).

In Section 1.1, we gave examples of queries expressed in FO(+,×, <, 0, 1).
We give some more examples here.

Example 1.7 Let Qbounded be the unrestricted query which returns true
if and only if the input semi-algebraic set in R2 is bounded. In the first-
order logic over (+,×, <, 0, 1, S), where S is a binary relation name, the
sentence

∃ε(ε 6= 0 ∧ ∀x∀y(S(x, y) → x2 + y2 < ε2))

expresses Qbounded.

Example 1.8 Let Qinterior be the query that returns all points of any
input semi-algebraic set in R2 that have a neighborhood that is com-
pletely in the semi-algebraic set. Hence, Qinterior returns the topological
interior of a semi-algebraic set in R2. This query can be expressed as

∃r∀x′∀y′(r 6= 0) ∧ ((x− x′)2 + (y − y′)2 < r2 → S(x′, y′)).

We remark that this formula has two free variables, so it defines a semi-
algebraic set in R2.

Exercise 1.9

1 Express in (+,×, <, 0, 1, S) the queries returning the topological
closure and topological boundary of any input semi-algebraic set
in R2.

2 Give an (+,×, <, 0, 1, S)-sentence that expresses the query Qfinite

which returns true if and only if the input semi-algebraic set in R2

consists of finite number of points.

3 Give an (+,×, <, 0, 1, S)-sentence that expresses the query Qsphere

which returns true if and only if the input semi-algebraic set in R3

is a sphere.

4 Give a sentence over (+,×, <, 0, 1, S1, S2) that expresses the query
Qintersect which returns true if and only if the two input semi-
algebraic sets intersect.

In the next section, we discuss the expressive power of the query
language FO(+,×, <, 0, 1). For the moment, let us merely say that it is

Real algebraic geometry and constraint databases 13

“rather limited.” Topological queries such as the topological interior
are expressible in this logic, but we will see in Section ?? that important
queries are not expressible in FO(+,×, <, 0, 1). More specifically, we will
see that the query that expresses that a spatial database is topologically
connected is not expressible. Due to the importance of this query in
the spatial database practice, many efforts to extend FO(+,×, <, 0, 1)
to richer query languages exist, some of which we discuss in Section ??.

2.3 The linear constraint model: an application
in Geographic Information Systems

Next, we discuss the linear constraint model, which is less expres-
sive than the polynomial constraint model (as we will illustrate in Sec-
tion ??), but nevertheless powerful enough to model applications like
Geographic Information Systems, or GIS for short.

The linear constraint data model. Since we emphasize the
GIS aspect of the linear model here, we will also combine linear spatial
information with classical alpha-numeric information, as is customary in
the GIS practice. Therefore, for the sake of illustrating the suitability
for GIS, we consider more general database schemas and instances in
this section.

Also, the linear constraint database model can be seen as based on the
relational model. Moreover, linear constraint databases also require a lot
of traditional database capabilities. In particular, if the linear constraint
database consists purely of non-spatial flat relations, it degenerates into a
traditional database for which the relational model offers a well-accepted
representation.

More formally, a linear constraint database scheme S consists of a
finite set of relation names S1, . . . , Sk. Each relation name Si (i =
1, . . . , k) is of some type [ni,mi], with ni and mi integers. A linear
constraint database instance is a mapping that assigns a linear relation
instance to each relation name appearing in the database scheme. A
linear relation instance of Si, also called a linear relation for short, is a
finite set of linear tuples of type [ni,mi]. A linear tuple of type [ni,mi]
is straightforwardly defined as a tuple of the form

(c1, . . . , cni
, ϕ(x1, . . . , xmi

))

where c1, . . . , cni
are thematic values, typically from some alpha-numeric

domain U (for instance., U could be the set of all strings over our alpha-
bet and natural numbers) and ϕ(x1, . . . , xmi

) is a quantifier-free formula
in the logic FO(+, <, 0, 1) with mi free variables.

14

The semantics of a linear tuple t = (c1, . . . , cni
, ϕ(x1, . . . , xmi

)) of
type [ni,mi] is the possibly infinite subset of Uni × Rmi defined as the
Cartesian product {(c1, . . . , cni

)} × Ai, in which Ai ⊆ Rmi is the semi-
linear set

{(r1, . . . , rmi
) ∈ Rmi | (R,+, <, 0, 1) |= ϕ(r1, . . . , rmi

)}.

This subset of Uni × Rmi can be interpreted as a possibly infinite
(ni + mi)-ary relation, denoted I(t). The semantics of a linear rela-
tion, Si, denoted I(Si), is defined as I(Si) =

⋃
t∈Si

I(t). Finally, the
semantics of a linear spatial database, D over the schema S, is the set of
relations I(Si) with Si a linear relation name appearing in the schema
S = {S1, . . . , Sk} of D.

For GIS, where spatial information is often modeled in either the
vector model or the raster model, and combined with traditional alpha-
numeric information often stored in a relational database, the linear
constraint model is powerful enough. Indeed, in the vector model usually
three types of planar spatial objects are used, namely points, polylines
and polygons. In the raster model, the plane R2 is divided by a regular
grid. Clearly, if we assume the grid to be finite, both types of data can
be modeled in the linear constraint model.

Example 1.10 In Section 1.1, we introduced the example of a map
containing infomation about Belgium, as illustrated in Figure 1.2. The
spatial information displayed on the map of Belgium can be categorized
into city, river, and region information. Therefore, we introduced three
relations, each containing one of these spatial information sources (Fig-
ure 1.3). The relations Cities, Rivers and Regions are of type [1, 2]
and model respectively points, polylines and polygons. Their thematic
component contains names (or string information), whereas their spa-
tial component contains formulas describing spatial features of Belgium.
This example illustrated that the linear constraint model is suitable for
GIS.

The logic FO(+, <, 0, 1) as a query language for Geographic In-

formation Systems. In this section, we take a closer look at the
standard query language for linear constraint databases which is an ex-
tension of FO(+, <, 0, 1) with predicates to address linear constraint re-
lations that appear in the input database. Because of the mixed presence
of thematic and spatial information, this query language will be an exten-
sion of FO(+, <, 0, 1) in the sense of a two-sorted logic. More specifically,
if we consider queries over a database input schema S = {S1, ..., Sk}, we
have, apart from the terms, formulas and quantifications possible in
FO(+, <, 0, 1), the following ingredients:

Real algebraic geometry and constraint databases 15

apart from (real) variables x1, x2, ... ranging over R, we also have
infinitely thematic variables v1, v2, ... ranging over U and distinct
from the set of real variables;

we have atomic formulas of the form v1 = v2, with v1 and v2
thematic variables;

we have atomic formulas of the form Si(vi1 , . . . , vini
; tj1 , . . . , tjmi

),
with Si a relation name of type [ni,mi], vi1 , . . . , vini

are thematic
variables, and tj1, . . . , tjmi

are terms in FO(+, <, 0, 1); and

universal and existential quantification of thematic variables.

In the following, we will refer to this extension of FO(+, <, 0, 1), sim-
ply as FO(+, <, 0, 1). Similar to the case of FO(+,×, <, 0, 1), a formula
ϕ(v1, . . . , vn, x1, ..., xm) in FO(+, <, 0, 1) expresses a constraint query of
type [n,m].

Finally, we shall give some typical example queries, illustrating the
expressive power of FO(+, <, 0, 1).

Example 1.11 An example of a (very simple) linear spatial query on
the database in Example 1.3 is “Find all cities that lie on a river and
give their names and the names of the rivers they lie on.” This query
can be expressed by the following first-order formula:

ϕ(c, r) = ∃x∃y(Cities(c, x, y) ∧ Rivers(r, x, y)).

This formula defines an output relation of type [2, 0].

In all the remaining queries, we shall assume the input database con-
sists of one relation S of type [0, 2].

Example 1.12 The following FO(+, <, 0, 1)-sentence expressesQbounded

(see Example 1.6):

∃d∀x∀y(S(x, y) → −d < x ∧ x < d ∧−d < y ∧ y < d).

Example 1.13 Several topological properties of a semi-linear set can
be expressed in FO(+, <, 0, 1). For instance, the query Qinterior (see
Example 1.7) is expressed by the FO(+, <, 0, 1) formula

ϕ(x, y) = ∃ε∀x′∀y′(ε 6= 0) ∧ ((| x− x′ |< ε∧ | y − y′ |< ε) → S(x′, y′)).

The formula ϕ(x, y) represents a semi-linear set in R2.

Exercise 1.14

16

Express in FO(+, <, 0, 1) the queries returning the topological clo-
sure and topological boundary of input semi-linear sets in R2.

Express that an input relation of type [0, 2] is finite. It helps to
know that a semi-linear set is finite if and only if it consists of
isolated points.

Give a sentence that expresses that an input relation of type [0, 2]
has a convex spatial component. This is a rather tricky question.
It helps to know that a semi-linear set A is convex if for any two
points p and q belonging to A also p+q

2 belongs to A.

In spite of all this, FO(+, <, 0, 1) cannot be considered as a fully
adequate query language for practical purposes. More specifically, there
are very simple queries which are not expressible in FO(+, <, 0, 1), which
are expressible in FO(+,×, <, 0, 1). We return to this issue in Section ??.

3. Introduction to real algebraic geometry

In this section, we define and discuss semi-algebraic and semi-linear
sets and review some well-known properties of these sets. We are inter-
ested in sets which are situated in the n-dimensional Euclidean space
Rn.

An excellent introduction to real-algebraic geometry can be found in
(?). Proofs of all the theorems given in this section can be found there.
More advanced is the standard book in the field (?) and for a more
algorithmic point of view we refer to (?). An interesting book covering
many other aspects of real algebraic geometry is (?). On a very advanced
level, investigations of real-algebraic geometry in terms of constructible
sets, real spectra, and spaces of orderings can be found in (?).

Finally, the generalization of real-algebraic geometry to so-called o-
minimal geometry is described in (?). An excellent book on o-minimal
structures is (?). Interestingly, many results from constraint databases
described in this chapter can be generalized to the o-minimal setting.
We refer to the standard book on constraint databases for more details
(?).

3.1 Semi-algebraic sets and their basic
properties

Definition of semi-algebraic sets. A semi-algebraic subset of
Rn is a subset of points ~x = (x1, ..., xn) in Rn satisfying a Boolean
combination (expressed by disjunction, conjunction and negation—or in
set-theoretic terms by union, intersection, and complement) of polyno-

Real algebraic geometry and constraint databases 17

mial equations and inequalities with integer coefficients. It is easy to see
that every semi-algebraic set in Rn is the finite union of sets of the form

{~x ∈ Rn | f(~x) = 0, g1(~x) > 0, g2(~x), . . . , gℓ(~x) > 0},

where f, g1, . . . , gℓ are multivariate polynomials in the variables x1, . . . , xn

with integer coefficients. A semi-linear subset of Rn is a semi-algebraic
subset which is described by multivariate polynomials of degree at most
one (i.e., linear multivariate polynomials).

Remark 1.15 It is easy to see that the class of semi-algebraic sets de-
fined above coincides with the class of sets represented by quantifier-free
formulas in FO(+,×, <, 0, 1). We therefore are free to choose either of
the two representations. We more often use the representation in terms
of quantifier-free formulas.

Example 1.16 In the introductory section we have already given an
example of semi-algebraic sets (see, e.g., Figure 1.4). Semi-algebraic
sets can be used to model various spatial situations, but also spatio-
temporal phenomena, as is illustrated in Figure 1.5. Here a potential
scene from Star Trek is depicted in which the starship Enterprise fires
a photon torpedo. This scene plays in the three-dimensional (x, y, t)
space, where x and y are spatial coordinates and t represents a time
coordinate. The star ship remains at a constant position in space and
can therefore be described by some fixed formula

ϕEnterprise(x, y, t) =
(
(x2 + y2 = 1) ∨ (x2 + y2 = (1/4)2) ∨ · · ·

)

in which t does not appear. A fired photon torpedo follows the dotted
line (between the moments t = 0 and t = 1) an then explodes (depicted
as increasing dotted circles, between t = 1 and t = 2). At the bottom
of Figure 1.5 three frames of the movie are shown: at t = 1/2, 1 and 2.
The complete movie can be described by the set

{(x, y, t) ∈ R2 × R | (ϕEnterprise(x, y) ∧ (0 ≤ t ≤ 2)) ∨

((y = 0 ∧ x = 4t) ∧ (0 ≤ t ≤ 1)) ∨
(
((x− 4)2 + y2 ≤ (t− 1)) ∧ (1 < t ≤ 2)

)
}.

Basic properties of semi-algebraic sets. The class of semi-
algebraic sets is closed under finite unions, intersections and comple-
ments. Moreover, if A ⊆ Rm and B ⊆ Rn are semi-algebraic, then the
cartesian product A × B is a semi-algebraic subset of Rm+n. A much

18

t = 1/2 t = 1 t = 2

Figure 1.5. USS Enterprise firing a photon torpedo at a (cloaked) Klingon vessel.

deeper result is that the class of semi-algebraic sets is closed under pro-
jection as well:

Theorem 1.17 (Tarski-Seidenberg) Let A be a semi-algebraic sub-
set of Rn+1 and let π : Rn+1 → Rn be the projection on the first n
coordinates. Then π(A) is a semi-algebraic set of Rn.

One may wonder whether all sets of Rn are semi-algebraic. Already for
n = 1, it can be shown that there are subsets that are not semi-algebraic.
In fact, every semi-algebraic subset of R is known to be a finite union
of open intervals (possibly unbounded) and points. Figure 1.6 gives an
example of a one-dimensional semi-algebraic set. It is the union of four
open intervals (the leftmost being unbounded) and five points (three of
which are isolated).

Figure 1.6. An example of a semi-algebraic set in R.

From this property it follows that the set of natural numbers N is not
a semi-algebraic subset of R.

Exercise 1.18

1 The reader may want to verify the above statement that the semi-
algebraic sets of R1 are the unions of finitely many points and open
intervals.

Real algebraic geometry and constraint databases 19

Figure 1.7. An example of a subset of R2 that is not semi-algebraic.

2 Use the above result to show that the infinite zig-zag line shown
in Figure ?? in R2 is not semi-algebraic.

3 The topological closure A of a set A of Rn is the set of points
~p ∈ Rn for which any neighborhood U ⊆ Rn of ~p intersects A.
Show that the topological closure A of a semi-algebraic set A is
also semi-algebraic.

Let A be a semi-algebraic set of Rn and let f : A→ R be a real-valued
function. Then f is called a semi-algebraic function if its graph

Γ(f) = {(~x, r) ∈ A× R | ~x ∈ A and r = f(~x)}

is a semi-algebraic set of Rn+1.

Curve selection. The following result says that any point on
the border of a semi-algebraic set can be connected to the set via a
continuous curve.

Theorem 1.19 (Curve Selection) Let A be a semi-algebraic set of
Rn, and let ~x ∈ A \ A. Then there exists a continuous semi-algebraic
function γ : [0, 1] → Rn such that γ(0) = ~x and γ((0, 1]) ⊆ A.

A proof of this theorem can be found, e.g., in (?, Proposition 2.5.3).

Exercise 1.20 A set A of Rn is connected if there exists no open sets
U, V of Rn such that A = U ∪ V , U ∩ V = ∅ and U ∩ V = ∅. Show
that for a semi-algebraic A of Rn being connected coincides with being
semi-algebraically arc-connected (i.e., between any two points ~s,~t ∈ A
there exists a semi-algebraic funtion γ : [0, 1] → Rn such that γ(0) = ~s,
γ(1) = ~t and γ([0, 1]) ⊆ A). (Hint : Make use of the curve selection
theorem).

We remark that the curve selection theorem also holds when semi-
algebraic is replaced by semi-linear.

3.2 Decompositions of semi-algebraic sets

Topological decomposition. The semi-algebraic sets of R1 are
characterized above as being finite unions of open intervals and points.

20

A similar characterization exists for semi-algebraic sets of Rn, which we
state here. A proof of this result can be found in (?, Theorem 2.3.6).
We first recall the definition of an homeomorphism: an homeomorphism
h between two sets X and Y is a continuous bijection which has con-
tinuous inverse. Two sets are called homeomorphic if there exists an
homeomorphism between them.

Theorem 1.21 Let A be a semi-algebraic subset of Rn. Then A can be
written as a finite union

A =

n⋃

i=0

mi⋃

j=1

Aij ,

where each Aij is homeomorphic to the open cube (0, 1)i.

We remark that the dimension of (0, 1)i is i. So, this theorem states
that any semi-algebraic set of Rn can be decomposed into finite unions
of objects that are from a topological point of view, open cubes of di-
mension lower or equal to n.

Exercise 1.22

1 Verify that this result corresponds, for n = 1, to the result men-
tioned earlier.

2 Apply this theorem to the unit ball in R3 given by x2 +y2 +z2 ≤ 1
and the starship given in Figure 1.5.

Cylindrical algebraic decomposition. In practice, more refined
decompositions of semi-algebraic sets are used that also are computable
by more or less efficient algorithms. One such decomposition is given
by the cell decomposition theorem for semi-algebraic sets. Before we
can state this theorem, we will need the notion of cylindrical algebraic
decomposition (CAD) of Rn: A CAD of Rn is a special partition of Rn

into finitely many cells. The definition is by induction on n:

(i) a CAD of R1 is a collection
{
(−∞, a1), (a1, a2), . . . , (ak,+∞), {a1}, . . . , {ak}

}
,

of open intervals and points, where a1 < · · · < ak are points in R.

(ii) a CAD of Rn+1 is a finite partition of Rn+1 into (semi-algebraic)
cells A such that the set of projections π(A) is again a CAD of Rn.
Here, π : Rn+1 → Rn is again the usual projection map defined by
π(x1, . . . , xn, xn+1) = (x1, . . . , xn).

Real algebraic geometry and constraint databases 21

We still have to specify what a cell in Rn+1 is. Let (i1, . . . , im) be a
sequence of zeros and ones of length m. We define a cell inductively on
m as follows:

(i) a (0)-cell is a one-element set {r} of R, a (1)-cell is an open interval
(a, b) ⊆ R.

(ii) Suppose (i1, . . . , im)-cells are already defined. Then an (i1, . . . , im,
0)-cell is the graph Γ(f) of a continuous semi-algebraic function
f : X → R, where X is an (i1, . . . , im)-cell. Furthermore, an (i1,
. . . , im, 1)-cell is a set of the form

(f, g)X =
{
(~x, r) ∈ X × R | ~x ∈ X and f(~x) < r < g(~x)

}
,

whereX is an (i1, . . . , im)-cell and f, g are continuous semi-algebraic
functions on X, possibly equal to the constant functions +∞ or
−∞.

A cell in Rn is an (i1, . . . , in)-cell for some sequence (i1, . . . , , in). A
semi-algebraic A of Rn is said to be partitioned by a CAD D of Rn if
each cell in D is either part of or disjoint with A. In other words, A is
the union of cells in D.

Theorem 1.23 (Finite Cell Decomposition) Given any semi-alge-
braic sets A1, . . . , Ak of Rn, there is a CAD of Rn partitioning each
A1, . . . , Ak. QED

Example 1.24 Consider the semi-algebraic subset of R2 given by the
formula

(x2 + y2 ≤ 1) ∨
(
(y = 0) ∧ (1 < x) ∧ (x < 2)

)
∨

(
(y 6= 0) ∧ (2 < x)

)
.

This set is shown in part (a) of Figure ??. In part (b) of this figure,
a CAD of R2 is given, consisting of 25 cells, which partitions A. This
CAD induces a CAD on the x-axis consisting of three (0)-cells and four
(1)-cells (two of which are unbounded). On top of these intervals (0, 0),
(0, 1), (1, 0), and (1, 1)-cells are built.

A proof of the finite cell decomposition theorem is given in (?, Chapter
3, Theorem 2.11). A key ingredient in this proof is the so-called uniform
finiteness property of semi-algebraic sets. This property is also useful
to obtain inexpressibility results, as will be shown in Section ??. To
state this property, we need some definitions. A set A of Rn+1 is called
finite over Rn if for each ~x ∈ Rn the fiber A~x = {r ∈ R | (~x, r) ∈ A} is

22

(b)(a)

Figure 1.8. An example of a CAD in R2.

finite. We call A uniformly finite over Rn if there is an N ∈ N such that
|A~x| 6 N for all ~x ∈ Rn. We then have:

Theorem 1.25 (Uniform Finiteness Property) If A ⊆ Rn+1 is a
semi-algebraic set which is finite over Rn, then A is uniformly finite over
Rn.

As we will see in the next section, CAD is the basic tool for eliminating
quantifiers. To be correct, we need an adaptation of the CAD to a given
set of polynomials such that the sign of each of these polynomials is
constant on each cell in the CAD. Moreover, in the context of quantifier
elimination, CAD algorithms typically produce sample points in each
cell, which enable to determine the sign of the polynomials. In Figure ??,
we have indicated a sample point for each cell in the CAD.

Triviality. We remark that until now, all results hold when we
replace semi-algebraic by semi-linear. However, for the following result
to be true one needs to work in the semi-algebraic setting.

Example 1.26 Consider again the semi-algebraic set A and CAD of
R2 of Example ??, shown in Figure ??. Going from left to right, let
C1 = (−∞, a1), C2 = {a1}, C3 = (a1, a2), C4 = {a2}, C5 = (a2, a3),
C6 = {a3} and C7 = (a3,+∞) be the (0) and (1)-cells on the x-axis. If
one looks at the intersections of the cylinders Ci × R with A, then it is
clear that A∩ (Ci ×R) is semi-algebraically homeomorphic to a product
Ci × Fi, where Fi is a semi-algebraic subset of R. In this example,
F1 = F6 = ∅, F2 = F4 = F5 = {b1} ∈ R, F3 = [b2, b3] ⊂ R, and
F7 = R \ {b4}. In other words, the x-axis is decomposed into cells, such
that A looks like a constant set above any two points in the same cell.

Real algebraic geometry and constraint databases 23

One then says that the projection map π : R2 → R on the x-axis is
trivial over each of the cells C1, . . . , C7.

We now formalize the intuition behind the example above. Let A ⊆
Rm and B ⊆ Rn be two semi-algebraic sets and let f : A → B be a
continuous semi-algebraic map (not necessarily a function). We can see

A as a family of sets (i.e., fibers) {f−1(~b) | ~b ∈ B}. A semi-algebraic
trivialization of f is a pair (F, λ) consisting of semi-algebraic set F ⊆ RN ,
for some N , and semi-algebraic map λ : A → F such that (f, λ) : A →
B × F is a homeomorphism.

Exercise 1.27 Let f : A→ B and suppose that f has a semi-algebraic
trivialization. Show that all fibres are semi-algebraic homeomorphic to
each other.

We call f semi-algebraically trivial if f has a semi-algebraic trivializa-
tion. Moreover, given B′ ⊆ B, we say that f is semi-algebraically trivial
over B′ if the restriction of f to f−1(B′) is semi-algebraically trivial.

Theorem 1.28 (Triviality Theorem) Let f : A → B be a contin-
uous semi-algebraic map as above. Then there is a finite partition of
B = B1 ∪ · · · ∪ Bℓ such that each Bi is semi-algebraic and f is semi-
algebraically trivial over each Bi.

Exercise 1.29 Consider the example of the scene from Star Trek as
given in Example 1.14. Denote by USSt the snapshot of the movie at
time t. Hence, the full scene corresponds to the semi-algebraic subset
A = {(x, y, t) ∈ USSt | t ∈ [0, 2]} of R3. Let π : A→ R be the projection
on the time axis, i.e., π(x, y, t) = t. The Triviality Theorem now states
that we can decompose the time axis such π is trivial over each part in
the decomposition. Find such decomposition of the time axis. What
does it tell you about the scene from the Star Trek movie?

3.3 The local conical structure of semi-algebraic
sets

Let A be a semi-algebraic set of Rn and ~p a point of the closure of
A. Let Bn(~p, ε) be the closed ball with center ~p and radius ε and let
Sn−1(~p, ε) be the sphere with center ~p and radius ε.

We denote by Cone
(
~p, Sn−1(~p, ε)∩A

)
the cone with vertex ~p and base

Sn−1(~p, ε)∩A, i.e., the set of points in Rn defined by λ~p+(1−λ)~x with
λ ∈ [0, 1] and ~x ∈ Sn−1(~p, ε)∩A. Let ‖ · ‖ : Rn → R denote the standard
Euclidean norm.

24

Theorem 1.30 (Local Conical Structure) For any point p of the
closure of a semi-algebraic set A, there exists a number ε > 0 and a
semi-algebraic homeomorphism

h : Bn(~p, ε) ∩A→ Cone
(
~p, Sn−1(~p, ε) ∩A

)

such that ‖h(~x) − ~p‖ = ‖~x− ~p‖ and h |Sn−1(~p,ε)∩A= Id.

A radius ε > 0 given by the previous theorem is called a cone radius
of A in ~p.

Exercise 1.31 Prove the local conical structure theorem using the triv-
iality theorem. (Hint. Take for f : A→ R the mapping f(~x) = ‖~x−~p‖.)

We examine the local conical structure of semi-algebraic sets of R2 in
more detail. Consider the semi-algebraic set of R2 depicted in Figure ??.
For the point ~p, we have indicated a cone radius ε of A in ~p by the dotted
lines. The intersection S1(~p, ε) ∩A consists of a finite number of points
and open intervals. If we denote open intervals that belong A by R+

and intervals that belong to the complement of A by R−, and if we
similarly indicate points belonging to A by L+ and points belonging to
the complement by L−, we can describe a the intersection S1(~p, ε)∩A by
means of a circular list over the alphabet {L+, L−, R+, R−}. We call this
circular list the cone type of A in ~p. The symbols L and R refer to lines
and regions that arrive at p. There are two exceptions, however. For a
point in the topological interior of A, we have that S1(~p, ε) = S1(~p, ε)∩A,
which we denote by F (for full). On the other hand, for an isolated point
of A, we have S1(~p, ε) ∩A = ∅, which we denote by E (for empty). For
instance, the cone type of A in ~p in Figure ?? is given by

(L+R−L+R−L−R+L+R−L+R−L+R+L−R+).

A semi-algebraic set A of R2 also has a local conical structure at
infinity. To see this, we embed R2 as the (x, y)-plane in R3 and map
A from this embedded plane onto the sphere S2((0, 0, 1), 1), that rests
on the (x, y)-plane, in the direction of its north pole (0, 0, 2). If we
then add the north pole to this set as the point at infinity of the semi-
algebraic set, rotate the sphere such that (0, 0, 2) becomes the origin, and
stereographically project back on the xy-plane, then the local conical
structure of (0, 0) in the resulting semi-algebraic set reveals the conical
structure of the point at infinity in A.

This implies that there exists a ε > 0 such that {(x, y) | x2 + y2 ≥
ε2}∩A is homeomorphic to {(λx, λy) | (x, y) ∈ S1((0, 0), ε)∩A∧λ ≥ 1}.
We can indeed view the latter set as the cone with top ∞ and base
S1((0, 0), ε) ∩A.

Real algebraic geometry and constraint databases 25

p

A

L+R−

R−

L+

L−R
+ L+

L−

R+

R−

R−

L+

R+ L+

Figure 1.9. A semi-algebraic set A of R2 and the cone type of A in its points p given
by the circular list (L+R−L+R−L−R+L+R−L+R−L+R+L−R+).

h

(0, 0, 0)e(R2)

(0, 0, 2)

A

h(A)

∞

Figure 1.10. Illustration of the stereographical projection h.

More formally, consider the embedding e of R2 in R3 that maps
(x, y) to (x, y, 0). Let σ be the reflection of R3 defined by (x, y, z) 7→
(x, y, 2 − z). Finally, let h : e(R2) ∪ {∞} → S2((0, 0, 1), 1) be the
homeomorphism of that maps the Alexandrov one-point compactifi-
cation of e(R2) stereographically onto the sphere S2((0, 0, 1), 1), i.e.,

h(x, y, 0) = 4
4+x2+y2 (x, y, x2+y2

2) and h(∞) = (0, 0, 2).

We define the the cone type of A in ∞ to be the cone type of the
point (0, 0) in the set e−1(h−1(σ({(0, 0, 2)} ∪ h(e(A))) \ {∞})) Remark
that the cone type of A in ∞ is (E) if and only if A is a bounded subset
of R2.

Exercise 1.32 Let A be a semi-algebraic set in R2 and let ~p be a point
in the closure of A.

1 Verify that e−1(h−1(σ({(0, 0, 2)} ∪ h(e(A))) \ {∞})) is indeed a
semi-algebraic set.

2 The notion of the cone type of A in ~p is well-defined.

26

p

q r

Figure 1.11. Types of regular points of a closed semi-algebraic set: Π(p) = (R),
Π(q) = F and Π(r) = (LL).

3 The notion of the cone type of A in ∞ is well-defined.

(Hint: For 2 and 3, prove that for any two cone radii ε1 and ε2 of A in
~p (and ∞) we get the same cone type.)

Let C be the set of all possible cone types of semi-algebraic sets of R2.
We define:

Definition 1.33 Let A be a semi-algebraic set of R2. The point-struc-
ture of A is the function Π(A) from A∪ {∞} to C that maps each point
in the closure of A to its cone type.

An important observation is the following:

Proposition 1.34 The number of points in the closure of A with a
cone different from (R−L−R+L−), (R−L+R+L+), (R−L+R−L+), (R+

L−R+L−) and F is finite.

We call point in the closure of A singular if it has a cone type different
from (R−L−R+L−), (R−L+R+L+), (R−L+R−L+), (R+L−R+L−) or
F . Otherwise, we say that a point in the closure of A is regular.

Exercise 1.35 Let A be a semi-algebraic set of R2.

1 Prove Proposition ??.

2 Show that only a finite number of cone types can appear in A.

3 If A contains a point of cone type (R−L−R+L−), (R−L+R+L+),
(R−L+R−L+), (R+L−R+L−) and F , then it must have infinitely
many points of this cone type.

Example 1.36 Suppose that A is a closed semi-algebraic set of R2. By
the previous exercise, there are infinitely many points in which A has
one of the following three cone types (R−L+R+L+), (R−L+R−L+), and
(F). Figure ?? illustrates these different cone types.

In Section ??, we will show the importance of the cone types and
point structure for the expressibility of first-order logic over the reals.

Real algebraic geometry and constraint databases 27

3.4 Triangulations

An interesting question is whether semi-algebraic sets can exhibit
more topological properties than semi-linear sets. The following results
shows that this is not the case. Roughly speaking, the triangulation theo-
rem states that each semi-algebraic set is homeomorphic to a semi-linear
one. To make this more precise, we need the following notations.

Let a0, a1, . . . , ak be (k + 1) affine independent points in Rn. A k-
simplex (a0, a1, . . . , ak) is the set of points

(a0, a1, . . . , ak) =
{∑

tiai | all ti > 0,
∑

ti = 1
}
⊆ Rn.

Note that k-simplex is of dimension k. Let σ be a k-simplex given by
(a0, a1, . . . , ak). The closure of σ, denoted by cl(σ) is the set of points

cl(σ) =
{∑

tiai | all ti > 0,
∑

ti = 1
}
.

A face of σ is a simplex corresponding to any nonempty subset of
(a0, a1, . . . , ak). A complex in Rn is a finite collection K of simplices
in Rn, such that for all σ1, σ2 ∈ K, either cl(σ1) ∩ cl(σ2) = ∅, or
cl(σ1) ∩ cl(σ2) = cl(τ), where τ is a common face of σ1 and σ2. We
denote by |K| the union of the simplices of K. From the definition it is
clear that |K| is a bounded semi-linear set of Rn.

Theorem 1.37 Let A be a semi-algebraic set of Rn. Then there exists
a complex K in Rn and a semi-algebraic homeomorphism h such that
h(A) = |K|, i.e., A is semi-algebraically homeomorphic to |K|.

4. Query evaluation through quantifier
elimination

In this section, we address in more detail how queries, expressible in
the logics FO(+, <, 0, 1) and FO(+,×, <, 0, 1), may be evaluated.

When we have a query expressed by a formula ϕ(x1, ..., xm) over
the vocabulary (+,×, <, 0, 1, S1, . . . , Sk) and we want to evaluate this
query on a concrete input database over the schema S = (S1, ..., Sk),
given by quantifier-free formulas ϕS1

(x1, ..., xn1
), ..., ϕSk

(x1, ..., xnk
) in

FO(+,×, <, 0, 1) (ni is the arity of Si, i = 1, ..., k), we can proceed as
follows:

we plug-in the descriptions ϕS1
(x1, ..., xn1

), ..., ϕSk
(x1, ..., xnk

) of
the input relations into the query formula ϕ(x1, ..., xm) (this means
that we replace each occurrence of some Si(v1, ..., vni

) in the query
formula by ϕSi

(v1, ..., vni
));

28

this results in a formula over the vocabulary (+,×, <, 0, 1) that
may contain quantifiers introduced by the query formula;

next, we eliminate these quantifiers and obtain a quantifier-free
description in FO(+,×, <, 0, 1) of the output relation.

We remark that the same query evaluation strategy may be applied
when × is omitted.

Example 1.38 The formula

∃ε(ε 6= 0 ∧ ∀x′ ∀y′ ((x− x′)2 + (y − y′)2 < ε2 → S(x′, y′)))

over the schema (+,×, <, 0, 1) expresses the topological interior of a set
S in R2. When we want to evaluate the query expressed by this formula
on the disk given by x2 + y2 ≤ 4, we first replace S(x′, y′) in the query
formula by (x′)2 + (y′)2 < 4. This gives rise to the formula

ψ(x, y) = ∃ε(ε 6= 0∧∀x′ ∀y′ ((x−x′)2+(y−y′)2 < ε2 → (x′)2+(y′)2 < 4)).

The formula ψ contains three quantifiers. When we eliminate the quan-
tifiers from ψ, we obtain as canonical quantifier-free description of the
output the formula x2 + y2 < 4.

The reader might wonder, why we bother about eliminating quanti-
fiers. Indeed, simply plugging in the FO(+,×, <, 0, 1)-formulas of the in-
put relations into the query formula, yields a formula in FO(+,×, <, 0, 1)
that also describes the output. And these formulas, even though con-
taining quantifiers, may be used in turn to describe an input to further
queries. Even without eliminating quantifiers, we would have a formal-
ism that has this closure property . Closure is a much desired property in
database theory where it is considered important that outputs of queries
may serve as input for further queries (compositionality of queries).

So, why is it so relevant to eliminate quantifiers? The answer lies in
the question of what can we do with these formulas that describe output
relations. Or rather, we should ask what we would like to do with these
defining formulas.

Typical questions that are asked in database practice are the following:

Membership test : for example, does (1, 2) belong to the output
relation given by ϕ(u, v) = ∃x∃y (u = x + y ∧ ((x = 1 ∨ x =
2) ∧ y = 3)) ∨ u = v?

Emptiness test : for example, is the set S given by ∃x∃y (z =
x+ y ∧ ((x = 1 ∨ x = 2) ∧ y = 3)) empty?

Real algebraic geometry and constraint databases 29

We observe that both questions, which are relevant to database prac-
tice, add up to deciding the truth of sentences of FO(+,×, <, 0, 1). In-
deed, to answer the membership test the truth of the sentence

∃x∃y (1 = x+ y ∧ ((x = 1 ∨ x = 2) ∧ y = 3)) ∨ 1 = 2

has to be decided. For the second test, the truth of the sentence

∃z∃x∃y (z = x+ y ∧ ((x = 1 ∨ x = 2) ∧ y = 3))

has to be determined.
Deciding the truth of sentences is possible in decidable theories like

(R,+, <, 0, 1) and (R,+,×, <, 0, 1). We discuss decision procedures for
these theories in the subsections that follow.

4.1 Quantifier elimination for FO(+, <, 0, 1)

The theory of (R,+, <, 0, 1) has the following quantifier elimination
property.

Theorem 1.39 The theory of (R,+, <, 0, 1) admits quantifier elimina-
tion. More specifically, this means that there is an algorithm that on
input a formula ϕ(x1, ..., xn) over (+, <, 0, 1) returns a quantifier-free
formula ψ(x1, .., xn) that is equivalent to ϕ(x1, ..., xn) over (R,+, <, 0, 1).

We say that two formulas ϕ(x1, .., xn) and ψ(x1, .., xn) are equivalent
if they define the same n-ary relation over R.

For (R,+, <, 0, 1), there turns out to be a conceptually very simple
quantifier elimination procedure that goes back to Fourier in 1826 and
that was rediscovered by Motzkin in 1936 (?) and by several other
researchers, even as late as the second half of the 20th century. We sketch
the algorithm of Fourier now. Let us concentrate on the problem of
eliminating a single existential quantifier from a formula ϕ(x1, ..., xm−1)
of the form

∃xmψ(x1, ..., xm),

where ψ(x1, ..., xm) is a Boolean combination of atomic formulas of
FO(+, <, 0, 1). So, ψ(x1, ..., xm) can be written as

d∨

i=1

ei∧

j=1

xm θij c0ij +

m−1∑

k=1

ckijxi

with θij ∈ {=, <,≤, >,≥}. If we abbreviate the terms c0ij +
∑m−1

k=1 ckijxi

by tij, then we can remark that for any values given to the the variables
x1, ..., xm−1, the terms tij can be ordered, let us say (after re-indexing)

30

as t1 ≤ t2 ≤ · · · ≤ tk. It is clear that for any two values of xm taken
strictly between some ti and ti+1 (see Figure ??), the truth value of
xm θij c0ij +

∑m−1
k=1 ckijxi is the same. The same is true if we take any

two values of xm strictly smaller than t1 or strictly larger than tk.

xm = +∞
xm = −∞ xm = t1

t1 t2 t3

xm = 1
2
(t2 + t3)

tk

Figure 1.12. The relevant values for xm.

Therefore, when the x1, ..., xm−1 vary, the existential quantifier in
∃xmψ(x1, ..., xm) is equivalent expressible by the disjunction

∨

xm=ti or xm=1/2(ti+tj) or xm=±∞

ψ(x1, ..., xm).

In this disjunction, for xm all values on and in between all of the tij
are considered. In the above formula xm = ±∞ can be achieved by
considering all values ti ± 1 for xm. It is clear that the above given
disjunction suffices to replace the quantifier.

We remark that this procedure takes exponential space in the size
of the input formula and that the time complexity of this procedure is
doubly exponential.

Example 1.40 Suppose we want to eliminate the quantifier in

ϕ(x, y) = ∃z(x+ z = y ∧ z < 2 + x).

To start with, we write this formula in the right form, namely ∃z(z =
y − x ∧ z < 2 + x). When we apply the procedure described above, we
get the quantifier-free formula ψ(x, y) =

Real algebraic geometry and constraint databases 31

(y − x = y − x ∧ y − x < 2 + x) ∨

(2 + x = y − x ∧ 2 + x < 2 + x) ∨

(y − x− 1 = y − x ∧ y − x− 1 < 2 + x) ∨

(2 + x− 1 = y − x ∧ 2 + x− 1 < 2 + x) ∨

(y − x+ 1 = y − x ∧ y − x+ 1 < 2 + x) ∨

(2 + x+ 1 = y − x ∧ 2 + x+ 1 < 2 + x) ∨

(
y − x+ 2 + x

2
= y − x ∧

y − x+ 2 + x

2
< 2 + x).

As mentioned above, we remark that the −∞ and +∞ from the al-
gorithm are implemented by substracting and adding 1 from the terms
t1 = y − x and t2 = 2 + x respectively. Also remark that many atomic
formulas in this expression for ψ(x, y) are trivially true or false. So,
ψ(x, y) could be further simplified.

Exercise 1.41 Evaluate the sentence from Exercise 1.13 that expresses
that a binary linear input relation is convex on the input given by x =
y ∧ x > 0 by plugging in this description in the query formula and
eliminating the quantifiers.

4.2 Quantifier elimination for FO(+, ×, <, 0, 1)

In the 1930s, Alfred Tarski showed that FO(+,×, <, 0, 1) has the algo-
rithmic quantifier elimination property too. Tarski published this result
only in 1948 (?).

Theorem 1.42 There is an algorithm that on input a FO(+,×, <, 0, 1)-
formula ϕ(x1, ..., xn) returns a quantifier-free FO(+,×, <, 0, 1)-formula
ψ(x1, .., xn) that is equivalent to the given formula ϕ(x1, ..., xn) over
(R,+,×, <, 0, 1).

The quantifier elimination procedure given by Tarski is based on a
theorem by Sturm on real root counting and has a huge complexity
(it is not elementary recursive), which makes it unsuitable for practical
purposes.

Example 1.43 A well-known example of quantifier elimination is the
following. Consider the formula

ϕ(a, b, c) = a 6= 0 ∧ ∃x(ax2 + bx+ c = 0).

This formula describes triples (a, b, c) for which the quadratic equation
ax2 + bx + c = 0 has a real root. From high-school mathematics, we

32

know that ϕ(a, b, c) is equivalent to the quantifier-free formula

ψ(a, b, c) = a 6= 0 ∧ (b2 − 4ac ≥ 0).

Improvements to Tarski’s procedure were proposed by Seidenberg (?),
but a major breakthrough was achieved by George Collins (?) in 1975,
when he introduced the cylindrical algebraic decomposition (CAD) of
semi-algebraic sets. His algorithm takes as input a system of polynomial
equalities and inequalities that describe a semi-algebraic set in some
Rn. The algorithm returns a partitioning of Rn in a finite number of
cells that are described by sign conditions on polynomials in n variables.
These cells are actually accompanied by sample points in each of the
cells that allow to determine the sign conditions of these polynomials
in these cells. The algorithm of Collins to compute a CAD has in the
worst-case doubly-exponential sequential time complexity in the number
of variables. It was the first quantifier elimination algorithm that has
been implemented, however. It has undergone numerous improvements,
resulting in the implementation QEPCAD (Quantifier Elimination by
Partial Cylindrical Algebraic Decomposition) by Hong (?). We refer to
(?) for a description at length of the current state of CAD.

A formal definition of a CAD was given in Section 1.3. It is beyond the
scope of this chapter to give a full description of Collins’ CAD algorithm,
but we want to give an idea of the major steps in the algorithm.

Suppose the input of the CAD algorithm is an FO(+,×, <, 0, 1)-
formula in prenex normal form

ϕ(u1, ..., um) = ∃x1 · · · ∃xnϕ̄(u1, ..., um, x1, ..., xn).

Here, ϕ̄(u1, ..., um, x1, ..., xn) is a boolean combination of expressions
of the form p = 0, p > 0, p ≥ 0 or p 6= 0, where p is a polyno-
mial. It is custom in the quantifier elimination literature to distin-
guish between the variables (x1, ..., xn) and parameters (u1, ..., um) of
the given formula ϕ(u1, ..., um, x1, ..., xn). The goal is to eliminate the
variables from the formula ϕ(u1, ..., um) via the computation of a CAD
of ϕ̄(u1, ..., um, x1, ..., xn).

The main construction steps in the construction of a CAD of the set
A = {(u1, ..., um, x1, ..., xn) ∈ Rm+n | ϕ̄(u1, ..., um, x1, ..., xn)} are:

the projection phase: here the (m+ n)-dimensional semi-algebraic
set A is iteratively projected onto lower dimensional spaces (Rm+n

→ Rm+n−1 → · · · → R1);

the basis phase: here real roots are isolated in R1 and sample points
are computed (using numeric methods);

Real algebraic geometry and constraint databases 33

the extension phase: here, again in an iterative way (R1 → R2 →
· · · → Rm+n−1 → Rm+n), a lifting to higher dimensions takes
place. Stacks of cells (sections and sectors) are built, iteratively,
together with sample points.

The output of the CAD algorithm is a sequence C1, ..., Cm+n, where
each Ci is a partition of Ri. These cells are given by means of quantifier-
free FO(+,×, <, 0, 1)-formulas and a sample point. In particular, for
each of the cells in the resulting decomposition of Rm+n it is recorded
whether it belongs to the given semi-algebraic set A or not.

A quantifier-free equivalent formula for ϕ(u1, ..., um) is then obtained
as a disjunction of all formulas ϕC describing cells C in Cm such that in
the stack above C a cell of Cm+n belongs to A.

Example 1.44 We illustrate the CAD algorithm using the three-dimen-
sional set given by the quantifier-free FO(+,×, <, 0, 1)-formula

x2 + y2 + z2 ≤ 1 ∨ (x2 + y2 + (z − 2)2 = 1 ∧ t ≤ 5/2)

∨ (x2 + y2 + (z − 3)2 = 1 ∧ z > 5/2).

This set is depicted in Figure ??.

y

−1 40 1

z

5

x

Figure 1.13. An example of a semi-algebraic set in R3.

In the projection phase this three-dimensional set is projected on
(x, z)-plane and then this projected set is in turn projected on the z-
axis (details omitted). On the real line certain “special points” are
determined. In Figure ??, these special points are coloured grey on the
z-axis. These special points are always finite in number and they parti-
tion the line R into a finite number of points and open intervals (two of
which are unbounded).

In the example of Figures ?? and ??, there are 7 points and 8 intervals.
This partition is called the one-dimensional induced CAD of the given
set. Next, in the extension phase, stacks are built on the one-dimensional

34

x

−1 4

z

5

Figure 1.14. The 1- and 2-dimensional induced CADs of the semi-algebraic set of
Figure ??.

CAD. The stack above the second interval, for intance, consists of two
curves (called sections) and three regions (called sectors), two of which
are unbounded. The cells in these stacks form the two-dimensional in-
duced CAD of the given set. Finally, stacks are built on these cells,
resulting in the CAD of the given set, or to be more precise, of the de-
scription of the given set. For each of the cells in this decomposition of
R3 it is recorded whether it belongs to the given semi-algebraic set or
not.

During the 1990s more efficient quantifier elimination algorithms have
been proposed. In 1990, Heintz, Roy, Solerno show a doubly exponential
sequential time complexity in number of quantifier alternations, rather
than in the number of quantifiers (?). Later on, Heintz et al. show sin-
gle exponential complexity if you work with alternative data structures,
such as arithmetic boolean circuits, to store systems of polynomial equal-
ities and inequalities (?). In the TERA project, the software Kronecker
was developed and it is for the moment the most efficient software for
quantifier elimination (?) over the reals. The Kronecker implementation
is decribed in (?). We refer to (?) for a detailed overview of algorithms
in real algebraic geometry.

5. Expressiveness results

In this section, we discuss some results concerning the expressive
power of FO(+,×, <, 0, 1) and FO(+, <, 0, 1) as query languages for con-
straint databases.

The development of constraint databases has given rise to two direc-
tions of research. Firstly, classical relational database questions have
been reconsidered. For instance, it is known that graph connectivity of
finite relations is not expressible in first-order logic over relations (the

Real algebraic geometry and constraint databases 35

same holds for other properties such as parity, majority, etc.). These ex-
pressiveness results can be re-addressed in the presence of arithmetical
operations. Indeed, when we assume that the finite relations are em-
bedded in the reals, we can ask whether connectivity, parity, majority,
etc., are expressible when the vocabulary of first-order logic is extended
with +,×, <, 0 and 1. Secondly, expressiveness questions related to the
possibility of representing infinite relations have been studied. In this
section, we start by giving some results on finite relations and then
show how they help to settle questions concerning the expressive power
of FO(+,×, <, 0, 1) on infinite relations.

5.1 Expressiveness results for finite databases

Here, we state a generic collapse result which allows to reduce – or
collapse – expressiveness questions in the presence of arithmetic, to the
arithmetic-free case (?). We illustrate its implications on the first-order
expressiveness of properties over finite databases over the reals. We also
give the dichotomy theorem which gives a bound on the query result (in
case it is finite) for first-order expressible queries (?). This bound can
be used to show inexpressibility results, as we shall illustrate.

Consider the following decision problems on finite relations:

The decision problem majority about two finite sets S1 and S2 is:
majority(S1, S2) is true if and only if S2 ⊆ S1 and |S1| ≤ 2|S2|;

The decision problem parity about a finite set S is: parity(S)
is true if and only if |S| is even.

The proof of the following lemma is a routine exercise in finite-model
theory (?). It can, e.g., be proven using the well-known technique of
Ehrenfeucht-Fräıssé games. This lemma holds for arbitrary finite struc-
tures.

Lemma 1.45 On finite structures over the signature (<,S1, S2), the de-
cision problem majority(S1, S2) is not expressible in FO(<,S1, S2).
Likewise, on finite structures over the signature (<,S), the decision
problem parity(S) is not expressible in FO(<,S).

Benedikt, Dong, Libkin and Wong proved that any first-order formula
over the reals that is invariant under monotone bijections from R to R

is equivalently expressible on finite relations in the restriction of first-
order logic that only uses order constraints (?). This collapse result
was a breakthrough in the line of research towards understanding of the
expressive power of first-order logic over the reals and related structures
(?; ?; ?; ?; ?; ?; ?).

36

Consider structures over the vocabulary (+,×, <, 0, 1, S1, . . . , Sk) that
are expansions of R with k finite relations on R. We call such structures
finite structures over the reals (to emphasize the difference with finite
structures in the sense of relational databases). A first-order formula
over the vocabulary (+,×, <, 0, 1, S1, . . . , Sk) is called order-generic if
on such structures, it is invariant under monotone bijections f : R → R.
Benedikt, Dong, Libkin, and Wong showed the following (?):

Theorem 1.46 (Collapse theorem) For each order-generic formula
in FO(+,×, <, 0, 1, S1, . . . , Sk), there exists a formula in FO(<,S1, . . . ,
Sk), that is equivalent to it on finite structures over the reals. Further-
more, in the latter formula the quantifiers may be assumed to range only
over the constants actually occurring in the relations S1, . . . , Sk.

Exercise 1.47 Verify that the properties parity and majority of fi-
nite structures over the reals are invariant under monotone bijections
from R to R.

The following lemma, which specializes Lemma ?? from general finite
ordered structures to finite structures over the reals, now follows directly
from Theorem ?? and Lemma ??.

Lemma 1.48 On finite structures over the signatures (+,×, <, 0, 1, S1, S2),
the decision problem majority(S1, S2) is not first-order expressible. Sim-
ilarly, on finite structures over the signatures (+,×, <, 0, 1, S), the deci-
sion problem parity(S) is not first-order expressible.

Apart from the above collapse results, there are also other results
that are handy to show that the expressive power of FO(+,×, <, 0, 1) is
rather limited on finite structures over the reals.

Theorem 1.49 (Dichotomy Theorem) Let ϕ be a FO(+,×, <, 0, 1, S1, . . . , Sk)-
formula. There exists a polynomial pϕ such that for any finite structure
over the reals D, the query result of ϕ(D) is either infinite or bounded
by pϕ(|D|), where |D| denotes the number of elements in the structure
D.

Exercise 1.50 Show, using the dichotomy theorem, that the query
“Return all prime divisors of the elements in S”, where S is a unary
relation name (assumed to contain natural numbers), is not expressible
in FO(+,×, <, 0, 1, S).

5.2 Inexpressibility results for infinite databases

We now apply the Dichotomy theorem to obtain an inexpressibility
result for infinite databases. The example that we want to discuss con-
cerns the linear ε-approximation of semi-algebraic sets.

Real algebraic geometry and constraint databases 37

Definition 1.51 Let A be a semi-algebraic set of R2. A (linear) ε-
approximation of A is a semi-linear set B of R2 which is homeomorphic
to A via an homeomorphism h : R2 → R2, and such that for any ~p ∈ A,
d(~p, h(~p)) < ε.

Theorem 1.52 Let ε > 0 be a real number. There is no FO(+,×, <, 0, 1, S)-
formula that expresses a linear ε-approximation of a relation S in R2.

Proof Consider the query Q that returns the empty set if the relation S
does not consist of three non-collinear points, and otherwise returns the
corner points of an ε-approximation of the circle determined by the three
points of S. Here, a corner point is a point in which two straight-line
segments make an angle different from 180 degrees.

Clearly, the construction of a circle through three points is expressible
in FO(+,×, <, 0, 1)(the reader may want to verify this!). The same holds
for the selection of the corner points of a semi-linear set (the reader may
want to verify this as an exercise too). Hence, if we assume that the
ε-approximation query can be expressed FO(+,×, <, 0, 1, S), then Q is
also expressible in FO(+,×, <, 0, 1, S) by a formula ϕ. However, the
number of corner points which is equal to |ϕ(D)|, can be made arbitrarily
large by choosing D to consist of three far enough apart points. This
contradicts the dichotomy theorem, which guarantees the existence of a
polynomial pϕ such that the output of ϕ, when applied to D is bounded
by pϕ(|D|) = pϕ(3). QED

Exercise 1.53 Prove Theorem ?? using the uniform finiteness property
of semi-algebraic sets instead of the dichotomy theorem.

5.3 Expressing topological properties of spatial
databases

In this section, we will show that topological connectivity of planar
geometric figures is not expressible in FO(+,×, <, 0, 1). First, we re-
mark that topological connectivity of a set in the plane is a query that is
invariant under topological transformations of the plane, i.e., it is invari-
ant under isotopies i : R2 → R2 (an isotopy is an orientation-preserving
homeomorphism, i.e., it can be seen as a stretching transformation of the
plane seen as a rubber sheet). Such queries are called topological queries.
Formally, a query Q (over an input schema with one binary relation S)
is called topological if for any two instances A and B of S for which there
is an isotopy i : R2 → R2 such that i(A) = B, i(Q(A)) = Q(B) holds.
This concept is illustrated in Figure ??

38

() ()Q

i

i

Q Q

Q

Figure 1.15. The query Q is topological.

We remark that deciding whether a query is topological is undecidable.
For completeness we give the proof first presented in ?.

Theorem 1.54 Testing whether a query expressible in FO(+,×, <, 0, 1)
is topological is undecidable.

Proof Let S be the database schema consisting of a single unary relation
S. For other schemas, the proof is similar. We will reduce the problem
of deciding the truth of sentences of the ∀∗-fragment of number theory
to the problem of deciding whether a query is topological. The ∀∗-
fragment of number theory is known to be undecidable since Hilbert’s
10th problem can be formulated in it.

We encode a natural number n by the unary finite relation enc(n) =
{0, 1, 2, . . . , n}. A k-dimensional vector of natural numbers (n1, n2, . . . ,
nk) is encoded by the relation

enc(n1, n2, . . . , nk) = enc(n1) ∪ (enc(n2) + n1 + 2) ∪

· · · ∪ (enc(nk) + n1 + 2 + · · · + nk−1 + 2).

For a fixed k, the corresponding decoding is expressible in FO(+,×, <, 0, 1)
(the reader might want to verify this).

We now associate with each first-order sentence

∀x1∀x2 · · · ∀xnϕ(x1, . . . , xn)

Real algebraic geometry and constraint databases 39

of number theory the following queryQϕ expressed by the FO(+,×, <, 0, 1)
formula over S:

Qϕ = if S encodes a vector (n1, . . . , nk) ∈ Nk then

if ϕ(n1, . . . , nk) then return ∅

else return 0

else return ∅.

It is easily verified that Qϕ is topological if and only if the sentence
∀x1∀x2 · · · ∀xnϕ(x1, . . . , xn) is true. Therefore, if testing whether a query
expressible in FO(+,×, <, 0, 1) is topological would be decidable, so
would be the ∀∗-fragment of number theory. QED

Exercise 1.55 Prove the claim in the above proof that Qϕ is topolog-
ical if and only if the sentence ∀x1∀x2 · · · ∀xnϕ(x1, . . . , xn) is true.

In the remainder of this section we investigate which databases can be
distinguished by means of topological queries expressible in FO(+,×, <, 0, 1, S).
FO(+,×, <, 0, 1, S). By definition, isotopic databases cannot be distin-
guished in such a way. It turns out that reverse direction does not
hold. In general, it is not known when two databases are distinguish-
able by topological queries. There are two exceptions however. The first
exception is for databases consisting of a single closed semi-algebraic
set, the second exception is for databases consisting of possibly many
semi-algebraic sets, but in which only points of “regular” cone types are
allowed. The latter case is discussed in (?). We will only describe the
case of closed databases. The following results are taken from (?).

Cut- and glue transformations and the first-order inexpress-

ibility of connectivity. Here we describe two transformations on
closed semi-algebraic sets in R2. We call these transformations the cut-
and the glue transformation. To apply the cut transformation to a set
A ⊂ R2, one first needs to create locally (via a rubber-sheet transfor-
mation of the plane) a rectangular strip in A and then perform a cut as
illustrated by the left to right direction in Figure ??. So, this cut re-
moves a rectangular part of the strip and perforates one of the remaining
ends. The glue transformation is the inverse of the cut (illustrated by
the right to left arrow in Figure ??).

We will show that whenever two planar sets differ from each other
by a cut- or glue transformation, they cannot be distinguished by a
topological query expressed by a sentence in FO(+,×, <, 0, 1, S).

40

Figure 1.16. The cut and glue transformations on figures in R2.

Theorem 1.56 Let A and B be closed semi-algebraic sets in R2. If
B is obtained from A by a cut- or glue transformation, then A and B
are indistinguishable by a FO(+,×, <, 0, 1, S)-sentence that expresses a
topological query.

Proof Assume, for the sake of contradiction, that there exist closed
semi-algebraic sets A and B that differ by one cut- or glue transformation
but which can be distinguished by a first-order expressible topological
sentence. Hence, there exists a first-order sentence ϕ, which expresses a
topological query, such that ϕ(A) = True and ϕ(B) = False.

Consider the decision problem majority about two finite sets of reals
S1 and S2 (see above). We will prove the existence of a formula ψ(x, y) in
FO(+,×, <, 0, 1, S1, S2) such that for any finite database D = (D1,D2)
over (S1, S2), we have that for EA(D) = {(x, y) ∈ R2 | (R,D) |=
ψ(x, y)}, ϕ(EA(D)) = True if and only if majority(D1,D2) is False.

By Lemma ??, this then yields the desired contradiction. This reduc-
tion technique is inspired by (?).

Obviously, for any finite D = (D1,D2), the part D1 ⊆ D2 can be
tested in first-order logic. For given D1 = {r1, . . . , rn} and D2 =
{a1, . . . , am} with 0 < r1 < · · · < rn and 0 < a1 < · · · < am, we con-
struct within the fixed rectangular part α of R2, where the cut-or-glue
transformation takes place, a closed semi-algebraic set E(D) consisting
of interconnected strips.

This construction is similar to constructions in (?) and is illustrated
in Figure ?? for n = 6 and m = 4. The construction is as follows. Take
a rectangular subarea α′ of α. Let (b0, s0) be the left bottom corner of α′

and let h and w be its height and width. Then setsD′
1 = {s0, . . . , sn} and

D′
2 = {b0, b1, . . . , bm, bm+1, . . . , b2m}, with si = s0 + rih/rn (0 < i ≤ n),

bi = b0 + aiw/2am and bm+i = bi + w/2 (0 < i ≤ m) are constructed.
Then, the following closed strips of E(D) are constructed:

1. the filled convex quadrangle with corners (bi, sj), ((bi+bi+1)/2, sj),
(bi+1, sj+1), ((bi+1+bi+2)/2, sj+1) for 0 < i < 2m−1 and 0 ≤ j < n
and for i = j = 0,

Real algebraic geometry and constraint databases 41

b1 b2 b3 b4

s1

s2

s3

s4

s5

s6

b5 b6 b7 b8

α′

α

s0

b0

Figure 1.17. Construction of E(D) for D = (D1, D2) with D1 = {1, 3, 5, 6, 7, 9} and
D2 = {1, 3, 6, 7} in the rectangular area α.

2. the filled convex quadrangle with corners (b2m−1, sj), ((b2m−1 +
b2m)/2, sj), (b2m, sj+1), (b2m, (sj + sj+1)/2) for 0 ≤ j < n,

3. the filled convex quadrangle with corners (b0, (sj+1 + sj+2)/2),
((b1 + b2)/2, sj+2), (b1, sj+2), (b0, sj+1) for 0 ≤ j < n− 1.

Finally, a number of additional closed strips are added in the area
α\α′ (as illustrated in Figure ??) to complete the construction of E(D).
Remark that the complete construction of E(D), as described above,
starting from D1 and D2 can be expressed for any D = (D1,D2) by a
formula FO(+,×, <, 0, 1, S1, S2).

We then glue E(D) to the part of A outside the cut-or-glue transfor-
mation area α and denote the resulting set by EA(D). Note that outside
this area, EA(D) and B are identical.

Hence, there exists a formula ψ in FO(+,×, <, 0, 1, S1, S2) such that
for any D, we obtain a semi-algebraic set EA(D). Moreover, by con-
struction E(D) will be homeomorphic to the right part of Figure ?? if
majority(D1,D2) is true, and homeomorphic to the left part of Fig-
ure ?? otherwise.

Hence, in case of majority EA(D) is homeomorphic to B, and in the
other case it is homeomorphic to A. Since ϕ expresses a topological

42

(a)

(b)

D D
(c)

Figure 1.18. Three more cut and glue transformations on figures in R2.

query which distinguishes between A and B, we can use ϕ to express
majority. QED

With some more work additional cut and glue transformations can
be proven to produce results that are indistinguishable from the original
spatial figure. Three such transformations are shown in Figure ??. In
(a), we have a stip that can be cut (this time without producing a perfo-
ration in one of the sides). In (b), we have the reverse transformation of
(a) and in (c) we see how parallel lines can be rewired, even when some
data D is in between them.

Exercise 1.57 Use this theorem to show that the connectivity query
is not expressible in FO(+,×, <, 0, 1).

Exercise 1.58 Let us consider a linear version of the cut- or glue trans-
formation (with a squared hole rather than a circular one). Let A and B
be closed semi-linear sets in R2. Prove that if B is obtained from A by a
(linear) cut-or-glue transformation, then A and B are indistinguishable
by a FO(+, <, 0, 1)-sentence that expresses a topological query.

The point structure of a closed semi-algebraic set in R2. In
the previous section, we have shown that there are non-homeomorphic
sets that nevertheless are indistinguishable by FO(+,×, <, 0, 1)-sentences
expressing topological properties. More specifically, the cut- or glue
transformations relate some indistinguishable databases. However, there
are a few other transformations with the same property and the question
now rises which databases can be transformed into each other using one
of these transformations. For closed databases, we can characterize this
exactly.

First, recall the definition ?? of the point structure of a database.

Real algebraic geometry and constraint databases 43

Definition 1.59 Let A and B be closed semi-algebraic sets in R2. We
say that Π(A) is isomorphic to Π(B) (denoted by Π(A) ∼= Π(B)) if there
is a bijection f from A ∪ {∞} to B ∪ {∞} with f(∞) = ∞, such that
Π(A) = Π(B) ◦ f .

The main result in this context is that indistinguishability by topolog-
ical queries can be expressed in terms of point-structure isomorphism.

Theorem 1.60 Let A and B be closed semi-algebraic sets in R2. The
sets A and B are indistinguishable by topological FO(+,×, <, 0, 1)-queries
if and only if Π(A) ∼= Π(B).

Proof We briefly sketch the proof of this theorem. If two closed semi-
algebraic sets have a different point structure than they can be distin-
guished by a topological query that expresses that the one set contains
a different number of points than the other set with a specific cone. In
Section ??, we will discuss in more detail how a cone of a point can be
expressed in FO(+,×, <, 0, 1).

If two closed semi-algebraic sets in R2 have the same point struc-
ture, they can be transformed into the same canonical semi-algebraic
set using the cut and glue transformations shown in Figure ??. First,
two-dimensional lobes are cut around singular points, then the lines are
cut into lobes. This produces “flowers” that may be connected by stems.
This rewriting process is illustrated in Figure ??. QED

Exercise 1.61 Use this theorem to show that the two sets shown in
Figure ?? are indistinguishable by a topological query.

One may wonder whether this characterization holds for arbitrary
semi-algebraic sets in R2 too. This is not the case as it can be shown
that the two sets shown in Figure ?? can be distinguished by a topolog-
ical FO(+,×, <, 0, 1)-sentence even though they have isomorphic cone
structures (?).

Theorem ?? gives us an idea of which closed semi-algebraic sets in the
plane are distinguishable by topological first-order queries, but it doesn’t
give us a full picture of the expressive power of the topological fragment
of FO(+,×, <, 0, 1). There are results that characterize this expressive
power, however. It has been shown that the topological fragment of
FO(+,×, <, 0, 1) just allows you to formulate queries that talk about
types of cones appearing in a semi-algebraic sets and on the number of
points having particular cones (?).

44

Figure 1.19. The transformation of two closed semi-algebaric sets (on the left and
right hand top) into their canonical form (left bottom).

Real algebraic geometry and constraint databases 45

Figure 1.20. One and two balls cannot be distinguished by a topological
FO(+,×, <, 0, 1)-query.

Figure 1.21. Semi-open annuli with the opposite open sides can be distinguished by
a topological FO(+,×,<, 0, 1)-query.

5.4 Expressing the cone radius

As we have seen, the local conical property of semi-algebraic sets plays
a prominent role in the study of first-order expressiveness of topologi-
cal properties. In this section, we will show that FO(+,×, <, 0, 1) is
expressive enough to find a cone radius for each point in the database.

More specifically, the following result holds (?).

Theorem 1.62 There exists an FO(+,×, <, 0, 1, S1, S2)-formula ϕ(r),
with S1 and S2 of arity n, that for a semi-algebraic set A in Rn and a
point ~p in Rn, defines one r in R for which (A, {~p}) |= ϕ(r) and which
is a cone radius for A in ~p.

To give the complete proof of this theorem would lead us too far.
Instead, we provide the intuition behind the proof. Moreover, we only
consider the case when n = 2 and assume that A is a semi-algebraic set
consisting only of points of cone type (LL).

Consider the semi-algebraic set depicted on the left of Figure ??. On
the right of this picture, we have shown the intersections of circles of
various radii, centered around ~p with A. As can be seen, each time
there exists a point ~q in A which has a tangent line perpendicular to
the line going through ~p and ~q (depicted by the dashed circles), the

46

Figure 1.22. Illustration of how the intersections S1(~p, r) ∩ A change in terms of r.

topological type of the intersection, which in this case is nothing else
than the number of points, changes.

This observation can be formalized using a variant of the triviality
theorem which states that the topological type of S1(~p, r1) ∩ A and
S1(~p, r2) ∩ A are the same (meaning that there exists an homeomor-
phism between these two sets) if for any r ∈ [r1, r2] there exists no point
~q such that d(~p, ~q) = r and the tangent line in ~q is perpendicular to ~q−~p.

Exercise 1.63 Let A ⊆ R2 be a one-dimensional semi-algebraic set.
Show that there exists an FO(+,×, <, 0, 1, S1, S2)-formula ϕ which re-
turns for any pair (A, ~p) all point ~q which have a tangent line perpendic-
ular to the vector ~q − ~p. (Hint: Use the standard definition of tangent
line in terms of the limit of the secant lines.)

Given the FO(+,×, <, 0, 1, S1, S2)-expression ϕ of the previous exer-
cise, define

r~p =
1

2
min{d(~p, ~q) | (A, ~p) |= ϕ(~q)}.

It is clear that for any (A, ~p), r~p is expressible by a first-order formula.
By definition, there is no point ~q with a tangent line perpendicular to
~q − ~p for any 0 < r ≤ r~p. In other words, for all 0 < r ≤ r~p, all
interesections S1(~p, r)∩A are homeomorphic, and it can be shown that
r~p is indeed a cone radius of A in ~p.

We briefly mention that for the general case, we have to decompose
A first into parts on which a tangent space can be defined. Moreover,
this has to be shown to be first-order expressible. Next, similar to the
case above, a cone radius of a point ~p can then be defined as a radius

Real algebraic geometry and constraint databases 47

smaller than any point ~q with a tangent space perpendicular to ~q − ~p,
where the tangent space is taken relative to the decomposition of A.

5.5 The expressiveness of FO(+, ×, <, 0, 1) and
FO(+, <, 0, 1)

We end this section with a remark on the comparison of the expres-
sive powers of FO(+,×, <, 0, 1) and of FO(+, <, 0, 1). We will illus-
trate that the expressive power of FO(+, <, 0, 1) is less than that of
FO(+,×, <, 0, 1).

The topological interior of a two-dimensional set S can be expressed
in FO(+,×, <, 0, 1) by the formula

∃ε(ε 6= 0 ∧ ∀x′∀y′((x− x′)2 + (y − y′)2 < ε2 → S(x′, y′)).

Since the topology of R2 based on open discs is equivalent to the one
based on open rectangles, we can equivalently express the topological
interior of a semi-algebraic subset of R2 in FO(+, <, 0, 1) by the formula

∃ε(ε > 0 ∧ ∀x′∀y′((| x− x′ |< ε∧ | y − y′ |< ε) → S(x′, y′)).

But there are other queries for which the multiplication seems to be
really necessary to express them in first-order logic. If we want to express
that a two-dimensional semi-linear set is comvex, for instance, then we
can do this in FO(+,×, <, 0, 1) with the formula

∀~x∀~y(S(~x) ∧ S(~y) → ∀λ(0 ≤ λ ≤ 1 → S(λ~x+ (1 − λ)~y)).

Clearly, in the subexpression λ~x + (1 − λ)~y multiplication is used and
it may seem difficult to imagine that convexity of semi-linear sets might
be expressible without multiplication.

But it turns out that we have the following property (?).

Proposition 1.64 A semi-linear set of Rn is convex if and only if it is
closed under taking midpoints.

Exercise 1.65 Verify this property. Verify also that this property does
not hold for subsets of Rn that are not semi-linear (think of Qn).

We can therefore express convexity of semi-linear sets by the FO(+, <, 0, 1)-
formula

∀~x∀~y(S(~x) ∧ S(~y) → ∃~z(2~z = ~x+ ~y ∧ S(~z)).

Now we can wonder whether all FO(+, <, 0, 1) expressible queries and
properties are also expressible in FO(+, <, 0, 1). Clearly, FO(+,×, <, 0, 1)

48

is more expressive than FO(+, <, 0, 1) for what concerns queries that re-
turn some n-dimensional result. The constant query that returns on any
input the n-dimensional unit sphere, for instance, is not expressible in
FO(+, <, 0, 1). But what about properties? Are FO(+,×, <, 0, 1) and
FO(+, <, 0, 1) equally expressive for what concerns properties?

The answer is negative, however, as is illustrated by the following the-
orems. The first theorem is from (?) and was proven using Ehrenfeucht-
Fräıssé games.

Theorem 1.66 The boolean query deciding whether a semi-linear set S
contains real numbers u and v satisfying u2 + v2 = 1 is expressible in
FO(+,×, <, 0, 1, S), but not in FO(+, <, 0, 1, S).

Another example of a property that is not expressible in FO(+, <, 0, 1)
is from (?).

Theorem 1.67 The boolean query deciding whether a semi-linear subset
S of R2 contains a line is expressible in FO(+,×, <, 0, 1, S), but not in
FO(+, <, 0, 1, S).

6. Extensions of logical query languages

In this section we will extend first-order logic with operators in order
to increase its expressive power. We begin with introducing transitive
closure logics (?; ?) and (?). Next, we extend first-order logic with a
while-loop (?). We conclude the section by extending first-order logic
with specific operators for topological properties (?).

6.1 First-order logic with all-purpose operators

Let us first make a small digression to the relational database setting.
Here, a database D is a finite model of the signature S, where S consist
of a binary relation name S. The transitive closure of D is usually
computed in stages Xi, i = 0, 1, 2, Initially, X0 = D and for n > 0
we have

Xn+1 = Xn ∪
{
(x, y) | ∃z

(
Xn(x, z) ∧D(z, y)

)}
.

Since the number of pairs in D is finite and by construction, Xn ⊆ Xn+1,
after finitely many steps we end up with the situation that Xn+1 = Xn.
The fixed-point Xn is then the transitive closure of D.

It is well-known that the transitive closure of D cannot be computed
by a query expressible in first-order logic over S. In order to be able
to express the transitive closure of D one has studied the extension of
first-order logic with transitive closure (?).

Real algebraic geometry and constraint databases 49

Example 1.68 We show that transitive closure logics can express that
a graph G = (V,E) is connected. Indeed, let D be the (binary) database
containing the edge relation E of G. If we interpret the formula

TCx;yS(x, y)

as an expression which evaluates on D to the transitive closure of D,
then the expression

∀s∀t
[
TCx;yS(x, y)

]
(s, t)

evaluates to true on D if and only if the corresponding graph G is a
connected, i.e., if for any two s, t in the domain of D, i.e., the set of
vertices V of G, there exists a sequence (v0, v1), (v1, v2), . . . , (vn−1, vn)
such that D(vi, vi+1) for i = 0, 1, . . . , n− 1 and s = v0 and t = vn.

Motivated by this relational example, we start by adding the transitive
closure operator to first-order logic in the constraint database setting.
The resulting query language will be denoted by FO(+,×, <, 0, 1)+TC.

First-order logic with transitive-closure operator. A for-
mula in FO(+,×, <, 0, 1)+TC is a formula built in the same way as an
FO(+,×, <, 0, 1) formula, but with the following extra formation rule:
if ψ(~x, ~y) is a formula with ~x and ~y k-tuples of real variables, with all
free variables of ψ among ~x, ~y, and if ~s, ~t are k-tuples of real variables,
then [

TC~x;~y ψ(~x, ~y)
]
(~s,~t) (1.1)

is also a formula which has as free variables those in ~s and ~t.
We will distinguish between FO(+, <, 0, 1)+TC and FO(+,×, <, 0, 1)+TC

depending on whether only linear (i.e., × is not allowed) or also non-
linear constraints are allowed.

To explain the semantics of a subformula of the above form (??), we
compute again the following stages

X0 = ψ(D), Xn+1 = Xn ∪
{
(~x, ~y) | ∃~u

(
Xn(~x, ~u) ∧X0(~u, ~y)

)}
,

until the fixed-point, which we denote by X∞, is reached. Then the
semantics of

[
TC~x;~y ψ(~x, ~y)

]
(~s,~t) is defined as (~s,~t) belonging to the 2k-

ary relation X∞.
The question is now how a formula in FO(+,×, <, 0, 1)+TC is eval-

uated. Assume that ψ is an FO(+,×, <, 0, 1)-formula. Then we sim-
ply can compute the quantifier-free description of Xn+1 recursively by
evaluating the corresponding FO(+,×, <, 0, 1)-expressions. After each

50

computation we then test whether Xn = Xn+1. If this holds, we have
obtained the fixed-point and test whether (~s,~t) is in Xn.

In general, the semantics of a formula ϕ in FO(+,×, <, 0, 1)+TC is
evaluated in the standard bottom-up fashion. The result of the evalu-
ation of subformulas is passed on to formulas that are higher up in the
parsing tree of ϕ.

However, in this context, we then face the well-known fact that re-
cursion involving arithmetic over an unbounded domain, such as the
polynomial inequalities over the reals in our setting, is no longer guar-
anteed to terminate. In other words, the computation of X∞ might not
terminate. Hence, the property of effective computability of queries,
expressible in FO(+,×, <, 0, 1) or FO(+, <, 0, 1), is lost when extending
these logics with recursion. In case the computation of X∞ does not ter-
minate, then the semantics of the formula (??) (and any other formula
in which it occurs as subformula) is undefined.

We therefore have to distinguish between formulas for which the eval-
uation terminates, we call such formulas terminating, and formulas for
which the evaluation does not terminate, i.e., the non-terminating for-
mulas. To illustrate this difference, we now provide an example of a
terminating and non-terminating formula in FO(+,×, <, 0, 1)+TC.

Example 1.69 Let S consist of the binary relation S. Consider the
FO(+,×, <, 0, 1)+TC formula

[
TCx;yS(x, y)

]
(s, t)

and let D = {(x, y) | y = 2x}. We have for each n > 0,

Xn =
{
(x, y) | ∃i ∈ N, i 6 n, y = 2ix

}
.

It is clear that for all n > 0, Xn 6= Xn+1 and hence we need to compute
infinitely many stages until the fixed point X∞ is reached. We have
depicted this example in ??.

Exercise 1.70 Show that X∞ in the previous example is not a semi-
algebraic set.

On the other hand, even when X∞ is semi-algebraic, its computation
may still be non-terminating.

Exercise 1.71 Give an example of a non-terminating transitive closure
for which X∞ is a semi-algebraic set. (Hint : Look at Example ?? for
inspiration.)

One may wonder whether the non-termination of the FO(+,×, <, 0, 1)+TC
formula in Example ?? is caused by the unboundedness of the input
database.

Real algebraic geometry and constraint databases 51

x
0

y = 0

y = 2x

y = 1

1

2

Figure 1.23. Computation of
ˆ

TCx;yS(x, y)
˜

(s, t) for D = {(x, y) | y = 2x} (thickest
line). Consecutive stages are drawn in decreasingly finer lines.

Exercise 1.72 Provide an example of a bounded database D on which
the FO(+,×, <, 0, 1)+TC expression

[
TCx;yS(x, y)

]
(s, t) does not ter-

minate.

Since FO(+,×, <, 0, 1) is a sub-language of FO(+,×, <, 0, 1)+TC,
there are infinitely many terminating formulas. We now give an example
of a terminating formula which is not in FO(+,×, <, 0, 1).

Example 1.73 Let the database schema S consist of the unary relation
name S. Consider the formula

[
TCx;yϕ(r, x, y) ∧ S(r)

]
(s, t)

where ϕ(r, x, y) defines the graph of the continuous piecewise affine func-
tion that maps x to

y =

0 if 0 ≤ x ≤ 1
r ,

x− 1
r if 1

r < x < 1,

1 − 1
r if x = 1.

Then, for D = {p} and p ∈ N we have for each n > 0,

Xn =

n⋃

i=1

{
(x, y) | ϕ(

n

p
, x, y)

}
.

It is clear that Xp+1 = Xp and hence this FO(+,×, <, 0, 1)+TC for-
mula is terminating. Moreover, it expresses the query Qnat which tests
whether the number stored in a database is a natural number. We have
illustrated this example in Figure ??.

Exercise 1.74 Show that the query Qnat cannot be expressed in the
logic FO(+,×, <, 0, 1).

52

y = 3

4

y = x −
1
4

y = 0

0 1
4

1

Figure 1.24. Example of the terminating FO(+,×, <, 0, 1)+TC formula of Exam-
ple ?? for D = {4}.

As a result of the above exercise and Example ??, we have that
FO(+,×, <, 0, 1) is strictly less expressive than FO(+,×, <, 0, 1)+TC.

Exercise 1.75 Give an example of an unbounded database on which
the FO(+,×, <, 0, 1)+TC expression

[
TCx;yS(x, y)

]
(s, t) terminates. (Hint :

Use the formula ϕ(r, x, y) of the previous example.)

As explained in Example ??, transitive closure logic can express the
connectivity of finite graphs. Similarly, FO(+,×, <, 0, 1)+TC can ex-
press the connectivity of constraint databases. We first consider the
case of linear constraints.

Let S be a schema with one relation name S of arity n. Consider the
following FO(+,×, <, 0, 1)+TC formula connected(S):

∀~s ∀~t
((
S(~s) ∧ S(~t)

)
→ [TC~x;~y lineconn](~s,~t)

)

where lineconn(~x, ~y) is the formula

∀λ(0 ≤ λ ≤ 1 ∧ ∀~t(~t = λ~x+ (1 − λ)~y → S(~t)).

We now claim that a pair of points (~p, ~q) belongs to transitive closure
of lineconn(D) (with D semi-linear) if and only if ~p and ~q belong to
the same connected component. Hence, if we can show that connected
is a terminating formula, then this implies that connected expresses
connectivity of semi-linear sets.

Theorem 1.76 The formula connected terminates on all linear con-
straint databases D over S and correctly expresses connectivity of semi-
linear sets.

Proof Since D is semi-linear, two points ~p and ~q belong to the same
connected component of D if and only if there exists a piecewise lin-
ear path from ~p to ~q lying entirely in D. This follows directly from
the semi-linear version of Theorem ?? and Exercise ??. So, indeed

Real algebraic geometry and constraint databases 53

[TC~x;~y lineconn](~s,~t) holds if and only if ~s and ~t belong to the same
connected component of D.

To conclude that the evaluation of the transitive closure in the for-
mula connected ends in finitely many steps, we need to show that there
exists an upper bound on the number of line segments in S, needed to
connect any two points in the same connected component of S. Now, any
semi-linear set can be decomposed in a finite number of convex sets (?,
Chapter 8, Exercise 2.14 (2)). The finiteness of this decomposition yields
the desired bound since any two points in a convex set are connected by
a single straight line segment. We have illustrated this in Figure ?? for
n = 2. QED

s
t

Figure 1.25. A semi-linear set decomposed in convex sets. The boundaries of the
convex sets are shown in dotted lines. We have depicted a piecewise linear path
(dashed line) between points s and t.

The above FO(+,×, <, 0, 1)+TC-formula connected cannot be ap-
plied to arbitrary semi-algebraic inputs, still guaranteeing termination.
Indeed, when we apply it to the binary relation, depicted in Figure ??

consisting of the points lying strictly between the parabola y = x2 and
the translated one y = x2 + 1/2.

Although any two points in this set can be connected by a finite
number of line segments, there is no upper bound on the number of
segments needed to connect two points.

There are also examples of semi-algebraic sets s for which not any
two points in a connected component can be connected by a finite
piecewise linear path. Here we take as example the set defined by
(y3 − x2 ≥ 0 ∧ x < 0 ∧ y < 1) ∨ (x = 0 ∧ y = 0), depicted in Fig-
ure ??. The cusp point (0, 0) at the bottom cannot be connected by
a line segment to any point in the interior of this set. So, the query
expressed by connected terminates after two iterations, but it does not
contain all pairs of points that are in the connected component. This is

54

Figure 1.26. A semi-algebraic set, the points lying strictly between the parabola
y = x2 and the translated parabola y = x2 + 1/2, on which termination is not
satisfied.

Figure 1.27. A semi-algebraic set with a cusp point.

obviously because piecewise-linear connectivity does not correspond to
connectivity for arbitrary semi-algebraic sets.

Basically, Figures ?? and ?? illustrate the only two cases where the
connected query does not work correctly (i.e., cusp points and cusp
points towards ∞).

Nevertheless, we can also express connectivity of arbitrary semi-alge-
braic sets. The proof of this results is a reduction to the linear case.
This reduction is possible by the following result.

Theorem 1.77 There exists a terminating FO(+,×, <, 0, 1)+TC for-
mula which expresses the linearization query “Return a semi-linear set
which is homeomorphic to the database.”

We remark that by the triangulation theorem (Theorem ??), the
existence of such semi-linear set is guaranteed.

Real algebraic geometry and constraint databases 55

So, given a database D, we first apply the linearization query and
then apply the connected query. This clearly results in the desired
FO(+,×, <, 0, 1)+TC formula expressing connectivity.

Exercise 1.78

1 Give an example of a non-linear semi-algebraic set D on which the
FO(+,×, <, 0, 1)+TC formula connected does not terminate.

2 Give an example of a finite databaseD on which the FO(+,×, <, 0, 1)+TC
formula connected does not terminate.

So far, we have shown individual queries which can be expressed in
FO(+,×, <, 0, 1)+TC. Moreover, we have seen that not all formulas in
FO(+,×, <, 0, 1)+TC are terminating. We now describe two ways of
controlling this termination and its effect on the expressiveness.

Transitive Closure with stop conditions. A formula in FO(+,×, <, 0, 1)+TCS
is built in the same way as an FO(+,×, <, 0, 1) formula, but with the
following extra formation rule: if ψ(~x, ~y) is a formula with ~x and ~y k-
tuples of real variables; σ is an FO(+,×, <, 0, 1) sentence over the input
database and a special 2k-ary relation name X; and ~s, ~t are k-tuples of
real variables, then

[TC~x;~y ψ(~x, ~y) | σ](~s,~t) (1.2)

is also a formula which has as free variables those in ~s and ~t. We call σ
the stop condition of this formula.

The semantics of a subformula of the above form (??) evaluated on
databases D is defined in the same manner as in the case without stop
condition, but now we stop not only in case an i is found such that
Xi = Xi+1, but also when an i is found such that (D,Xi+1) |= σ,
whichever case occurs first. As above, we also consider the restriction
FO(+, <, 0, 1)+TCS.

Example 1.79 As an example of an FO(+,×, <, 0, 1)+TCS formula
over a two-dimensional input database S, we take

[TCx;y S(x, y) | ∃x∃y(X(x, y) ∧ y = 1 ∧ 10x ≤ 1)](s, t).

Here the stop condition is σ ≡ ∃x∃y(X(x, y) ∧ y = 1 ∧ 10x ≤ 1). When
applied to the graph of the function shown in Figure ??, we see that
X3 satisfies the sentence in the stop condition since for instance (1

16 , 1)
belongs to it. The evaluation has become terminating (as opposed to
the expression without stop condition in Example ??). On input the
graph of the function shown in Figure ??, this expression still terminates

56

after four iterations (since X5 = X4, not because the stop condition
is satisfied) and returns the same result as in the case without stop
condition.

Exercise 1.80 Give examples of stop conditions to ensure termination
in Example ??.

Transitive Closure with start points and parameters. We can
also allow parameters in the transitive closure and restrict the compu-
tation of the transitive closure to certain paths, after specifying starting
points. We denote the resulting logic with FO(+,×, <, 0, 1)+KTC. A
formula in FO(+,×, <, 0, 1)+KTC is built exactly as in FO(+,×, <, 0, 1)+TC
with the exception that parameters ~u are allowed, i.e.,

[
TC~x;~yψ(~x, ~y, ~u)

]
(~s,~t) (1.3)

has as free variables ~u, ~s and ~t.
The semantics of a subformula of the form (??), with ~s = (s1, . . . , sk),

evaluated on a databaseD is defined in the following operational manner:
Let I be the set of indices i for which si is a constant. Then we start
computing the following iterative sequence of (2k + ℓ)-ary relations:

X0 := ψ(D) ∧
∧

i∈I

(si = xi)

and

Xi+1 := Xi ∪ {(~x, ~y, ~u) ∈ R2k+ℓ | ∃~z (Xi(~x, ~z, ~u) ∧ ψ(~z, ~y, ~u))}

and stop as soon as Xi = Xi+1. The semantics of

[TC~x;~y ψ(~x, ~y, ~u)](~s,~t)

is then defined as (~s,~t, ~u) belonging to the (2k + ℓ)-ary relation Xi.

Example 1.81 As an example of an FO(+,×, <, 0, 1)+KTC formula
over a two-dimensional input database D, we take

[TCx;y S(x, y)](
1

4
, t).

When applied to the graph of the function, shown in Figure ??, we see
that X0 = D ∩ {(x, y) | x = 1

4} and this set is just {(1
4 ,

1
2)}. Next,

X1 is computed to be {(1
4 ,

1
2)} ∪ {(1

4 , 1)}. In subsequent iterations, no
further tuples are added (i.e., X2 = X1). This example shows that in

Real algebraic geometry and constraint databases 57

FO(+,×, <, 0, 1)+KTC, the evaluation can be restricted to the compu-
tation of certain paths in the transitive closure and this gives control
over the termination.

Exercise 1.82 Give an example of an FO(+,×, <, 0, 1)+KTC variant
of the FO(+,×, <, 0, 1)+TC query of Example ?? with terminating eval-
uation.

We will also consider the fragment FO(+, <, 0, 1)+KTC of this lan-
guage.

6.2 Computational Completeness

One may wonder what the expressive power of the transitive-closure
logics is. It turns out that adding stop conditions or allowing start points
and parameters drastically increases the expressive power. More specifi-
cally, both FO(+, <, 0, 1)+TCS and FO(+, <, 0, 1)+KTC are computa-
tionally complete on semi-linear constraint databases.

This means that for every partial computable (in the sense of Turing
computable) query Q on semi-linear databases, there exists a formula
ϕ in FO(+, <, 0, 1)+TCS (respectively in FO(+,×, <, 0, 1)+KTC) such
that for each semi-linear database D, ϕ(D) is defined if and only if Q(D)
is defined, and in this case ϕ(D) and Q(D) are equal.

Theorem 1.83 Both FO(+, <, 0, 1)+TCS and FO(+, <, 0, 1)+KTC are
computationally complete on linear constraint databases.

We remark that this holds only for linear databases. However, a simi-
lar result holds on arbitrary databases for the extension FO(+,×, <, 0, 1)+while
of FO(+,×, <, 0, 1) with a while-loop.

An extension of FO(+,×, <, 0, 1) with a while-loop. A program
in FO(+,×, <, 0, 1)+while is a finite sequence of assignment statements
and while-loops. Each assignment statement has the form

R := {(x1, . . . , xk) | ϕ(x1, . . . , xk)},

where ϕ is an FO(+,×, <, 0, 1) formula that uses the relation names Si

(of the input database schema S = {S1, ..., Sn}) and previously intro-
duced relation names. Each while-loop has the form

while ϕ do P od,

where P is a FO(+,×, <, 0, 1)+while program and ϕ an FO(+,×, <, 0, 1)
formula that uses relation names Si from the input schema and previ-
ously introduced relation names.

58

The semantics of a program applied to a spatial databases is the oper-
ational, step by step execution. So, the effect of an assignment statement
is to evaluate the FO(+,×, <, 0, 1) formula on the right-hand side on the
constraint database D augmented with the previously assigned-to rela-
tion variables, and to assign the result of the evaluation to the relation
variable on the left-hand side. The effect of a while-loop is to execute
the body as long as non-halting condition ϕ evaluates to true. One
relation name Rout is designated as the output relation and when the
FO(+,×, <, 0, 1)+while program terminates, the current value of Rout

is considered to be the output.
Again, we have the problem of non-terminating while loops, as the

following example shows.

Example 1.84 LetD = [0, 1] and consider the following FO(+,×, <, 0, 1)+while
program P over the input schema S = {S}, with S unary:

R := {(x) | S(x)};
Y := ∅;
while R 6= ∅ do

Y := {(x) | ϕ(x, R)};
R := R \ Y ;

od

where ϕ is an FO(+,×, <, 0, 1) such that when it is evaluated on any
finite sequence of closed non-overlapping intervals

{
[ai, bi]

}
it results in

the sequence of closed non-overlapping intervals
{
[ai, ai + bi−ai

3], [ai +
2(bi−ai)

3]]}. Obviously, P is non-terminating on D and is P (D) is un-
defined. However, if we would allow infinitely long computations, then
P (D) would be the Cantor set which is depicted in Figure ??.

Figure 1.28. The iterative construction of the Cantor set.

Exercise 1.85 Consider the following FO(+,×, <, 0, 1)+while pro-
gram P over the input schema S = {S}, with S binary:

R1 := {(x, y) | S(x, y)};
R2 := {(x, y) | (∃z)(R1(x, z) ∧ S(z, y))};
while R1 6= R2

do
R1 := {(x, y) | S(x, y)};
R2 := {(x, y) | ∃z(R1(x, z) ∧ S(z, y))};
od

Real algebraic geometry and constraint databases 59

Which query does this program implement? Give an input on which
P terminates and one on which it does not. If S in the last assignment
would be replaced by R1, what would the resulting program do?

The previous example shows that in contrast to the transitive-closure
logics, an FO(+,×, <, 0, 1)+while program can recursively reduce the
size of relations. This already hints that FO(+,×, <, 0, 1)+while is
more powerful. Indeed, we have the following result.

Theorem 1.86 The languages FO(+,×, <, 0, 1)+while is computation-
ally complete on constraint databases.

The only result known for transitive-closure logics on arbitrary data-
bases follows from the completeness on linear databases (Theorem ??)
and the fact the linearization query is expressible in FO(+,×, <, 0, 1)+TC
(Theorem ??):

Theorem 1.87 The languages FO(+,×, <, 0, 1)+TCS and FO(+,×, <, 0, 1)+KTC
are computationally complete on constraint databases as far as Boolean
topological queries is concerned.

Indeed, given a partial computable Boolean topological query Q on a
database D, we can apply the linearization query to get D̂, that contains
linearizations of all relations in D. By definition of a topological query,
Q(D) and Q(D̂) are equal. Since there exists an FO(+,×, <, 0, 1)+TCS
(repectively FO(+,×, <, 0, 1)+KTC) formula ϕ expressing Q on linear
database, we can express Q on D in FO(+,×, <, 0, 1)+TCS (respectively

FO(+,×, <, 0, 1)+KTC) by ϕ(D̂).
There are many open problems related to these recursive extensions of

FO(+,×, <, 0, 1). For example, it is not known whether FO(+,×, <, 0, 1)+TC
is less expressive than FO(+,×, <, 0, 1)+TCS or FO(+,×, <, 0, 1)+KTC
and it is also unknown whether FO(+,×, <, 0, 1)+TCS and FO(+,×, <, 0, 1)+KTC
are complete on arbitrary databases.

So far, we have been extending FO(+,×, <, 0, 1) with generic op-
erators expressing many (in some case every) queries inexpressible in
FO(+,×, <, 0, 1). As a result, queries could be undefined because of
non-terminating computations.

In the next section we will show how FO(+,×, <, 0, 1) can be extended
with specific operators aimed to express specific queries and at the same
time guarantee closure.

60

6.3 Extensions of FO(+, ×, <, 0, 1) with
topological operators

We have seen that connectivity of a databases is a desired property
which one would like to see being expressible in a query language. We
have seen that FO(+,×, <, 0, 1) lacks the power to express this query,
while FO(+,×, <, 0, 1)+TC provides enough power to do so.

However, it is possible to extend FO(+,×, <, 0, 1) directly with a
connectivity operator. More generally, define a topological property Top

as a collection {T1, . . . ,Tn, . . .} where Tn is a family of sets in Rn such
that if X ∈ Tn, then for each homeomorphism h of Rn, h(X) ∈ Tn.

Example 1.88 Of special interest is when Top expresses the property
of being connected. Other examples of Top are the property of being
closed, being of dimension k, containing exactly two holes and so on.

Let T be a set of topological properties. We then define the language
FO(+,×, <, 0, 1) + T by extending FO(+,×, <, 0, 1) with the following
rule: if ϕ(~x, ~y) is a query then

ψ(~x) ≡ Top~y ⊙ ϕ(~x, ~y)

is also a query for any Top ∈ T. The semantics of such a formula is as
follows: D |= ϕ(~a) iff ϕ(~a,D) =

{
~b | D |= ϕ(~a,~b)

}
∈ Top.

Example 1.89 The query “Is the intersection of regions S and T con-
nected” can be written as Conn~x ⊙ S(~x) ∧ T (~x). The query ϕ(x) ≡
Conn(y, z)⊙S(x, y, z) returns the set of all c ∈ R for which the intersec-
tion of S with the plane x = c is a connected set.

Theorem 1.90 The logic FO(+,×, <, 0, 1) + T is closed on constraint
databases.

Proof The result follows from a simple induction on the formulas. The
only case to prove is ψ(~x) ≡ Top~y⊙ϕ(~x, ~y) for Top ∈ T. Let ~x and ~y be
of length n and m, respectively. By induction, ϕ(D) results in a semi-
algebraic set in Rn × Rm. By the triviality theorem for semi-algebraic
sets, there exists a decomposition C of Rn+m into finitely many cells
which is trivial over Rn and such that ϕ(D) is the union of cells of C.
Let C′ be the projection of C onto Rn, and let C be a cell in C′. By
triviality, for every ~a,~b ∈ C, it is the case that (ϕ(D))~a and (ϕ(D))~b are
homeomorphic, and thus agree on Top. Therefore, the output of ψ on
D is a union of finitely many cells in C′. Moreover, since each cell is
semi-algebraic, so will be the output ψ(D). QED

Real algebraic geometry and constraint databases 61

The linear analog of the previous theorem also holds for the language
FO(+, <, 0, 1) + T. However, since the triviality theorem does not hold
in this case, one first needs to develop an alternative decomposition
theorem (see (?) for details).

References

Afrati, F., Cosmadakis, S., Grumbach, S., and Kuper, G. (1994). Linear
versus polynomial constraints in database query languages. In Born-
ing, A., editor, Proceedings of the 2nd Workshop on Principles and
Practice of Constraint Programming, volume 874 of Lecture Notes in
Computer Science, pages 181–192, Berlin. Springer-Verlag.

Andradas, C., Bröcker, L., and Ruiz, J. M. (1996). Constructible sets
in real geometry, volume 33 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. Springer-Verlag.

Basu, S., Pollack, R., and Roy, M.-F. (2003a). Algorithms in real alge-
braic geometry, volume 10 of Algorithms and Computation in Mathe-
matics. Springer-Verlag.

Basu, S., Pollack, R., and Roy, M.-F. (2003b). Algorithms in Real Alge-
braic Geometry, volume 10 of Algorithms and Computation in Math-
ematics. Springer-Verlag.

Belegradek, O. V., Stolboushkin, A. P., and Taitslin, M. A. (1996). On
order-generic queries. Technical Report 96-01, DIMACS.

Benedetti, R. and Risler, J.-J. (1990). Real algebraic and semi-algebraic
sets. Actualités Mathématiques. [Current Mathematical Topics]. Her-
mann.

Benedikt, M., Dong, G., Libkin, L., and Wong, L. (1996). Relational
expressive power of constraint query languages. In Proceedings of the
15th ACM Symposium on Principles of Database Systems, pages 5–16.

Benedikt, M., Grohe, M., Libkin, L., and Segoufin, L. (2003). Reach-
ability and connectivity queries in constraint databases. J. Comput.
System Sci., 66(1):169–206.

Benedikt, M. and Keisler, H. J. (2000). Definability over linear con-
straints. In Clote, P. and Schwichtenberg, H., editors, Proceedings
of Computer Science Logic, 14th Annual Conference of the EACSL,
volume 1862 of Lecture Notes in Computer Science, pages 217–231.
Springer-Verlag.

Benedikt, M., Kuijpers, B., Löding, C, Van den Bussche, J., and Wilke,
T. (2006). A characterization of first-order topological properties of
planar spatial data. Journal of the ACM.

62

Benedikt, M. and Libkin, L. (1996). On the structure of queries in con-
straint query languages. In 11th Annual IEEE Symposium on Logic
in Computer Science, pages 25–34.

Benedikt, M. and Libkin, L. (2000). Safe constraint queries. SIAM J.
Comput., 29(5):1652–1682.

Benedikt, M.A. and Libkin, L. (1997). Languages for relational data-
bases over interpreted structures. In Proceedings of the 16th ACM
Symposium on Principles of Database Systems, pages 87–98.

Bochnak, J., Coste, M., and Roy, M.-F. (1987). Géométrie algébrique
réelle. Springer-Verlag.

Bochnak, J., Coste, M., and Roy, M.-F. (1998). Real algebraic geome-
try, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete.
Springer-Verlag.

Caviness, B.F. and Johnson, J.R. (1998). Quantifier Elimination and
Cylindrical Algebraic Decomposition. New York: Springer-Verlag.

Codd, E. (1970). A relational model for large shared databanks. Com-
munications of the ACM, 13(6):377–387.

Collins, G.E. (1975). Quantifier elimination for real closed fields by cylin-
drical algebraic decomposition. In Brakhage, H., editor, Automata
Theory and Formal Languages, volume 33 of Lecture Notes in Com-
puter Science, pages 134–183, Berlin. Springer-Verlag.

Coste, M (2000a). An Introduction to O-minimal Geometry. Istituti Ed-
itoriali e Poligrafici Internazionali, Pisa.

Coste, M (2000b). An Introduction to Semialgebraic Geometry. Istituti
Editoriali e Poligrafici Internazionali, Pisa.

Ebbinghaus, H.-D. and Flum, J. (1995). Finite model theory. Perspec-
tives in Mathematical Logic. Springer-Verlag.

Ebbinghaus, H.-D., Flum, J., and Thomas, W. (1984). Mathematical
Logic. Undergraduate Texts in Mathematics. Springer-Verlag.

Geerts, F. (2003). Expressing the box cone radius in the relational calcu-
lus with real polynomial constraints. Discrete Comput. Geom., 30(4):607–
622.

Geerts, F. and Kuijpers, B. (2000). Linear approximation of planar
spatial databases using transitive-closure logic. In Proceedings of the
19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pages 126–135.

Geerts, F. and Kuijpers, B. (2005). On the decidability of termination of
query evaluation in transitive-closure logics for polynomial constraint
databases. Theoretical Computer Science, 336(1):125–151. Database
Theory–Special issue with selected papers of ICDT’03.

Giusti, M., Lecerf, G., and Salvy, B. (2001). A Gröbner free alternative
for polynomial system solving. Journal of Complexity, 17(1):154–211.

Real algebraic geometry and constraint databases 63

Grohe, M. and Segoufin, L. (2002). On first-order topological queries.
ACM Transactions on Computational Logic, 3(3):336–358.

Grumbach, S. and Su, J. (1995). First-order definability over constraint
databases. In Proceedings of 1st Conference on Principles and Practice
of Constraint Programming, volume 976 of Lecture Notes in Computer
Science. Springer-Verlag.

Grumbach, S., Su, J., and Tollu, C. (1995). Linear constraint query lan-
guages: expressive power and complexity. In Leivant, D., editor, Logic
and Computational Complexity, volume 960 of Lecture Notes in Com-
puter Science, pages 426–446. Springer-Verlag.

Gyssens, M., Van den Bussche, J., and Van Gucht, D. (1999). Complete
geometric query languages. J. Comput. System Sci., 58(3):483–511.

Heintz, J., Roy, M.-F., and Solernó, P. (1993). Description of the con-
nected components of a semialgebraic set in single exponential time.
Discrete and Computational Geometry, 6:1–20.

Hong, H. (1990). QEPCAD — quantifier elimination by partial cylindri-
cal algebraic decomposition. http://www.cs.usna.edu/ qepcad/B/QEPCAD.html.

Kanellakis, P. C., Kuper, G., and Revesz, P. Z. (1995). Constraint query
languages. Journal of Computer and System Sciences, 51:26–52.

Kreutzer, S. (2001). Operational semantics for fixed-point logics on con-
straint databases. In Logic for programming, artificial intelligence,
and reasoning, volume 2250 of Lecture Notes in Compututer Science,
pages 470–484. Springer-Verlag.

Kuijpers, B., Paredaens, J., and Van den Bussche, J. (2000). Topological
elementary equivalence of closed semi-algebraic sets in the real plane.
J. Symbolic Logic, 65(4):1530–1555.

Kuper, G. M., Libkin, L., and Paredaens, J., editors (2000). Constraint
Databases. Springer-Verlag.

Motzkin, T. S. (1936). Beiträge zur Theorie der linearen Ungleichungen.
Doctoral dissertation. Universität Zürich.

Paredaens, J., Van den Bussche, J., and Van Gucht, D. (1994). Towards
a theory of spatial database queries. In Proceedings of the Thirteenth
ACM Symposium on Principles of Database Systems, pages 279–288.

Paredaens, J., Van den Bussche, J., and Van Gucht, D. (1995). First-
order queries on finite structures over the reals. In Proceedings of the
10th IEEE Symposium on Logic in Computer Science, pages 79–89.

Revesz, R. Z. (2002). Introduction to Constraint Databases. Springer-
Verlag.

Rigaux, Ph., Scholl, M., and Voisard, A. (2000). Introduction to Spatial
Databases: Applications to GIS. Morgan Kaufmann.

Seidenberg, A. (1954). A new decision method for elementary algebra.
Ann. of Math. (2), 60:365–374.

64

Stolboushkin, A.P. and Taitslin, M.A. (1996). Linear vs. order con-
straints over rational databases. In Proceedings of the 15th ACM Sym-
posium on Principles of Database Systems, pages 17–27.

Tarski, A. (1948). A Decision Method for Elementary Algebra and Ge-
ometry. University of California Press.

TERA-project (1993). http://tera.medicis.polytechnique.fr/index.html.
van den Dries, L. (1998). Tame Topology and O-minimal Structures, vol-

ume 248 of London Mathematical Society Lecture Note Series. Cam-
bridge University Press.

Vandeurzen, L., Gyssens, M., and Van Gucht, D. (1996). On query lan-
guages for linear queries definable with polynomial constraints. In
Freuder, E. F., editor, Proceedings of the 2nd Conference on Princi-
ples and practice of constraint programming, volume 1118 of Lecture
Notes in Computer Science, pages 468–481, Berlin. Springer-Verlag.

Index

Approximation of a semi-algebraic set,
36–37

Attribute
geometric, 3

CAD, 20–22, 32–33
Cell decomposition theorem, 20
Cell, 20
Codd, 1
Collins, 32
Complex, 27
Computationally complete query language,

57, 59
Cone radius, 24, 45
Cone type, 24, 26
Cone, 23, 43
Conical structure

local, 23–24, 45
Connectivity

graph, 34
topological, 37, 52–53

Constraint
linear, 4, 7, 13
polynomial, 5, 7, 9

Curve selection theorem, 19
Cut transformation, 39–40, 42
Cylindrical algebraic decomposition, 20–22,

32–33
sample points, 32
sign conditions, 32
basis phase, 32
extension phase, 33
projection phase, 32
sector, 33
stack, 33

Data
spatio-temporal, 17

Database
constraint, 1, 5, 9, 16
polynomial constraint, 9
relation, 1
relational, 1, 13, 48
isotopic, 39

Decomposition
cylindrical algebraic, 20–22, 33

finite cell, 21
topological, 19–20

Dichotomy theorem, 35–37
EF-game, 35, 48
Expressiveness

first-order, 35
on finite relations over the reals, 35
on infinite relations, 35

Field of real numbers, 7
Finite structures over the reals, 36
First-order logic

over the reals, 7
with linear constraints, 7, 13–14, 29
with operators, 48
with polynomial constraints, 7, 9, 11, 31
with topological operators, 60
with transitive closure, 48–49
with while-loop, 48, 57

Formula, 7
atomic, 7
first-order, 7
order-generic, 36
quantifier-free, 7–8, 13, 17
equivalence, 29
prenex formal form, 32

Fourier, 29
Generic collapse, 35–36
Geographic information system, 13–14
Geometry

o-minimal, 16
real algebraic, 16

GIS, 13–14
Glue transformation, 39–40, 42
Heintz, 34
Hilbert, 38
Hilbert’s 10th problem, 38
Homeomorphism, 20, 27, 37, 54, 60
Instance

database, 9, 13–14
relation, 14

Isotopy, 37
Kronecker, 34
Local conical structure, 24
Logic

66

two-sorted, 14
Majority, 35
Motzkin, 29
Number theory, 38–39
Parity, 35
Point structure, 26, 42
Point

regular, 26
singular, 26

Polynomial, 7
linear, 17
multivariate, 17

Property
uniform finiteness, 37

QEPCAD, 32
Quantifier elimination, 8

by cylindrical algebraic decomposition, 32
first-order logic with linear constraints, 29
Fourier-Motzkin algorithm, 29
Tarski’s algorithm, 31
first-order logic with polynomial

constraints, 31
Query language, 9–11, 14

closed, 11
closure property, 28
computationally complete, 57, 59
expressiveness, 34
first-order, 2, 5

Query, 10
composition, 28
consistent, 11
constraint, 11
emptiness test, 28
expressibility, 11
membership test, 28
plug-in evaluation, 27
topological, 13, 37–38, 43, 59–60
unrestricted, 11

Raster model, 14
Real root counting, 31
Relation, 1, 9

attribute, 1
constraint, 9
database, 13
equivalent, 10
finite, 6
finitely representable, 6
linear, 13
polynomial constraint, 9
semantics of a, 9

Satisfaction, 7
Schema

database, 1, 9, 13–14
Seidenberg, 18
Semantics

non-terminating, 50
of a linear tuple, 14
of a program, 58
of a relation, 9
of a transitive closure formula, 50, 55–56
terminating, 50

Semi-algebraic function, 19, 21
Semi-algebraic set, 5, 9–10, 16–20, 22–24,

27, 45, 50, 53–54, 60
approximation of a, 36, 54
decomposition, 19
linear approximation, 36–37

Semi-linear set, 4, 9, 14, 16–17, 22, 47, 52,
57

Sentence, 7
Simplex, 27
Sturm, 31
Tangent line, 45
Tarski, 18, 31
Tarski-Seidenberg theorem, 18
TERA project, 34
Term, 7, 15
Theorem

cell decomposition, 20
curve selection, 19
dichotomy, 35–37
finite cell decomposition, 21
Tarski-Seidenberg, 18
triangulation, 27, 54
triviality, 23–24, 60–61

Topological property, 60
Topological query, 37–38, 43, 59
Topological type, 46
Transformation

cut, 39–40, 42
glue, 39–40, 42

Transitive closure logic, 48–49, 52
with start point and parameters, 56
with stop conditions, 55

Transitive closure, 48, 52
Triangulation theorem, 27, 54
Triangulation, 27
Trivial, 23

semi-algebraically, 23
Triviality theorem, 23–24, 46, 60–61
Triviality, 22
Trivialization, 23
Tuple, 1

linear, 13
Turing computable, 57
Uniform finiteness property, 21–22, 37
Uniformly finite, 22
Variable

free, 7
Vector model, 14
Vocabulary, 7

