
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Controlling for cross-sectional and spatial heterogeneity in the hedonic

property value model using entropy econometrics

Non Peer-reviewed author version

TIRI, Marc & PEETERS, Ludo (2007) Controlling for cross-sectional and spatial

heterogeneity in the hedonic property value model using entropy econometrics.

Handle: http://hdl.handle.net/1942/7908



                             Elsevier Editorial System(tm) for Journal of Urban Economics

                                  Manuscript Draft

Manuscript Number: 

Title: Controlling for cross-sectional and spatial heterogeneity in the hedonic property value model using 

entropy econometrics.

Article Type: Research Paper

Section/Category: Empirical

Keywords: hedonic property value model; generalized maximum entropy; unobserved heterogeneity

Corresponding Author: dr. Marc Tiri, Ph.D.

Corresponding Author's Institution: Kizok

First Author: Marc Tiri, Ph.D.

Order of Authors: Marc Tiri, Ph.D.; Ludo Peeters

Manuscript Region of Origin: 

Abstract: 



1

Controlling for cross-sectional and spatial heterogeneity in the hedonic property value 
model using entropy econometrics

MARC TIRI* AND LUDO PEETERS

*KIZOK, Research Centre for Entrepreneurship and Innovation, Hasselt University, Agoralaan (Building 

D), BE-3590 Diepenbeek, Belgium, Tel.: ++32-11-26 86 06, Fax: ++32-11-26 87 00, E-mail: 

marc.tiri@uhasselt.be

Abstract

Hedonic pricing models that apply data from many different metropolitan areas 

are subject to considerable cross-sectional and spatial heterogeneity. When 

disregarded, this heterogeneity can have important consequences for estimation 

and inference. In the present paper we develop a flexible entropy-based 

estimator that allows controlling for several sources of (unobserved) 

heterogeneity in the hedonic price function. In the empirical application, we 

examine the performance of the new estimator applying data from the seminal 

Harrison and Rubinfeld paper on hedonic pricing. Our empirical results show how 

failure to control for cross-sectional and spatial heterogeneity may result in

biased coefficients and a loss of explanatory power. Furthermore, analysis of the 

individual sensitivities reveals important dynamics regarding the operation of the 

housing markets.
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1 Introduction: cross-sectional and spatial heterogeneity in hedonic property value 

models 

Hedonic property value (HPV) models are widely used to study the urban housing market. Central in 

the theory underlying the HPV model, is the premise that houses are multi-attribute commodities 

comprising various bundles of heterogeneous characteristics. HPV models then attempt to obtain 

implicit prices for these characteristics that can be of quantitative or qualitative nature. Specific 

sources of product-differentiating features include among others structural house characteristics (e.g., 

number of rooms, presence of a pool, quality of materials used, year of construction, etc.), local 

amenities (e.g., neighborhood attributes such as accessibility to highways, school quality, crime rate, 

etc.) and environmental characteristics (e.g., proximity of industrial activity, pollution, noise, etc.).

Seemingly homogeneous houses are often characterized by unmeasured (quality) differences. In fact, 

a house can possess some unique, yet possibly unobserved (unmeasured) characteristic or an unusual 

combination of characteristics that radically determines its price in a bizarre way (e.g., Haurin’s  [16]

‘atypicality’-effect). Since often only ‘rudimentary’ data are used in empirical HPV models, this effect 

will occur frequently. For example, simply considering the number of rooms does not reveal anything 

about the quality (finishing) of these rooms. Furthermore, in empirical modeling, geographical or 

environmental influential factors (e.g., noise, pollution, etc.) are typically not measured at the 

individual property lot, but at a regional or municipal level in a central monitoring station. In practice, 

these factors can change within very short distance. Even when restricting the analysis to a relatively 

small region, application of these single-point measurements hence will possibly lead to unobserved 

heterogeneity (due to measurement error). Two otherwise ‘identical’ houses, moreover, might be 

valued differently when located in a different neighborhood due to (unmeasured) neighborhood 

composition effects (Turnbull et al.  [33]).

Standard linear regression models have only limited ability to deal with cross-sectional and spatial 

heterogeneity in housing prices (Clapp et al.  [8]). For this reason, in practical applications, 

neighborhood effects are often introduced into the regression through varying intercepts, hereby 

(inaccurately) conceptualizing metropolitan areas as single unified markets. The implicit assumption of 

stability of the hedonic relation across submarkets, and hence the use of constant marginal prices of 

housing attributes within a single metropolitan area, however, is to be questioned due to non-

constancy of the level of neighborhood (dis)amenities. Consequently, the effects of structural 

attributes may very well be non-constant yet spatially dependent (i.e., spatial heterogeneity). In this 

case, stationary coefficient models will produce parameter estimates that are in essence an ‘average’ 

value of the parameter over all locations (Bitter et al.  [5]). The incorrect application of a too 

parsimonious specification that neglects existing heterogeneity, however, can have important 

consequences for estimation and inference. In fact, it may result in biased coefficients and a loss of 

explanatory power, and in obscuring important dynamics regarding the operation of housing markets

(Cameron  [6]; Bitter et al.  [5]).

Recent research based on micro-level housing data shows that heteroskedasticity is prevalent in HPV 

models. Alleged causes of heteroskedasticity include among others market-segmentation 

heteroskedasticity (Chung  [7]), age-related heteroskedasticity (Goodman and Thibodeau  [13];  [14]) 

and external area heteroskedasticity (Fletcher et al.  [9]; Stevenson  [31]). It has been established a 

long time ago (e.g., Sims  [30]) that even relatively small amounts of heteroskedasticity can have very 
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large effects on the kurtosis of the empirical frequency distribution of the residuals. In this case, point 

estimators and hypothesis tests become inefficient (Robinson  [27]). In practice, however, the precise 

form of heteroskedasticity is often unknown (Kiefer et al.  [17]) and thus hard to control for.

In view of these difficulties, the aim of this paper is to incorporate individual-level heterogeneity 

directly in the econometric specification and to exploit the (cross-section) information more fully than 

standard econometric approaches that only present broad, average tendencies. To this end we propose 

a varying coefficient variation of the classical Generalized Maximum Entropy estimator that allows 

coefficients to vary randomly from a common sample mean across observations in order to account for 

unobserved heterogeneity in the sample. In addition, we show that this specification can be easily 

adapted to incorporate spatial heterogeneity (group-specific effects) in the hedonic price function as 

well. 

To demonstrate the performance of the GME-based estimators, we apply data from the seminal

Harrison and Rubinfeld  [15] paper on hedonic pricing. Being the archetype of the HPV model, abundant 

research has been performed using this dataset which makes it an ideal benchmark.

The remainder of this paper is organized as follows. In Section 2 we discuss briefly the empirical 

framework of the HPV model and its consequences for estimation. Specifically, we develop a Varying 

Coefficients Maximum Entropy based specification to account for cross-sectional (GME-VC) as well as 

spatial (GME-VCGE) heterogeneity in the hedonic price function. In Section 3, we present the basic 

characteristics of the Harrison and Rubinfeld  [15] dataset. Next, we present and discuss the empirical 

results. Finally, in Section 4 we present the main conclusions.

2 Empirical framework and implications for estimation

2.1 Assumption of homogeneity

In the HPV model, the house price (PRICE) is typically regressed against a large set of covariates that 

represent (among others) various structural house characteristics (STRUC), local amenities (LOC) and 

environmental characteristics (ENVIR). The basic OLS based price equation hence can be expressed 

as:

i

M

m mim

L

l lil

K

k kiki uENVIRLOCSTRUCPRICE    1 ,1 ,1 ,  (1)

In this model specification, the parameters  , k , l  and m  are ‘fixed’ for all observations implying 

that each identified attribute has the same intrinsic contribution. Such a model hence disregards 

potential cross-sectional heterogeneity in house prices. Furthermore, it is assumed that the data 

exhibit no aggregation bias and that the relationship of interest is invariant over all sub-regions (i.e., 
‘ecological inference’ hypothesis, e.g. Freedman et al.  [10]; Peeters and Chasco  [25]). From the 

discussion in Section 1, however, it is clear that the implicit assumption of stability of the hedonic 

relation over all sub-regions is subject to substantial skepticism due to non-constancy of the level of 

neighborhood (dis)amenities among others. Furthermore, both the uniqueness of each property and 

potential measurement issues lead to pervasive individual-level price heterogeneity.
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2.2 Controlling for cross-sectional heterogeneity (individual-specific heteogeneity)

In order to control for individual-specific behavior, it is possible to rewrite the ‘fixed’ or ‘stationary’ 

coefficients model that was specified in Eq. (1) as a ‘varying’ coefficients model in which the 

coefficients are allowed to vary across observations. Consequently, the original parameters  , k , l
and m  are replaced by a new set of individual-specific parameters i , ki, , li, and mi, . Formally, 

these coefficients can be written as consisting of a fixed (mean) part and an individual–specific 

component, such that:
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While the varying coefficients specification mitigates the (incorrect) ‘constancy assumption’, it also 

allows for dealing with (multiplicative) disturbance heteroskedasticity in an appealing way (Peeters 

 [24]). 

2.3 Controlling for both cross-sectional and spatial heterogeneity (individual- and group-

specific heterogeneity)

The specification developed in Eq. (2) interprets all (unexplained) heterogeneity as being individual-

specific. Some part of it, however, might in fact be group-specific rather than individual-specific. That 

is, linked to (unexplained) neighborhood effects for example (i.e., spatial heterogeneity). In order to 

eliminate potential common spatial heterogeneity from the individual-specific part, Eq. (2) can be 

adapted to account not only for cross-sectional heterogeneity but also for spatial heterogeneity, i.e., 

group-specific effects, in the hedonic price function. To this end, the signal effect can easily be 

extended once more and being rewritten as consisting of (a) a fixed (mean) coefficient, (b) a group-

specific coefficient, representing metropolitan or some other common effects, and (c) an individual–

specific component, representing individual heterogeneity. In accordance with Eq. (2), we can model 
potential group-specific components through gA , kgB , , lgC ,  and mgD ,  such that we obtain:
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2.4 Modeling procedure: A Generalized Maximum Entropy based estimator for the HPV 

model

The models developed in Eq. (2) and (3) are clearly underdetermined, that is, the number of unknown 

parameters is larger than the number of observations. In this case traditional estimation methods 

(such as OLS) become inconsistent and run into the incidental parameter problem (see Neyman and 

Scott  [21]). For that reason, we propose the Generalized Maximum Entropy (GME) based estimator in 

order to avoid the over-parameterized estimation problem. Next to this, GME has many advantages 

over the classical estimation techniques since it performs well in situations where traditional methods 

may fail to produce stable and/or efficient estimates. Moreover, GME avoids strong distributional 

assumptions and is well-suited for small samples, even when the covariates are highly correlated

(Golan et al.  [12]). A description and full specification of the newly developed GME-based estimators is 

presented in the Appendix.
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3 Empirical application

3.1 Harrison and Rubinfeld data1

The performance of the GME-based estimators is examined using data from the well-known Harrison 

and Rubinfeld  [15] (H&R) paper on hedonic pricing that investigates the impact of a fairly large set of 

house characteristics and location amenities on housing values in the Boston Standard Statistical 

Metropolitan Area. In particular, their interest is on the impact of air pollution on the price of owner-

occupied homes and on the demand for clean air.

The H&R dataset contains a sample of 506 observations. The dependent variable is the median value 

of the owner-occupied homes, while the list of regressors includes the basic air pollution variable 

(NOXSQ), two structural house characteristics and ten variables relating to local amenities. A summary 

list of the variables along with some descriptive statistics is presented in Table 1.

The H&R data are published in several econometric textbooks (e.g. Wooldridge  [34]; Baltagi  [3]). 

Furthermore, over the years, these data have been used in a number of empirical studies to 

demonstrate various properties and issues of the OLS-based HPV model and to serve as a benchmark 

model to demonstrate the performance of various semi- and non-parametric estimation techniques.

From this, it appears that the H&R data contain some observations that are unusual or inordinately 

influential (i.e., outliers) (Belsley et al.  [4])
2
. Furthermore, when estimated by OLS, the error terms 

appear to be non-normal (Belsley et al.  [4]; Lange and Ryan  [18]) and heteroskedastic since the 

variance of the error terms is related to the crime rate, the number of rooms and the tax rate

(Subramanian and Carson  [32]). In addition, analysis of the collinearity diagnostics and calculation of 

the Condition Index shows that some covariates exhibit fairly high correlations while at the same time 

only limited variability is found in some of the independent variables. Finally, abundant evidence is 

given of the presence of group-specific effects in the data (e.g., Moulton  [20]; Subramanian and 

Carson  [32]; Lange and Ryan  [18]; Baltagi and Chang  [2]; Baltagi  [3]) implying that the equality of 

the coefficients over different metropolitan areas can be rejected.

Precisely these properties make that the H&R dataset is an ideal benchmark to demonstrate the 

flexibility and performance of the GME-based estimators.

<< Insert Table 1: Variable Description>>

                                                
1 The data in the present study are taken from HEDONIC.xls by Baltagi  [3].
2 Furthermore, it has been demonstrated by Gilley and Pace  [11] that the H&R data have some incorrectly coded 
observations. Since most empirical applications apply the original H&R data, we will do likewise.
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3.2 Estimation results

3.2.1 Basic OLS results

As a benchmark model in our study we replicate the original Harrison and Rubinfeld hedonic property 

value model. Based on the data that is described in Table 1, this specification uses least squares 

regression to estimate the following model:

 
iiiiiii

iiiiiiii

STATBPTRATIOTAXRADLDIS

AGERMNOXSQCHASINDUSZNCRIMMVLog








14131211109

87654321 (4)

To start with, Table 2 exhibits the ex-ante expected sign of the parameters to be estimated as argued 

by Pace  [22]. Next, in Column 1, we show the original H&R OLS based estimation results that will 

serve as a meaningful performance and validity check. In order to facilitate comparison across 

methods, all relevant inferential statistics (standard errors) are calculated asymptotically.3 Based on 

these results, it appears that the OLS model performs reasonably well, with most variables being 

statistically significant and R² being rather high for a cross-sectional dataset.

A comparison of the H&R results with the ex-ante expectation of Pace  [22] reveals, however, that the

OLS results exhibit an apparent sign violation for the (non-significant) variables age (AGE) and 

industry effect (INDUS).

<< Insert Table 2: Estimation results for (mean) coefficients >>

3.2.2 A Generalized Maximum Entropy approach to estimate the HPV model4

In this section we re-estimate the H&R model by using the Generalized Maximum Entropy (GME) 

method that was presented in Section 2 and in the Appendix. First, we present the results of the

(basic) fixed coefficients approach. Next, we demonstrate the performance of the GME estimator while 

controlling for several sources of (unobserved) heterogeneity. 

3.2.2.1  Assumption of homogeneity: fixed coefficients approach (GME-FC)

First, we apply the Fixed Coefficients Generalized Maximum Entropy (GME-FC) formulation of the 

general linear model. In the GME-FC estimation, the estimated parameters are ‘fixed’ for all 

observations, implying stability of property prices over all metropolitan areas and all cases, i.e., just as 

in the OLS approach.

In Table 2, Column 2 it is shown that the results obtained from the GME-FC and OLS estimation are 

nearly alike. In particular, the magnitude of the coefficients and their standard errors differs only 

                                                
3 When the true error values and parameters are contained in their support bounds, the GME estimator is consistent 
and asymptotically normal (Golan et al.  [12]; Mittelhammer and Cardell  [19]).
4 All GME models are estimated using the GAMS 22.5 PATHNLP solver.



7

marginally, the signs of the coefficients are in both instances identical and the variables ZN, INDUS

and AGE are non-significant in both approaches. 

Similarly as in the OLS approach, the signs of the variables AGE and INDUS are opposite to the ex-

ante predicted effect that was argued by Pace  [22]. In the following sections, however, we argue that 

these hypothesized average effects may not hold for all cases.

Specifically, concerning the ex-ante expected effect of AGE one can reasonably assume that - in 

general - AGE tends to decrease the condition of a house for reasons of (normal) tear and wear. This 

then will reflect in the price that will decrease. This effect, however, is only an expected average effect. 

In fact, AGE will not automatically exert a negative influence on price in all instances. For example, it is 

quite likely that (well kept) historical properties will sell for more than younger properties do. In these 

instances, the effect of AGE actually will be positive! 

Concerning the ex-ante expected effect of INDUS we refer to Table 1 which shows that INDUS

measures ‘the proportion of non-retail business acres per town’. This, however, is not informative 

about the type of industrial activities that are carried out, if and how these industrial activities might 

affect the quality of life, or how much job opportunities they offer for people living nearby. In our 

opinion, the latter factors are the true factors that affect the price. As a consequence, in the present 

application the ex-ante expected effect of INDUS might rather be undetermined instead of negative.

Moreover, for all variables we argue that the use of stationary coefficients obscures important 

dynamics regarding the operation of the housing market.

3.2.2.2 Controlling for cross-sectional heterogeneity through varying coefficients (GME-

VC)

In order to mitigate the (incorrect) ‘constancy assumption’ we have adapted the fixed-coefficients GME 

specification to a varying coefficients specification (GME-VC) in order to capture individual (i.e., cross-

sectional) heterogeneity in the sample.

As is shown in Table 2, Column 3, both the model performance and the (mean) parameter estimates of 

the GME-VC model are quite similar to those of the OLS and GME-FC specifications. In the latter 

models, emphasis is on estimating the (fixed) parameter coefficients (along with their variances). 

These coefficients, however, provide no information about the individual sensitivities. In the GME-VC 

model on the other hand, cross-sectional heterogeneity is implicitly accounted for. Moreover, the GME-

VC specification allows for directly estimating the individual-specific coefficients rather than predicting 

them from some distribution as in the random-coefficients modelling approach. This provides powerful 

opportunities for an in-depth analysis of the individual-specific estimates.

For example, in the H&R paper, focus was on estimating the impact of pollution (NOXSQ) on the price 

of a property. Applying GME-VC, in Table 2 it is shown that the estimated (mean) effect is negative 

and identical to the estimated effect when applying OLS (-0.638). Importantly, using OLS (or GME-FC) 

the estimated coefficient is equal for all observations, while the GME-VC method provides information 

about the individual pollution sensitivities. In order to illustrate visually the variability of the estimated 

individual sensitivities of the pollution variable (NOXSQ), we present the kernel density of the 
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estimates in Figure 1, Panel A. As is shown, the mean pollution effect is -0.638 (see also Table 2!), but 

this effect varies between -0.667 and -0.611. On the whole, the negative effect of NOXSQ hence 

appears to be relatively similar over all observations. 

<< Insert Figure 1: GME-VC kernel densities of estimated individual sensitivities >>

In contrast, Panel B and C of Figure 1 exhibit that the effect of the (non-significant) variables INDUS

and AGE varies substantially over all observations, with very large deviations from the mean effect. For 

example, while the (mean) AGE effect is 0.0137, the maximum effect is found to be 1000% larger! 

Furthermore, while the estimated mean coefficient is positive for both variables, the individual 

sensitivities appear to be negative in some cases! Specifically, INDUS (resp. AGE) exerts a positive 

effect on the price of a property in 91.1% (resp. 80.8%) of the sample, and a negative effect in the 

rest of the sample! These results hence confirm our remarks in the previous section. Specifically, the 

effect of AGE on the price of a property is difficult to predict ex ante due to individual heterogeneity

and measurement issues. The same holds true for INDUS.

For all variables in Figure 1, it appears that the individual-specific coefficients are relatively 

symmetrically distributed around their mean value, yet with a relatively large spread (i.e., large 

variability) around this mean.

Furthermore, these individual sensitivities can be used to analyze possible influential observations or to 

analyze differences between specific groups of observations. As an example, we refer to an application 

of influential-data diagnostics by Belsley et al.  [4]. Replicating the OLS estimation of the H&R HPV 

model, they show that the H&R dataset contains some very influential observations and that the 

distribution of the error terms is significantly non-normal. From their analysis, it appears that the 

influential observations tend to be quite heavily concentrated in a few neighborhoods, mostly in the 

central city of Boston. This suggests that the central city of Boston and the suburbs are fundamentally 

different housing markets (Belsley et al.  [4]; Subramanian and Carson  [32]).

Now, turning to the results of the GME-VC estimation, it is possible to examine this proposition more 

carefully by investigating the variability of the obtained individual parameter estimates separately for 

the central city of Boston (132 cases) and the suburbs (374 cases).

<< Insert Figure 2: GME-VC kernel densities of estimated individual sensitivities (City vs. 
Suburb) >>

In Figure 2 we present the kernel densities separately for the central city of Boston and the suburbs for 

the variables NOXSQ, INDUS and AGE. Panel A shows with respect to the parameter results of the 

variable NOXSQ that relatively little difference exists concerning its effect on the price of houses in the 

central city of Boston and these in the suburbs. Not only is the mean impact virtually the same for 

both groups, also the minimum and maximum sensitivities are quite similar. Despite this, the shape of 

the distribution of the individual sensitivities is rather different for the central city of Boston and these 

of the suburbs. In particular, the kernel density of the suburb fraction has a strong leptokurtic 

distribution with a more acute "peak" around the mean while the kernel density of the city suburb has 

a platykurtic distribution.
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Panel B and C exhibit that the situation for the variables INDUS and AGE is more complicated. For 

example with respect to AGE, it is shown that the difference between the mean values of both the 

central city and the suburbs is relatively small. For both subgroups, the effect of AGE on price turns 

out to be positive (yet not significant). On the other hand, the differences between the minimum and 

maximum sensitivities are more pronounced, with the maximum sensitivity in the city sample (0.1587) 

being almost double of the maximum sensitivity in the suburb sample (0.0894). Furthermore, the city

fraction has a more platykurtic distribution with many of the individual sensitivities relatively far from

the mean value. Finally, it is shown that for the city sample, 65% of the cases have an individual-

specific parameter that is positive, while for the suburbs this amounts to 86%.

These results corroborate those of Belsley et al.  [4] who found that the (basic) H&R OLS based

housing equation is not so well specified due to (substantial) differences in the housing market in

Boston city vs. the suburbs.

3.2.2.3 Controlling for both cross-sectional and spatial heterogeneity (GME-VCGE model)

While in the previous section the existence of a group effect was studied by analyzing ex-post the 

estimation results for houses from the central city of Boston and those from the suburbs, alternatively, 

the GME approach allows for incorporating a (systematic) group effect implicitly into the specification

(see Section 2.3). 

3.2.2.3.1 GME-VCGE(1): city vs. suburbs

First, assuming that the central city of Boston and the suburbs are fundamentally different housing 
markets, a group effects coefficient kgw , was added to the specification with ),( suburbcityg  . The results 

from this specification are presented in Table 2, Column 5. From this, it appears that in all instances,

the predicted (mean) coefficients are rather similar with respect to sign and magnitude to these of the 

previous GME-based estimators as well as the OLS results.

As demonstrated before, these mean coefficients, however, obscure the heterogeneity that exists in 

the sample. For that reason, we carry out a more in-depth analysis of the individual-specific 

coefficients from the GME-VCGE(2) specification by showing the kernel densities for the variables 

NOXSQ, INDUS and AGE for both the central city of Boston and the suburbs (see Figure 3). In these 

figures, we also show the estimated average effect for the whole sample (see also Table 2, Column 5!)

as well as the estimated average effects for both subsamples.

<< Insert Figure 3: GME-VCGE kernel densities of estimated individual sensitivities (City vs. 
Suburb) >>

For the pollution variable NOXSQ, the estimated average effect is equal to -0.671. Drawing the kernel 

densities for the central city of Boston and the suburbs, however, clearly shows that this is only an 

average effect which obscures important dynamics in the different housing markets. In fact, the 

difference between the estimated mean effects for the central city of Boston and the suburbs is larger 

than in Figure 2, with both kernel densities being very differently shaped and exhibiting only minor 

overlap.
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Furthermore, relatively large differences exist between the kernel density distributions of the central 

city of Boston and the suburbs for the variables INDUS and AGE as well. Hence, while in the fixed 

coefficients GME specification, the differences between the calculated average effects for the central 

city of Boston and the suburbs are small (see Figure 2), they are more pronounced in the current 

specification. Additionally, for both variables the minimum and maximum sensitivities are quite 

different for the city and the suburbs. This holds true for the shape of the kernel densities as well. 

In all, this clearly demonstrates that both neighborhoods represent fundamentally different housing 

markets, which needs to be accounted for in empirical modeling.

3.2.2.3.2 GME-VCGE(2): 92 towns

Previously, it was taken into account that the dataset contains 132 observations from the central city 

and 374 from the suburbs. Yet, as a matter of fact, the H&R dataset contains data that are actually 

drawn from a population with a grouped structure since it relates to 92 different towns in the Boston 

area. 

For 17 of these 92 towns, there is only 1 observation (i.e., 1 census tract) in the dataset. Furthermore, 

inspection of the basic data reveals that only limited variability exists for several variables. For 

example, all tracts from the same town have the same variable value for the variables ZN, RAD, TAX, 

PTRATIO and INDUS. Atkinson and Crocker  [1] show that this may increase the likelihood of unreliable 

parameter estimates with unexpected signs.

Given the specific nature of the H&R dataset, Moulton  [20], Baltagi and Chang  [2] and Baltagi  [3] use 

it to examine group-specific heterogeneity under both fixed and random effects assumptions. Applying 

various unbalanced variance components methods, they find evidence of considerable inter-

metropolitan heterogeneity such that the equality of the coefficients in the central city of Boston and 

the suburbs can be rejected for most of the variables in the specification. For illustrative purposes, 

Panel B, Column 4 presents the original Baltagi  [3] results that are based on an unbalanced one-way 

maximum likelihood model with random group effects (i.e., 92 towns).

This aspect of the data explains why the results of the GME-VCGE(1) are closer to the OLS results than 

to these from the ML estimation. In fact, while the latter uses a random effects model to account for 

92 towns, the GME-VCGE(1) specification controls for a group effect that captures spatial 

heterogeneity that originates from  the central city and the suburbs.  

Consequently, we estimate the GME-VCGE(2) model taking into account that the data is drawn from a 

population with a grouped structure relating to 92 different towns within the greater Boston area (see 

Section 2.3). In contrast with the previous model, spatial heterogeneity hence is captured at the town-

level and not at the city/suburb level.5

The results of this specification are presented in Table 2, Column 6. From this, it appears that in 

general, the results of the GME-VCGE(2) model are between those of the OLS and the ML model. This 

                                                
5 Obviously, ex post, in our approach the kernel densities can be calculated separately for the central city and the 
suburbs as well.
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is most obvious for the variables CHAS and AGE for which the results differ significantly in the OLS and 

the ML model (with a sign change from positive to negative). In the GME-VCGE(2) model, the 

(average) effect of bounding the Charles River (CHAS) remains positive, yet becomes insignificant. The 

(average) AGE effect becomes negative (insignificant).

Since our parameters exist of a mean part, a group-specific (i.e., town) part and an individual-specific 

part, this provides abundant possibilities for investigating the parameters in more detail. As an 

example, we focus on the pollution variable NOXSQ in Figure 4.

<< Insert Figure 4: NOXSQ GME-VCGE kernel densities of estimated individual sensitivities
(92 towns) >>

In Panel A, we show the kernel density that is based on the full parameter, that is, for every 

observation we take the sum of the mean part, the group-specific part and the individual-specific part. 

Evidently, the mean effect of the full parameter (-0.587) is equal to the result that is shown in Table 2, 

Column 6. In the same panel it is shown that this effect varies between -0.6402 and -0.5470. Next, in 

Panel B, we focus on the group-specific (town) part as special element of the GME-VCGE(2) 

specification. Isolating the town effect from the full NOXSQ parameter, reveals that this effect ranges 

between -0.0412 and 0.0258. Furthermore, we use this information to draw separate kernel densities 

for the city centre and the suburbs. From this, it is shown that while the average effect for both 

neighborhoods is almost identical, more heterogeneity exists among towns from the city than from the 

suburbs. Finally, we show that the information from the GME-VCGE(2) specification can be applied to 

analyze the effect of NOXSQ at the level of a specific town as well. For example, in Panel C we 

compare the effect of pollution on the price for a house within a town from the city centre (Boston 

Savin Hill) and a house within a town from the suburbs (Cambridge). Despite the relatively small 

difference in the mean effect of NOXSQ on housing prices within these towns, it appears that only 

minor overlap exists between the kernel densities of the individual sensitivities. Hence, both are 

essentially different.

4 Conclusions

Previous research on hedonic property valuation (HPV) models has demonstrated several pitfalls in 

using the commonly applied OLS specification. Importantly, standard OLS specifications have only 

limited ability to deal with cross-sectional and spatial heterogeneity.

In view of this problem, we proposed a maximum entropy based alternative to the general HPV model. 

Starting from the Generalized Maximum Entropy (GME) estimator of the general linear model, we 

developed a Varying Coefficients GME (GME-VC) specification to account for cross-sectional

heterogeneity in the sample. Furthermore, we extended this model to account for spatial heterogeneity

in housing prices as well (GME-VCGE specification). Importantly, while the use of fixed coefficients 

obscures important dynamics regarding the operation of the housing market, application of varying 

coefficients allows for careful investigation of the variability of the individual parameter estimates.

In order to evaluate the performance of the various GME specifications in the hedonic setting, we 

applied the GME-FC, GME-VC and GME-VCGE approaches to the well-known Harrison and Rubinfeld

 [15] (H&R) dataset. The present analysis clearly demonstrates that both the central city of Boston and 
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the suburbs represent fundamentally different housing markets. Even more, it has been demonstrated

that the spatial heterogeneity is not so much related to the distinction between the central city of 

Boston and the suburbs, yet needs to be captured at the town level.
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Appendix: A flexible Maximum Entropy based estimator for the HPV model

1. Generalized Maximum Entropy estimation (GME-FC)

Following Golan et al.  [12] the Generalized Maximum Entropy (GME) formulation of the general linear 

model can be represented as follows (matrix notation):

eXy   (A1)

with y  a 1N vector of sample observations on the dependent variable, X  a KN   matrix of 

explanatory variables,  a 1K  vector of unknown parameters and e  a 1N  vector of unknown 

errors. Using the principle of maximum entropy, both the parameter coefficients and the noise 

component of the model are reparametrized as sets of unknown probabilities over some range of 
support values. For each parameter k  we hence define a support vector z of dimension M , with

2M . This support vector contains a discrete set of points, representing prior knowledge about the 
parameters to be estimated. Furthermore, we define a 1KM vector p of unknown weights such that 

0kmp and 1
1

 

M

m
kmp  for all k . Through this, k  can be written as shown in (A2). The same 

approach is applied for reparametrizing the error terms ie . Leaving the distribution of the error terms 

otherwise unspecified, using a vector w  of unknown weights, we can write:

 


M

m kmkmk pz
1

 (A2)

 


J

j
eei ijij

pze
1

(A3)

Applying Shannon’s  [28] information criterion, the probabilities kp  and iw can be calculated using the

following dual objective function:

           


K

k

M

m

I

i

J

j ijeijekmkme
pp

ppppppHMax
ijekm

1 1 1 1
lnln, 


(A4)

subject to the data-consistency (information-moment) condition for  Ii ,...,1 :

   


J

j ijeijekmkmik

K

k

M

m
i pzpzxy

11 1
 (A5)

and the adding-up (i.e., normalization) constraints:

 


M

m km
p

1
1 for Kk ,...,1 (A6)

 


J

j ijep
1

1    for Ii ,...,1 . (A7)

In the present GME specification, the parameters k  are ‘fixed’ for all observations; hence we can refer 

to this model as the Fixed Coefficients GME specification ( GMEFC
k ).
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2. Cross-sectional heterogeneity: a Varying Coefficients GME specification (GME-VC)

Following Peeters  [24], we adapt the fixed-coefficients GME specification by adding an individual-
specific term to the signal effect. Specifically, the original parameter GMEFC

k  is replaced by a 

parameter GMEVC
k  consisting of fixed (mean) k  and an individual–specific component kiv ,  that 

represents the individual heterogeneity (i.e., kik
GMEVC
k v ,  ). Analogously as in the GME-FC 

specification, we define a prior vector vz and a probability vector vp , both with dimension S , to 

formalize the individual–specific component kiv , :

 


S

s
vvki iksiks

pzv
1

, (A8)

Introducing kiv ,  in Shannon’s  [28] information criterion, we now obtain the following constrained 

optimization problem:

                 


K

k

M

m

I

i

K

k

S

s iksviksv

I

i

J

j ijeijekmkmve
ppp

pppppppppHMax
ikmvijekm

1 1 1 1 11 1
lnlnln,, 


(A9)

Subject to the data-consistency (information-moment) condition for Ii ,...,1 :

       


J

j ijeije

K

k

M

m

S

s iksviksvkmkmiki pzpzpzxy
11 1 1

 (A10)

With adding-up constraints:

 


M

m km
p

1
1 for Kk ,...,1 (A11)

 


J

j ijep
1

1 for Ii ,...,1 (A12)

 


S

s
iksv

1
1  for Ii ,...,1 and Kk ,...,1 . (A13)

Finally, we define the preservation-of-mean constraints:

0
1



I

i
ikv for Kk ,...,1 (A14)

such that:

   k
i

ikk
GMEVC
k EvEE  





   . (A15)

3. Spatial heterogeneity: a Varying Coefficients Group Effects GME specification (GME-

VCGE)

Being a very flexible and straightforward modeling approach, the GME-VC specification presented 

above can be adapted to account not only for cross-sectional heterogeneity but for spatial 
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heterogeneity (i.e., group-specific effects) in the hedonic price function as well. To this end, we extend
the signal effect and rewrite it as consisting of a fixed (mean) coefficient k , a group-specific

coefficient kgw , (representing metropolitan effects) and an individual–specific component kiv ,

(representing the individual heterogeneity). Consequently, the former parameter k  is extended to:

)( ,, kikgk
GMEVCGE
k vw   (A16)

Formally, we define a prior vector and a probability vector, both with dimension T , to formalize the 

group–specific component kgw , , such that:




T

t
wwkg gktgkt

pzw
1

,
(A17)

In the empirical specification, the new component is also integrated in the constrained optimization 

problem and the data-consistency (information-moment) condition. Besides the constraints that have 
been defined before, for the group-specific component kgw ,  we formulate the following adding-up 

constraint: 




T

t gktwp
1

1 for Gg ,...,1 and Kk ,...,1 (a.15)

and the preservation-of-mean constraints:

0
1

 

G

g
gkw for Kk ,...,1 (A18)

such that:

   k
i

ik
g

gkk
GMEVCGE
k EvwEE  






   . (A19)

4. Choice of the support values

In the literature, only limited guidance is offered with respect to the choice of the support bounds for 

the parameters and the error terms, and the effect of this choice on the parameter estimates (a 

notable exception is Paris and Caputo  [23]). Broadly speaking, two approaches can be distinguished as 

to set values (boundaries) for the support values. First, priors can reflect the situation that no prior 

knowledge is available about the sign and size of the parameters to be estimated, i.e., non-informative 

priors. A second, and more realistic approach, uses informative priors. In these priors, previous 

knowledge about the parameters to be estimated is reflected. This knowledge can come from different 

sources, e.g., previous related work, or from results generated from other techniques on the same 

dataset.

Applying the latter approach, we set the vector of support values for the (mean) parameter coefficients 

equal to )'ˆ100,ˆ50,0,ˆ50,ˆ100( OLSOLSOLSOLSz   . This should provide an interval that is wide enough 
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to include the ‘true’  .6 In doing so, we do not put too much subjective knowledge about the 

parameter values in the model, while at the same time, we do not completely disregard previous 
knowledge about the parameters to be estimated. For the support vector of the error term )( ez , we 

apply the ‘three-σ rule’ (Pukelsheim  [26]; Golan et al.  [12]), setting )'3,0,3(  ez where  is the 

empirical standard deviation of y . For the support values of the varying components, the only 

comparable study (Peeters  [24]) sets these as about 1% of the absolute size of the support vector for 

the mean coefficients. In our approach, we define the boundaries of the support vector of the 

individual effect )( vz and the group effect )( wz as '))ˆ(3,0),ˆ(3( OLSOLSv sesez   and

'))ˆ(3,0),ˆ(3( OLSOLSw sesez   .

                                                
6 Applying a nonparametric alternative to the H&R data, Pace  [22] finds coefficient estimates that are well within 
these boundaries.



 

Figure 1: GME-VC kernel densities of estimated individual sensitivities 
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Figure 2: GME-VC kernel densities of estimated individual sensitivities (City vs. Suburb) 
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Figure 3: GME-VCGE kernel densities of estimated individual sensitivities (City vs. Suburb) 
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Figure 4: NOXSQ GME-VCGE kernel densities of estimated individual sensitivities (92 towns) 
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Table 1: Variable Description 

 

 Variable  Definition Mean Standard 

Deviation 

 

Dependent variable 

Log(MV) Log (Median value of owner-occupied homes) 9.942 0.409 

 
Air pollution variable 

NOXSQ Annual average nitrogen oxide concentration in 
parts per hundred million (squared) 

32.109 13.921 

 
Structural house characteristics 

RMSQ Average number of rooms per dwelling (squared) 39.990 9.079 

CHAS Charles River dummy variable (= 1 if tract 
bounds river; 0 otherwise) 

0.070 / 

 
Local amenities (neighborhood characteristics) 
CRIM Per capita crime rate by town 3.61 8.601 

ZN Proportion of residential land zoned for lots over 
25,000 sq.ft 

11.360 23.322 

INDUS Proportion of non-retail business acres per town. 11.137 6.860 

AGE Proportion of owner units built prior to 1940 68.575 28.149 

TAX Full value property tax rate ($/$10,000) 408.24 168.537 

PTRATIO Pupil / teacher ratio by town school district 18.455 2.165 

B 1000(Bk - 0.63)^2 where Bk is the proportion of 
blacks by town 

0.357 0.091 

Log(STAT) Log(Proportion of population that is lower status) -2.234 0.601 

Log(DIS) Log(Weighted distances to five employment 
centers in the Boston area) 

1.188 0.539 

Log(RAD) Log(Index of accessibility to radial highways) 1.870 0.875 
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Table 2: Estimation results for (mean) coefficients  
 

   PANEL A   PANEL B  
 

 Fixed coefficients 
Individual-

specific varying 
coefficients  

 
Group- and individual-specific 

varying coefficients 

 
 

Ex 
ante 
sign 

(1)  
OLS 

 
Original H&R 

results 

(2)  
Maximum 
Entropy 

 
 GME-FC 

(3) 
Maximum 
Entropy 

 
 GME-VC 

 
 

(4)  
Maximum 
Likelihood 

 
Original 

Baltagi results

(5) 
Maximum Entropy 

 
 GME-VCGE(1) 
city vs. suburb 

(6) 
Maximum 
Entropy 

 
 GME-VCGE(2) 

92 towns 

CONST  9.756*** 
(0.150) 

9.767*** 
(0.150) 

9.776*** 
(0.150) 

9.676*** 
(0.207) 

9.950*** 
(0.159) 

9.720*** 
(0.153) 

 
Environmental characteristics (Air pollution variable) 

NOXSQ x 10-2 - -0.638*** 
(0.123) 

-0.647*** 
(0.123) 

-0.587*** 
(0.123) 

-0.587*** 
(0.123) 

-0.671*** 
(0.120) 

-0.587*** 
(0.116) 

 
Structural house characteristics 

RMSQ x 10-2 + 0.633*** 
(0.131) 

0.614*** 
(0.131) 

0.664*** 
(0.131) 

0.920*** 
(0.116) 

0.627*** 
(0.139) 

0.835*** 
(0.134) 

CHAS x 10-1 + 0.914*** 
(0.332) 

0.931*** 
(0.332) 

0.908*** 
(0.332) 

-0.120 
(0.290) 

0.899*** 
(0.353) 

0.306 
(0.340) 

 
Local amenities (neighborhood characteristics) 

CRIM x 10-2 - -1.187*** 
(0.124) 

-1.193*** 
(0.124) 

-1.200*** 
(0.124) 

-0.719*** 
(0.103) 

-1.236*** 
(0.132) 

-0.860*** 
(0.128) 

ZN x 10-3 + 0.0803 
(0.506) 

0.0706 
(0.506) 

0.0785 
(0.506) 

0.029 
(0.689) 

0.0271 
(0.537) 

0.107 
(0.518) 

INDUS x 10-2 (-) 0.0241 
(0.236) 

0.0130 
(0.236) 

0.0102 
(0.236) 

0.00222 
(0.440) 

0.0272 
(0.251) 

0.00163 
(0.242) 

AGE x 10-3 (-) 0.0898 
(0.526) 

0.103 
(0.526) 

0.0137 
(0.526) 

-0.943 
(0.461) 

0.0045 
(0.559) 

-0.405 
(0.539) 

TAX x 10-3 - -0.420*** 
(0.123) 

-0.422*** 
(0.123) 

-0.424*** 
(0.123) 

-0.374* 
(0.190) 

-0.582*** 
(0.130) 

-0.401*** 
(0.126) 

PTRATIO x 10-2 - -3.112*** 
(0.501) 

-3.123*** 
(0.501) 

-3.116*** 
(0.501) 

-2.980*** 
(0.980) 

-3.307*** 
(0.533) 

-2.971*** 
(0.514) 

B + 0.364*** 
(0.103) 

0.353*** 
(0.103) 

0.364*** 
(0.103) 

0.578*** 
(0.100) 

0.364*** 
(0.109) 

0.490*** 
(0.106) 

Log(STAT) x 10-1 - -3.710*** 
(0.250) 

-3.746*** 
(0.250) 

-3.627*** 
(0.250) 

-2.838*** 
(0.241) 

-3.726*** 
(0.266) 

-3.188*** 
(0.256) 

Log(DIS) x 10-1 - -1.913*** 
(0.334) 

-1.938*** 
(0.334) 

-1.942*** 
(0.334) 

-1.299*** 
(0.470) 

-1.896*** 
(0.355) 

-1.762*** 
(0.342) 

Log(RAD) x 10-1 + 0.957*** 
(0.191) 

0.968*** 
(0.191) 

0.953*** 
(0.191) 

0.971*** 
(0.284) 

0.740*** 
(0.203) 

0.938*** 
(0.196) 

R²  0.80586 0.80584 0.80581 n.a. 0.79757 0.79968 
MSPE  0.03237 0.03238 0.03238 n.a. 0.03656 0.03398 

***,**,* Significant at the 0.01, 0.05, 0.10 level (2-tailed). Standard error between brackets. 

Table 2


