
COMPUTER 
MODELLING 

PERGAMON Mathematical and Computer Modelling 30 (1999) 113-121 
www.elsevier.nl/locate/mcm 

Detection and Correction of Multiple Errors 
in General Block Codes 

L. EGGHE 
LUC, Universitaire Campus, B-3590 Diepenbeek, Belgium* 

and 
UIA, Universiteitsplein 1, B-2610 Wilrijk, Belgium 

(Received December 1998; accepted January 1999) 

Abstract-The paper deals with general block codes where the symbol sets at each coordinate 
do not have to be the same. First of all, the classical Hamming bound inequality for error correcting 
systems is extended to this case. 

Next, a new necessary condition for systems able to detect all 1,. . . ,2/c - l-errors (k E W) is proved. 
From this a new bound for such systems is proved. All results are proved to be optimal. 

The results have applications, e.g., in ISBN (International Standard Book Number) or ISSN (Inter- 
national Standard Serial Number)-like systems. @ 1999 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Block codes can, simply, be defined as follows (see, e.g., [1,2]). Let 

!il=fiiklj, 
i=l 

where it& denote n (possibly different) finite sets. Any element 

XlX2...Xn E i-l 

is called a possible block code. Note that 

where ( . I denotes the cardinality of the set. We will denote mi = IMi I (i = 1, . . . , n). 
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EXAMPLES OF BLOCK CODES. 

1. Classical ISSN or ISBN framework (ISSN = International Standard Serials Number, ISBN 

= International Standard Book Number), using ll-multiples (see further) 

Ml = . . . =M7={0,...,9}, 

Ma = (0,. . . 7% Xl WW, 
Ml = . . . = MS = {0,...,9}, 

Ml0 = (0,. . . 79, W WW, 

see [3]. 
2. System where one uses 13 multiples instead of 11 as above. Now 

M8 = (0,. . . 9% X, r, 2) WSN, 

Ml0 = (0,. . . , 9, X, Y, 2) NW, 

respectively. 

3. System with two check digits based on 11 respectively, 13 multiples (e.g., for ISBN) 

Ml = . . - = Mg = (0,. . . ,9}, 

Mlo = (0, . . . 7% Xl, 

Ml1 = (0,. . . ,9,X, Y, 2). 

4. Note that we do not suppose that our system works with check digits. Very generally we 
can put (1) and determine later what we will consider as correct codes. 

Let A c R be the set of correct codes. They are defined by the system. We do not suppose 

any system here. 

EXAMPLES OF CORRECT CODES IN BLOCK CODESYSTEMS. 

1. In the Examples 1, 2, and 3 above the device to be in A is by making multilinear com- 
binations of the zis and where one checks if we have an 11-multiple (respectively, a 13 

multiple)-see, e.g., [3-61 or the recent [7]. 
For a general description of ISBNs and ISSNs, we refer the reader to [8]. Note that 

the future length (n) of ISBNs or ISSNs will increase due to the electronic publishing 

phenomenon-see [9]. 
2. In case of Example 4 (for Mi = (0, . . . ,9}, i = 1, . . . , n), a correct code could be one for 

which 21x2.. . x, E R could be written as (points denote consecutive numbers and are 

not multiplications) 

Xl.. . qxit+l.. .xiz . . .Xij-,+l.. . xij 

(where ij = n) such that 
j 

CC Xik--l+1, * * * 7XiJ2 

k=l 

(3) 

is a complete square (the so-called generalized Pythagorean numbers) (take is = 1). 

EXAMPLE If n = 2, then 34 E A, since 32 +42 = 52 and 24 E Q \A, since 22 +42 = 20 and 
since &% $ M. Note that such examples of two natural numbers (whose sum of squares 
is again a square) can only be given for squares. Indeed, recently, the more than three 

hundred year old problem of Fermat (called the last “theorem” of Fermat) is solved by 
Wiles (see [lo] for a brief description of the elaborate proof or [ll] for a historical review) 
resulting in the fact that no numbers x, y and z E N exist for which xk + yk = zk, k E N, 
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k 2 3. But equations as zCk + yk + zk = u k (z, y,z,u, k E W, k > 3) are possible (see [ll, 
p. 1781). 

3. In [12] one studies RNS (Residue Number Systems). Here one takes n pairwise relatively 
prime numbers pl, . . . , p,, and a correct code X = x 1. . .x, is obtained iff xi = X(modpi) 
for a (unique-by the Chinese Remainder Theorem) number X E [0, p[, where p = ny=, pi. 

Algorithms to find X are available, see e.g., [13]. Many variants of the above described 

RNS exist (again, see the above-mentioned references). 

Note in the above examples that the sets Mi can be different for i E (1,. . . , n}. In [2] and [l] 
only block codes with fixed symbol sets are studied. Therefore an extension of the results (e.g., on 
the Hamming bound-see [l]) is necessary. Hereby, we are not only interested in error correcting 
systems but also in (the weaker) error detecting systems. In the latter case, our results will also 

be new in case the symbol set remains fixed. 
Let us first repeat, in our general framework, what we mean by a k-error correcting or k-error 

detecting system (k E N). 

Let Ak c R (k E N) be the set of all codes such that VY E &, 3 X E A such that X and 
Y differ at k places. Note that k equals the Hamming distance &(X, Y) between X and Y. Let 
X E A. Denote by &(X) the set of all codes Y such that X and Y differ at k places. Obviously, 

Ak = u Bk(X)* 

XEA 

(4 

DEFINITION 1.1. We say that the system detects aJJ k-errors iff 

&(-)A=0 

DEFINITION 1.2. We say that the system corrects all k-errors iff 

tBdX) 11 x E Al 

(5) 

forms a partition of Ak\A. 

One can readily see that these definitions agree with the classical notions of detection and 

correction, although the above definitions seem new to us. Indeed, (5) says that no k-error can 
be correct and hence is detected. Statement (6) says that any k-error leads uniquely to the one 
X E A that differs in k places with the given code. Note that Definition 1.2 implies Ak n A = 0, 
hence Definition 1.1. The following result is very easy in this framework. 

THEOREM 1.1. If the system detects all 1,2,. . . , 2k-errors (k E M fied), then it corrects all 

1,2,..., k-errors. 

PROOF. Let i E (1,. . . , k}. Suppose 3X,X’ E A such that X # X’ and such that 

~dx) n Bi (~7 z 0. 

Then there is a code Y differing from X in i places and differing from X’ in i places. Hence, 

X and X’ differ in 1,2,..., or 2i places, hence X’ E Aj(3j E {l,.. .,2i}). By Definition 1.1, 

Aj n A = 0. Hence, X’ 4 A is a contradiction. 
Since this is true Vi E (1,. . . , k}, the theorem is proved. I 

Note that this result is also a consequence from the proposition on p. 17 and the one on p. 18-19 

in [2], but the proof obtained in this way is more complicated. 
The result above is false if one only supposes that the system detects all 1,2, . . . ,2k - l-errors. 

Indeed, take k = 1, then the statement becomes one-error detection implies one-error correction 
which is false (take, e.g., the ISBN, ISSN systems). 
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COROLLARY 1.1. If the system detects all one- and two-errors then it corrects all one-errors. 

APPLICATION. If we calculate two check digits for ISSNs or ISBNs (e.g., by using 11 and 13 as 
divisors, cf. Example 3), then it is easy to see that it detects all one- and two-errors (exercise) 

(cf. also [7]), hence, by the above corollary, this system corrects all single errors. It takes the 
solution of a system of two linear equations (mod 11 and mod 13) to prove this directly. For 
k = 2,3... and general n it even takes intricate systems of linear equations to prove this! So the 

above theorem has far reaching applications, although its proof is very simple (because of the 
abstract formalism). 

The above elementary remarks are the starting point for our investigations. In the next section, 

we will calculate the values of the sets I&(X)1, yielding a generalization of the well-known 
Hamming bound in case of 1,. . . , k-correcting systems. By Theorem 1.1 this then also takes care 
ofall l,... , 2k-detecting systems. 

Section 3 then deals with the (weaker) situation where the system only detects 1,. . . ,2k - l- 
errors (k E N). The weaker results obtained in this case are proved to be optimal so that there 
cannot be an improvement. The paper closes with a short Section 4 with examples. 

2. THE CASE OF SYSTEMS THAT 
ARE CORRECTING 1,. . . , k-ERRORS 

Note that, by Theorem 1.1, the results obtained in this section also apply to systems that 
detect l,,. . . ,2k-errors. 

PROPOSITION 2.1. If the system corrects all 1,. . . , k-errors (k E N fixed) then 

@i(X) 11 i E (1,. . . , k}, X E A}, A (7) 

forms a partition of $=:=,Ai u A. 

PROOF. By definition, the &(X) (i E (1,. . . , k} fixed), X E A are disjoint, but also if we let 
i E (1,. . . , k} vary (otherwise there would exist i, j E (1,. . . , k}, X,X’ E A such that 

contradicting the fact that all i- and j-errors are corrected). I 

Note that (7) implies the weaker property that all the Al, . . . , Ak are disjoint and disjoint 
from A. The weakest relaxation of the condition in Proposition 2.1 is to suppose that the system 
detects all 1 , . . . ,2k - l-errors (implying the correction of all 1, . . . , k - l-errors). 

In this case, however, Proposition 2.1 is not true. Indeed, take k = 1. If Proposition 2.1 
would be true for 1,. . . ,2k - l-error detecting systems, then this implies (by (7)) that one-error 
detection implies one-error correction; we remarked already above that this is not true. 

The above result shows that the space !A must be pretty large since it must be able to contain 
all the disjoint sets in (7). If we manage to calculate the cardinality of all the sets in (7) we then 
obtain necessary requirements on the size of the set R in order to have the mentioned powers of 
detection and correction. This will be done now. 

It is no loss of generality to assume that we can subdivide the index set { 1, . . . , n} as follows 

e-i 

(1,. . . ,n} = {l,... ,~l)U{nl+l,... ,n1+n2}U*-U ~ni+l,.*.,~ni=n 7 (8) 
i=l i=l 

such that zi uses pl symbols if i E (1,. . . , nl}, zi uses p2 symbols if i E (121 + 1,. . . , n1 + 7~2) 
and so on, until: zi uses pe symbols if i belongs to the last set. Note that we do not require the 

symbol sets Ml, . . . , M,, to be equal (and the same for the other symbol sets). 
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This is no loss of generality since we can always rearrange 21,. . . ,z,, such that the above is 
true (warning: by doing so we leave the number of possible codes unchanged but of course the 

correctness of a code is changed!-but this is not a problem here since we deal with cardinality). 
Note that the above permutation of indices is not even necessary for the ISBN, ISSN codes. 

Take, e.g., the ISBN with two check digits (Example 3). We have here nl = 9, n2 = 10, n3 = 11, 

p1 = 10, p2 = 11, p3 = 13. 

PROPOSITION 2.2. Let X E A, k E (1,. . . , n} be fixed but arbitrary. Then 

IBk(Wl = fi (r;:> (Pi - oki - (9) 
kl i=l 

&';r, =k 

PROOF. Since we look at codes Y E &E(X), they differ at k places from X E A. A k-subset of 

(1, * * - 7 n) is always obtained as the disjoint union of a 

kl-subset from (1, . . . , nl} , 

ka-subset from {nl + 1,. . . , nz} , 

e-i e 
Ice-subset from Cni+l,Cni 

i=l i=l 

such that k = kl + k2 +. + . + Ice. There are respectively ( i: ) , ( i,” .) , , . . , ( 11) possible sets and in 

each case we have the choice of changing the correct symbols into (respectively) (~1 - l)kl, (p2 - 
l)kS,, . . ) (pe - l)kl other ones. Hence, formula (9) is proved. I 

COROLLARY 2.1. If the system corrects all k-errors then 

JAI + IAkl = IAl i- IAI.l&(X)l I fi$ = fi mj = IQI, 
i=l j=l 

(10) 

With IBk(x)I &s in (9). 

PROOF. If the system corrects k symbols then (0 denotes the disjoint union) 

Al, = u Bk(X), 

XEA 

by definition and the fact that &nA = 0. Hence, IAkUAl = lAkl+lAl = xXEA I&(X)j-t(AI = 

l4PdWI + I4 
This must be less than lfll = ny=‘=, mj (by definition) and 1521 = nf=, py (by construction). 1 

COROLLARY 2.2. If the system corrects alI 1,. . . , k-errors (e.g., if the system detects all 

1,2,. . . ) 2k-errors) (k E M fixed), then 

IAl + 2 IAil = IAl + IAl 5 I&(X)1 I fipy = fi rnj = IQl, (11) 
i=l i=l i=l j=l 

with (&(X)1 as in (9). 

PROOF. Under the above conditions, the sets in (7) are all disjoint and again 

Ai = u &(X) 
XEA 

foreveryi=l,..., k. The rest follows ss in the proof of Corollary 2.1. I 
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Note that (9), (lo), and (11) form a significant extension of the case in which all symbol sets 
are the same (or have the same number of symbols). In this case, (9) becomes (4 = 1, ml = 
. . . =m,=p1=:m, n1=n) 

I&(WI = (;) (m - 1)“. (12) 

In this case, (10) reads 

IAl + c (;) (m - 1)” 5 UP. 
XEA 

Hence, 

IAl (1 + (;) (m - 1)‘) I mn, 

and (11) reads 

JAI + k c (;> (m - l)i I mn 
i=l XEA 

or 

145 (;) (m - l)i I mn. 
i=o 

(13) 

Inequality (14) can be read in [l, p. 13, formula (2.5)] and is called the Hamming bound. 
Hence, (10) and (11) constitute extensions of the Hamming bounds to the case in which the 

symbol sets can differ. Note that this includes the ISBN and ISSN codes, which are not included 
in (14)! 

These generalized Hamming bounds can be used to prove that certain correction properties in 
certain systems cannot be obtained. 

Corollary 2.2 applies in the case that the system detects all 1,2,. . . ,2/c-errors. It is not true in 
the case the system detects all 1,2,. . . , 2k - l-errors. Indeed, take the case of the classical ISBN 
(k = 1 here). It is easy to see that 

A1 = A2 = . . . 

i=l 

where Ml = . . . = MS = (0,. . . ,9) and Ml0 = {0, . . . , 9, X}. The reason is that the check digit 
detects all mistakes. 

Obviously A is bijective with the set DE, Mi (since only one value of the check digit 21s 

makes the code correct). 
Hence, here 

IhI = I4 (ml0 - 1) (15) 

(mm = 11 in this case). Hence, 

PI + IAII = lAblo = PI. 

But (11) gives 

IAll = 14 2 (mi - 1) > I4 (ml0 - 1) 
i=l 

(n = 10 here), contradicting (15). This leads us to the next section. 

06) 
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3. THE CASE OF SYSTEMS THAT 
ARE DETECTING 1,. . . ,2/c - l-ERRORS 

In this weaker case we have the following results. 

LEMMA 3.1. Let i, j E (1,. . . , n} such that i # j. If the system detects aU 

Ii - jl , . . . , i + j-errors, 

then 
AinAj = 0. (17) 

PROOF. Suppose Y E Ai n Aj. Then there exists X E A and X’ E A such that Y differs at i 
places from X and Y differs at j places from X’. . 

Hence, X and X’ differ at k = Ii - jl, or . . . , k = i + j places. But X E A, X’ E Ak, and 

A n Al, = 0 by definition. Hence, X’ $! A, a contradiction. I 

PROPOSITION 3.1. If the system detects all 1,2,. . . ,2k - l-errors (k E M fixed), then the 

AI,..., Ak are mutually disjoint (and disjoint with A). 

PROOF. Vi,j E {l,... ,k},i#jonehasli-jl,..., i+jE{l,..., 2k-1). Hence,AinAj= 
IZI by the above lemma. That they are disjoint from A follows from the definition of i-error 

detectability. I 

COROLLARY 3.1. If the system detects aJI 1,2,. . . , 2k - l-errors (k E N fixed) then the system 
is also capable of detecting the number of errors in a code. 

PROOF. This readily follows from the fact that the AI,. . . , Ak are mutually disjoint. I 

Again the condition in the above proposition and corollary cannot be relaxed into “the system 
detects all 1, . . . ,2k - 2-errors”. Indeed, take the case of an ISBN with two check digits, calculated 

with 11 and 13 as divisors (Example 3). Take k = 2. Hence, we have detection of 1,2 = 2k - 2- 
errors (but not of all 3 = 2k - l-errors). Also we have that A1 n AZ # 0. Indeed, take the 
code 

05660351542 E A 

(4 is the check digit, using 11 as divisor and 2 is the check digit using 13 as divisor). Hence, 

15660351542 E Al. 

But if we calculate the new check digits for the partial code 156603515 we obtain 53 as check 

digits. Hence, 
15660351553 E A, 

and hence, 
15660351542 E Aa. 

Hence, A1 n Aa # ES. 
Based on the above results we can now prove the following theorem. 

THEOREM 3.1. If the system detects all 1,2,. . . ,2k - l-errors (k E N fixed), then 

(1% 
i=l j=l 

where 

IAil 2 fi (mj, - 1) I4 
e=i 

(19) 
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and where mj, , . . . , mj, are the i largest values from the set {ml,. . . , m,}. In addition, (19) is 
optimal in the sense that there exist systems for which equality in (19) holds.. 

PROOF. Equation (18) follows readily from the Proposition 3.1. Now the Ais cannot be written 
anymore as a partition of l%(X) s as was the case in Corollary 2.2 but we can show the following. 

Let mj, , . . . , mji be the i largest numbers in {ml,. . . , m,}. For every X = 21.. . zn E A we have 
that Y = yi . . . yn where 

{ 

Yi = x7 i E {L...,n)\ {jl,...,ji}, 

Y,i # xi, i E {jl ,...,A), 

belongs to Ai and does not belong to A (since A n Ai = 0). At each place i E {ji, . . . , ji} there 

are mi - 1 different possibilities. Hence, 

IAl 2 h (mj, - 1) IAl- 
e=l 

This inequality is optimal in the sense that, generally, we cannot prove a higher bound. Indeed, 
take the classical ISBN. Formula (16) shows 

l&l = I4 (ml0 - 1) 

which is, in this case, (19) but with equality sign. I 

Note that this result is also new in case all the symbol sets are equal (or have an equal 

cardinality) . 

GENERAL NOTE. In systems where R c ny=, h& none of the results obtained so far are true. 

Let us illustrate this in relation with the previous theorem. In any case, even when R C ny=“=, iVfi 
we have, under the conditions of the above theorem (for lc = 1) that IAll > IAl. Indeed, take 
X,X’EA,X#X’. So3i~{l,..., n} such that xi # xl, the values on the ith place in X, 
respectively, X’. Make the following construction. Let Y, Y’ be codes where the coordinates 

satisfy 

{ 

Xj, (.i Zi>, 
Yi = 

xl, (j = i), 

Yj = 
{ 

x;c(i, (j # 9, 

xi, (Li = i>, 

Then since xi # xi, Y # Y’. Furthermore Y E &(X) and Y’ E &(X’). Hence, Y, Y’ E Al. 
This shows that IAll > (Al. H ence, we have a much weaker result than (16) or (19). Also this is 

optimal. Take fl = {(O,O), (l,O), (1, l)}, and A = {(O,O)}. Then Al = {(l,O)}, hence, [AI = [All. 
We even have AZ = {(l,l)} so IA21 = IAl. 

But systems in which R # ny=, Mi are not important because of the fact that, as a consequence 
of an error, in every coordinate (i) every symbol of the symbol set Mi can occur, hence, fl = 
ny=, Mi as supposed in the beginning. Therefore, we will not go into systems where R # ny=, Mg 
any further. 

4. APPLICATIONS 

The results obtained in the previous sections also offer necessary conditions in order to have 
systems that can correct k-errors, 1,. . . ,/c-errors, or that can detect 1,. . . , k-errors (h odd or 
even). These can be used to show that systems do not perform this way. We give some examples. 

1. Take Ic = 1 in Corollary 2.2, IAl = log, ni = 9, ml = 10, n2 = 1, rns = 11. Condition (ll), 

together with (9) reads the requirement (. denotes multiplication) 

1oy1+ 9.9 + 10) 5 109.11, 
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which is false. Hence, any such system does not detect all 1,2 = Pk-errors. Note that this 

fact is independent of the system. We do not even have to use a system of check digits. 
Of course, classical ISBN falls in this category. 

2. Take k = 2 in Theorem 3.1, #A = log, n1 = 9, ml = 10, 712 = 1, rn2 = 11, ng = 1, 

ms = 13. Conditions (18) and (19) yield the requirement 

109(1+ 12.10.8) 2 109.11.13, 

which is false again. Hence, any such system does not detect all 1,2,3 = 2k - l-errors. 

Again this fact is independent of the system (we again do not specify whether or not 
we use check digits). Of course ISBNs formed as in Example 3 of Section 1 fall in thii 
category. 
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