
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Interactive Systems on the Road: Development of Vehicle User

Interfaces for Failure Assistance

Peer-reviewed author version

HOUBEN, Geert; VAN DEN BERGH, Jan; LUYTEN, Kris & CONINX, Karin (2005)

Interactive Systems on the Road: Development of Vehicle User Interfaces for Failure

Assistance. In: Proceedings of the 1st Workshop on Wireless Vehicular

Communications and Services for Breakdown Support and Car Maintenance

(W-CarsCare'05). p. 84-89..

Handle: http://hdl.handle.net/1942/7930

Interactive Systems on the Road: Development of Vehicle User Interfaces for
Failure Assistance

Geert Houben, Jan Van den Bergh, Kris Luyten and Karin Coninx
Limburgs Universitair Centrum

Expertise Centre for Digital Media
Universitaire Campus

B-3590 Diepenbeek, Belgium
e-mail: {geert.houben,jan.vandenbergh,kris.luyten,karin.coninx}@luc.ac.be

Abstract: In-vehicle interactive systems are usually spe-
cialized systems that rely on a particular set of hardware
and are designed to support the driver in reaching a desti-
nation with his/her vehicle. Since the importance of these
systems, especially when they are built to support the driver
while driving, a lot of research already has been done con-
cerning usability and safety. In contrast, interactive sys-
tems that support the automotive after sales market have
generated much less attention. Here, other aspects need
to be emphasized such as the failure type and complexity,
means for information visualization and communication,
and connectivity. We present an overview of the different
interaction devices used for a specific scenario of the Eu-
ropean Project MYCAREVENT. Integration between per-
sonal mobile devices and the environment of the car is envi-
sioned, which will eventually lead to a multi-channel system
where the most appropriate device with the best connection
can be selected to interact with the user and the car. We
will focus on different methodologies to create consistent
and reliable user interfaces for multiple in-car interaction
devices. A custom notation is introduced that supports the
creation of context-sensitive interactive systems suitable to
support the user in the given situation: a car breakdown.
One part of the context that can be taken into account is
the connectivity of the personal mobile device, since this in-
fluences the amount of information that is accessible for the
user.

1 Introduction

During the last few years, the automotive sector of-
fers a lot of services to its end-user, ranging from safety-
improving systems over entertainment to navigation ap-
plications.

The communication possibilities of most mobile sys-
tems allow to integrate these systems with the car to sup-
port the driver in different tasks. A typical example that
is used nowadays is a Personal Digital Assistant (PDA)
equipped with navigation software that can be easily in-
tegrated in the car environment [3, 7]. A lot of research
in this area has been done, especially concerning usabil-
ity and safety purposes. After all, most of these services
are usedwhile drivingthe car and it requires an approach
where the interface does not has the full attention of the
driver [4, 10].

Mobile devices, like PDAs and cellphones, have be-
come common in use. Their relative low cost, com-
bined with their computing power and communication
abilities, make them suitable interaction devices to be
used in our everyday tasks. We can take advantage of
these devices in case of a car failure to assist the driver
while solving the problem. In the European Project

MYCAREVENT (MCE) scenario’s are being worked
out that specify how a driver can repair a problem her-
or himself assisted by different interconnected systems.
Personal mobile devices can play an important role in
these scenario’s. Previously, when trying to repair these
car failures, there were no interactive services or systems
available in the car to support the repair process. The
only solution was to call a road-side technician or look
for a nearby garage where the car can be repaired. In this
paper we will focus on the necessary basis to use mobile
devices to support the driver in case of a car breakdown.

When providing a failure assistance system to the
driver, several important issues have to be taken into ac-
count during development: handling complexity, clear
visualization of information, being failsafe and reliable,
ensuring connectivity and security,. . . . Much less atten-
tion is paid to these systems and to the computerization
of the automotive after sales market. We focus on differ-
ent methodologies for creating user interfaces for these
systems. The introduction of innovative interactive ap-
plications creates new ways of collaboration among car
manufacturers, workshops, road assistance services and
the end-user.

This paper is structured as follows: Section 2 gives
an overview of the devices that will be used to guide
the user in case of a car breakdown. Next, Section 3
discusses several design methodologies suitable for user
interface engineering in the given context. Section 4 de-
scribes a process in which detection and reparation of
the driver’s car is performed from a user interface en-
gineering point of view. Section 5 introduces a custom
notation to design an interactive system that can accom-
modate to the requirements imposed by the MCE sce-
nario discussed in Section 4. Finally, Section 6 draws up
the conclusions of this paper.

2 In-Car Interaction Devices

Nowadays we notice that the resources of mobile sys-
tems as well as their usage is remarkably increasing.
The mobile world offers a huge amount of devices with
noticeable diversity in screen size, computing power,
amount of memory, interaction handling, connectivity,
. . . . The purpose of mobile devices is moving from
a simple apparatus with a single user goal to a multi-
purpose multimedia device, ready to use it for all kinds
of mobile interactions.

Also in the MCE project we will use mobile devices
as the tool of the user to interact with the car and the
MCE system. In Section 4 we work out a MCE sce-

nario; the service under consideration in this section is
called “driver self-help”. In this scenario the contribu-
tion of the driver is an essential part during the cycle of
detection and reparation a specified car-related problem.
This contribution not only covers the determination of
the fault, but also the possibility to fix the problem by
the driver himself. We will use this example as the leit-
motiv in the text and we will map a custom notation on
this example, as explained in Section 3.

Because these days mobile devices are almost com-
pletely integrated in the personal environment and life
of the user, we can rely on it as the center of the ser-
vice. While developing such services, some issues have
to be addressed: reliable applications have to be pro-
vided (software crashes are barely allowed), connections
have to be reliable too, and authentication and security of
the user information is necessary. Cars have some criti-
cal electronic and mechanical parts that need be treated
with care. Therefore, failsafe applications equipped with
up-to-date content information to support the driver have
to guaranteed.

To steer the actions of the user, “in-car” interaction de-
vices are used to lead him through the several necessary
steps. These devices are the link between the detected
fault in the car and the Service Portal, the MCE system
“solving” the problem. These devices have typical prop-
erties, interfaces and interaction methods, because they
are used in other situations and ways the user is used to.
We assume some interactive actions between the driver
and her/his device: providing diagnostics based on per-
ceived and described symptoms to the MCE system, re-
ceiving solutions from the system, communicating with
the On Board Diagnosis (OBD) device etc.

The mobile devices we will consider in our classifica-
tion are Personal Digital Assistants (PDA), smartphones
and mobile phones. We focus on their functionality and
usability. Onlywirelessconnectivity between the mobile
device and the OBD and between the mobile device and
the Service Portal is assumed. Some criteria, by which
we will test the devices, are fixed:(1) graphical capabil-
ities, (2) interaction methods,(3) communication possi-
bilities, (4) the support of the type of content that has to
be provided, and(5) the usability of application develop-
ment. Two sorts of communication have to be provided
in the scenario: long range communication (LRC) with
the Service Portal and short range communication (SRC)
with the car.

Mobile phones or cell phones are the smallest devices
we consider. They have limited memory capacity
and processor speed, and the screen is pretty small.
(1) Cell phones does not have advanced graphical
possibilities, so the interface is mostly textual and
form-based. (2) The input is provided by num-
ber buttons and soft buttons.(3) Most modern cell
phones support various way of data communica-
tion. Mostly used for human-human communica-
tion is the digital GSM technology (Global Sys-
tem for Mobile communications). To provide fail-
ure information to a call center operator, this call
functionality is necessary. Also infrared, Bluetooth

(SRC), GPRS and UMTS (LRC) are among the
most popular supported protocols and technologies.
GPRS is especially useful for transferring data, it
is a packet switched technology (in contrast with
GSM, which is circuit switched).(4) Due to the
phone limitations, only call functions and textual
or simple graphical information can be provided.
Most of the users have a cell phone, so user inter-
actions became established over the last few years.
(5) Besides the limited system properties, it is dif-
ficult to implement applications for mobile phones.
The software is printed on the chip and it is not easy
to change or modify it. A possible way to develop
programs for them is with Java (J2ME).

Personal Digital Assistants (PDAs)are small,
portable computing devices which are partic-
ularly used for carrying information like an
addressbook, agenda, phone number list, emails
etc. (1) They have high resolution screens and much
more graphical capabilities. PDAs can be used for
a lot of multimedia purposes, like playing movies
and music, taking pictures, receiving emails etc.
(2) The interaction is handled with a touchscreen
and stylus and some simple (hardware) buttons.
(3) There are some PDAs with phone functions,
but they are not widespread. Bluetooth, Wireless
LAN and infrared (SRC) are the most common
ways for wireless communication.(4) PDAs are
very suitable for visualizing graphical information.
Short range communication is provided, long range
communication with PDAs is not obvious.(5)
The most common operating systems for PDAs
are Microsoft Pocket PC, Microsoft Windows
Mobile, Palm OS and Linux. There are good
Integrated Development Environments (IDEs) for
these operating systems, so writing software for
them is straightforward and strongly related to
programming for desktop environments (e.g. .NET
Compact Framework for MS Pocket PC).

Smartphones combine the possibilities of PDAs with
those of cell phones.(1) The graphical possibili-
ties are high too, related to a PDA, but their screen
size is smaller. Also the screen resolution is not as
high as PDA screens.(2) Interaction is handled by
number buttons and softbuttons, added with a little
joystick or even a touchscreen and stylus.(3) Smart-
phones have more wireless communication options
than PDAs, like GSM and GPRS (LCR), but also
Bluetooth and infrared (SRC).(4) They are also
multimedia-related: you can take pictures, send im-
ages, play games, receive emails, keep an agenda
etc. Graphical visualization of data is possible, and
they provide long range as well as short range com-
munication technologies.(5) Widely used on smart-
phones is the Symbian operating system, which is
suitable to write applications for (in Java as well as
in C++). Few smartphones run on Windows Mo-
bile OS. Application development on smart-phones
is not straightforward if one is used to desktop PC
programming.

It is obvious that information for repairing cars has to
be visualized as clear as possible, so it will be better to
have a large screen with a high resolution than a small
one with a low resolution. In this case, visualization of
data is more important than a fast connection with the
OBD or the Service Portal. On a small, textual display it
is difficult to show a lot of important data without losing
the focus on the arrangement of information. Because
repair information is in fact just convenient if it is com-
bined with visual info, for example pictures or movies,
graphical capabilities are no exaggerated luxury. A PDA
or smartphone seems to be the best solution to support
this needs.

Because smartphones are focused on combining the
advantages of cell phones and PDAs, they have the
graphical capabilities and communication possibilities
to fulfill our conditions. Most of the smartphones sup-
port GSM, GPRS and Bluetooth technology, and have a
high-resolution color screen. However, PDAs have a bet-
ter support for programming applications and user inter-
faces and are more suitable for playing movies, showing
pictures or running memory intensive applications. They
provide easier and faster user interactions (touchscreen
and stylus) related to most of the smartphones (hardware
buttons). However, GSM technology is not yet available
in common PDA devices.

3 Design Methodologies

This section provides an overview of different design
methodologies that can support the interface engineer to
develop user interfaces for failure assistance. The de-
sign methodologies that are used here should support
different aspects that are typical for the situation. E.g.
the driver, whose car is suffering some type of defect, is
probably in a very stressful situation. Furthermore, if a
driver can fix the failure without help of a human expert,
the information that is provided to guide the driver must
be correct and complete, otherwise this could lead to a
new failure or worse. Therefore, the design of the inter-
active part of the system should give special attention to
the following aspects:

• Correct behavior at all times

• Robustness in all possible situations

• Context-sensitive

Correct behavior and robustness are long standing pil-
lars for these type of applications. Context-sensitivity is
a new aspect: diverse and easily accessible sensors pro-
vide the application with information from its surround-
ings (e.g. location of the car, heat of the car engine, avail-
able communication networks, outside temperature,. . .).
Particularly in the cases defined by the MCE partners,
such as “driver self-help”, context-sensitive interactive
systems can play an important role. The design method-
ologies used to create user interfaces for the devices are
introduced in Section 2.

Formal user interface specification techniques are well
suited to take into account these aspects. Formal meth-
ods are already widely used in traditional software en-
gineering approaches [11] where safety, correctness and

reliability are important. A formal description of soft-
ware ensures the reaching of predefined requirements,
because one can prove the software will work as spec-
ified. For the same reason, formal methods can aid the
user interface designer to create a robust interface that
shows correct behavior at all times. [1] shows a user
interface component can be the subject of a formal ver-
ification process. [2] present a design framework based
on the Interactive Cooperative Object (ICO) formalism
to create safety critical interactive systems. [1] and [2]
are two examples of formal approaches for designing an
interactive system where safety (and thus correct behav-
ior) is an important issue.

Besides formal specifications, model-based user inter-
face development (MBUID) [8] is a design methodology
that is applicable in the aforementioned situations where
multiple device, multiple users and multiple contexts
have to be taken into account. At the basis of MBUID
a set of models is used. Formal methods are often used
as part of the MBUID approach to describe the different
models, although this is not a requirement. A model can
be informally defined as a non-empty set with elements
and a set of relations specified between these elements.
It gathers and relates information about the specific con-
cept the final interface should reflect. A model provides
an abstraction of this concept: it hides the low-level de-
tails while preserving the important ones. It typically
focuses on the important characteristics that make up the
interface concept; the specification of low-level details
is postponed to a later stage in the design process. The
Task Model is probably the most well-known model: it
describes the activities, tasks and sub-tasks that are per-
formed to reach a goal from a user’s perspective. For ex-
ample [9] shows task models are suitable to be used for
safety-critical systems. In other work we showed con-
text can be integrated in task models [5]: one possible
use of this is to allow the user interface designer to make
a difference between the availability of a communication
network or no available communication network.

Besides the discussed methods that allow the user in-
terface designer to emphasize robustness, correctness
and context-of-use, another methodology that is well-
established is the traditional software engineering. Tra-
ditional software engineering uses the Unified Model-
ing Language1 as its standard notation: a language that
is widely used in different software processes (e.g. the
Rational Unified Process) but lacks support for user in-
terface engineering. This is fortified by the output of
the IFIP working group 2.7 / 13.4 on User Interface
Engineering2, whose goal is to bridge the gap between
Human Computer Interaction and Software Engineer-
ing. Section 4 shows a way to design user interfaces for
wireless-connected systems while providing a smooth
integration with UML.

4 Driver Self-help

In this section we introduce a specific scenario on
which we will apply a notation we developed to support

1http://www.uml.org/
2http://www.se-hci.org

the design of the user interface. First of all we will de-
scribe the scenario, based on the “driver self-help” sce-
nario of the MCE project. An overview can be found in
Figure 1.

Figure 1: Overview of the “driver self-help” scenario

The core idea of the MCE project is the failure assis-
tance of a user’s vehicle. By setting up a car manufac-
turer database and a Service Portal to communicate with
the user, failure related information, based on the given
input, is supplied to the driver. Also road-side techni-
cians or workshops can use this remote “repair informa-
tion” system. In this text we will only focus on the role
of the driver as an actor in the process. The scenario de-
scribed in this section is based on a MCE use case and
it serves as an example in this paper. Our goal is not to
provide a complete scenario.

Several ways for detection and/or reparation failures
in cars are defined: detection and reparation by vehicle
software, by the driver himself, by a road-side technician
or by a workshop technician. Detecting the car problem
should be left completely to car electronics: sensors in
the vehicle determine the fault(s), after which they are
bundled in the On Board Diagnosis (OBD) system.

However, when a breakdown situation occurs, these
self-diagnosis abilities are limited to the data collected
by the sensors. This brings some problems along. First
of all, it is virtually impossible to cover all the conceiv-
able in-car faults. Secondly, when the sensors them-
selves are subject to defects no relevant data can be ob-
tained from that part of the vehicle. This results in in-
sufficient input for failure reparation. For this reasons,
besides being the principal user of the system, the driver
is also required as a source of information.

The car driver has the possibility to give some input
concerning possible car failures. In the scenario defined

and used in this paper the user will do this with her/his
mobile device. The input from the OBD device is com-
bined with input provided by the user. After detecting
the failure(s), they are “translated” in a uniform language
on the mobile device. On the device, an Integrated Self
Help Application (ISHA) is running and will be firstly
consulted by providing the failure data. This applica-
tion is an autonomous solution that is independent of the
Service Portal and works in the driver’s personal envi-
ronment. As soon as the problem is analyzed and a so-
lution can be given to the driver, he/she will be guided
through the reparation process by the system by means
of the available interaction devices (see Section 2).

If the ISHA is not able to solve the problem, other
services have to be addressed. At this point, the MCE
Service Portal is used. The problem data is analyzed and
it is checked for possible solutions which can be supplied
for the specified fault information. If there are solutions
available, a solution picking list is created and sent back
to the driver’s mobile device. If the problem is not fully
covered or solved, we have to go one step further. The
last node in the solution providing chain is the Call Cen-
ter Operator (CCO).

The CCO is also part of the remote repair information
system. When the computer system of the Service Portal
is not able to solve the car problems, we have to omit the
computer as a reparation manual. The use of human in-
telligence is the only appropriate approach left attempt-
ing to solve the vehicle defects. The driver is connected
to the call center and he can provide extra failure infor-
mation to the operator in real-time. This operator can
use his own knowledge, if necessary completed with in-
formation from the Service Data Backbone to give the
user the right repair instructions. If this approach is also
not sufficient, an expert has to come on the spot to ex-
amine and/or repair the car.

5 Design and implementation support

In this section, the described scenario of Section 4 is
used as an example to illustrate a user interface modeling
notation that is closely related with traditional software
modeling notations. We propose to develop one appli-
cation for the mobile device of the driver that is repre-
sented by different interfaces, depending on her/his po-
sition in the detecting and repairing process. The inter-
face is changing due to these context changes. Also the
user profile can be taken into account when generating
the user interface.

Figure 2 shows an activity model for the scenario us-
ing the notation discussed in [12]. Notice that different
types of actions (user, interaction, system and environ-
ment) are defined in the activity model and the the model
is divided in two parts. The first shows the actions per-
formed by the driver and the mobile device she/he uses.
In the second part, the remote assistance service, the user
is a call center operator.User actionsare carried out
without interaction with the MCE system, whileinterac-
tion indicates interaction between the user and the MCE
system.

The monitoring software of the call center and the

Figure 2: Activity diagram of the scenario

OBD in the car are not part of the system, but are im-
portant in the scenario. They are marked ascontext col-
lectors((2) in Figure 2), their actions are integrated in the
activity model and marked as being executed in the en-
vironment (actions with gray background). The notation
allows specification of how context collectors are related
to the actions in the activity model. In this diagram, they
are used to carry out the action they are linked with.

The scenario starts when a problem with the car oc-
curs(1). This can be either noticed by the driver or the
OBD, which will show a warning then. The driver starts
the ISHA, which gets the information of the OBD and
analyzes it. If it does not have enough information, it
checks whether it can contact the remote assistance over
a (wireless) network(3). If there are connection possi-
bilities, the gathered data is sent to the remote assistance
system. The car manufacturer database is consulted re-
sulting in the submission of instructions to the driver or
the establishment of a call between the driver and an op-
erator in the call center(4). Finally, the instructions are
performed(5)3 by the driver resulting in a resolution of
the problem or a failure which is logged to the incidents
database.

Currently the notation shown in Figure 2 is only used
in the design stage. A limited form of implementation

3The fork in this action indicates that another set of actions is trig-
gered at this point.

Figure 3: Generating user interface descriptions

generation, however, is planned for the near future. It is
not our intention to generate program code, but to gen-
erate a set of declarative user interface descriptions that
have links to the application logic and context sensing
technologies. In order to generate such code, we will
also use diagrams that describe the application core, the
context information and services, and the presentation of

the user interface. Figure 3 shows this graphically; the
models in the lower-half of the figure are used to gener-
ate information in the user interface specification in the
upper-half. The structure of the user interface specifi-
cation in the figure corresponds to the structure of an
XForms [6] document, which we also consider to be a
possible target description format. The “context” and
“application logic” sections of the document can be de-
scribed in the XForms model sections, while the user in-
terface structure can be described using XForms groups
and controls.

6 Conclusion

We presented an overview of “in-car” interaction de-
vices that can be used in the “driver self-help” scenario
of the European Project MYCAREVENT. Each device
has a set of properties that can be taken into account
when designing an interactive system that uses these de-
vices for interaction. Properties such as support for com-
munication protocols and graphical capabilities will in-
fluence the user interface that is presented to the user
and the tasks that can be supported by these devices.
The user interface engineer has to take into account the
context of use, specific requirementsof in-car interaction
devices and therole of the userwhen designing an in-
terface for the system required to support the scenario
discussed here. Connectivity of the devices with other
devices (connected with the car) or with an external net-
work is part of the context of use. It is clear the user
interface will differ depending on the context.

Starting from traditional modeling approaches we in-
troduced a new notation for modeling context-sensitive
interactive systems. This notation includes support
for specifying contextual information and uses ideas
from model-based user interface development to support
multi-device user interface engineering. Because of its
close integration with UML, different roles of different
users could be expressed in the notation. Although the
notation is based on earlier work in user interface design
and built on UML, which has already proven its effec-
tiveness, the effectiveness of the proposed notation still
has to be validated using more rigorous testing by using
it to model (a significant part of) a real-world applica-
tion. The implementation of tool support that allows the
generation of a partial user interface, based on models in
the proposed notation, will also be very valuable in the
evaluation of the notation and the approach that is taken.

7 Acknowledgements

We would like to thank the authors of the MY-
CAREVENT use cases and Pilot scenario’s, who pro-
vided us with valuable ideas. The research at the Exper-
tise Centre for Digital Media (LUC) is partly funded by
the Flemish government, EFRO (European Fund for Re-
gional Development) and the Flemish Interdisciplinary
Institute for Broadband Technology (IBBT). The MY-
CAREVENT4 project FP6-IST No. 004402 is an Inte-
grated Project sponsored by the European Commission
in support of the Strategic Objective “Information So-

4http://www.mycarevent.com

ciety Technologies (IST)” in the Sixth Framework Pro-
gram.

REFERENCES

[1] Yamine Äıt-ameur, Benoit Breholée, Patrick Gi-
rard, Laurent Guittet, and Francis Jambon. Formal
Verification and Validation of Interactive Systems
Specifications. InIFIP 13.5 Working Conference
on Human Error, Safety and Systems Development,
2004.

[2] Rémi Bastide, David Navarre, and Philippe
Palanque. A tool-supported design framework for
safety critical interactive systems.Interacting with
Computers, 15:309–328, June 2003.

[3] F. Bellotti, R. Berta, A. De Gloria, and M. Mar-
garone. Developing in-car PDA-based tour guides.
In Human - Computer Interaction, volume 2, pages
18 – 22, June 2003.

[4] Jun-Kai Chiu and Sheue-Ling Hwang. Function
Analysis and Control Panel Design of in-Car Com-
puter Systems (E-Car). In Constantine Stephanidis
and Julie Jacko, editors,Human - Computer Inter-
action, volume 2, pages 33 – 37, June 2003.

[5] Tim Clerckx, Kris Luyten, and Karin Coninx. Gen-
erating Context-Sensitive Multiple Device Inter-
faces from Design. InCADUI 2004, volume 4.
Kluwer Academic, 2004.

[6] Micah Dubinko, Leigh L. Klotz, Roland Merrick,
and T. V. Raman. Xforms 1.0. W3C, World
Wide Web,http://www.w3.org/TR/2003/
REC-xforms-20031014/ , 2003.

[7] Irene Mavrommati. Vehicle Navigation Systems:
Case Studies from VDO Dayton. InHuman - Com-
puter Interaction, volume Volume II, pages 183 –
187, June 2003.

[8] Fabio Paterǹo. Model-Based Design and Evalua-
tion of Interactive Applications. Springer, 2000.

[9] Fabio Paterǹo, Vincenzo Sabbatino, and Carmen
Santoro. Using information in task models to sup-
port design of interactive safety-critical Applica-
tions. InProceedings of the working conference on
Advanced visual interfaces, pages 120–127. ACM
Press, 2000.

[10] Peter R̈ossger and J̈org Hofmeister. Cross Cultural
Usability: An International Study on Driver Infor-
mation Systems. InHuman - Computer Interac-
tion, volume 2, pages 253 – 257, June 2003.

[11] Ian Sommerville.Software Engineering. Addison-
Wesley, 7th edition, 2004.

[12] Jan Van den Bergh and Karin Coninx. To-
wards modeling context-sensitive interactive appli-
cations. InACM Symposium on Software visual-
ization, Saint-Louis, Missouri, USA, May 14–15
2005. Accepted for publication.

